Table of contents
- Red Blood Cell DHA Is Inversely Associated with Risk of Incident Alzheimer’s Disease and All-Cause Dementia: Framingham Offspring Study
- VitaminDWiki - Omega-3 helps many health problems
- VitaminDWiki -
52 studies in both categories Cognitive and Omega-3 - VitaminDWiki - Overview Alzheimer's-Cognition and Vitamin D contains
- VitaminDWiki pages with ALZHEIMER in title (78 as of June 2022)
- VitaminDWiki pages with DEMENTIA in title (41 as of June 2022)
Red Blood Cell DHA Is Inversely Associated with Risk of Incident Alzheimer’s Disease and All-Cause Dementia: Framingham Offspring Study
Nutrients 2022, 14(12), 2408; https://doi.org/10.3390/nu14122408
by Aleix Sala-Vila 1,2,*,†ORCID,Claudia L. Satizabal 3,4,5,6,†,Nathan Tintle 1,7,Debora Melo van Lent 3,4,5,6ORCID,Ramachandran S. Vasan 8,Alexa S. Beiser 9,Sudha Seshadri 3,4,5,6 andWilliam S. Harris 1,10ORCIDHigh DHA, reduces incidence of dementia
High Omega-3 index: delays Alz 7.6 years, Dementia 7.3 years
Docosahexaenoic acid (DHA) might help prevent Alzheimer’s disease (AD). Red blood cell (RBC) status of DHA is an objective measure of long-term dietary DHA intake. In this prospective observational study conducted within the Framingham Offspring Cohort (1490 dementia-free participants aged ≥65 years old), we examined the association of RBC DHA with incident AD, testing for an interaction with APOE-ε4 carriership. During the follow-up (median, 7.2 years), 131 cases of AD were documented. In fully adjusted models, risk for incident AD in the highest RBC DHA quintile (Q5) was 49% lower compared with the lowest quintile (Q1) (Hazard ratio [HR]: 0.51, 95% confidence interval [CI]: 0.27, 0.96). An increase in RBC DHA from Q1 to Q5 was predicted to provide an estimated 4.7 additional years of life free of AD. We observed an interaction DHA × APOE-ε4 carriership for AD. Borderline statistical significance for a lower risk of AD was observed per standard deviation increase in RBC DHA (HR: 0.71, 95% CI: 0.51, 1.00, p = 0.053) in APOE-ε4 carriers, but not in non-carriers (HR: 0.85, 95% CI: 0.65, 1.11, p = 0.240). These findings add to the increasing body of literature suggesting a robust association worth exploring dietary DHA as one strategy to prevent or delay AD.
 Download the PDF from VitaminDWikiDiscussion
In this prospective study conducted in a community-based sample of Americans over age 65 who were followed for a median of 7.2 years for incident dementia, we found that an increasing proportion of DHA in RBCs was related to a lower risk of AD and all-cause dementia. Of note, participants at the top quintile of RBC DHA had roughly half the risk of developing AD during follow-up compared to those at bottom quintile. We also detected a possible interaction between RBC DHA x APOE-e4 carriership, with a stronger inverse association between RBC DHA and risk of AD in e4 carriers—individuals at increased genetic risk of late-onset AD—than non-carriers. This suggests that carriers may benefit more from higher DHA levels than non-carriers [6].
Three of our findings are important. First, this study supports the hypothesis of a link between diet and brain health, since the most effective way to raise RBC DHA levels is to consume more preformed DHA. Thus, DHA, a fatty acid also known to have cardiovascular benefits [25], might also slow the progression of AD. Second, based on our estimations, changing from the lowest quintile (<3.8% of DHA in RBC membranes) to the top quintile (>6.1%) could translate into an estimated gain of 4.7 years free of AD. This was roughly half of the apparent benefit gained from not carrying an APOE-e4 allele. Given that estimated health-care payments in 2021 for all patients with AD or other dementias amount to $355 billion in US (not including caregiving by family members and other unpaid caregivers) [26], any cost-effective strategy for delaying the onset of AD is of utmost public health interest. Delaying AD by 5 years leads to 2.7 additional years of life, and 4.8 additional AD-free years for an individual who would have acquired AD, and is worth over $500,000 [27]. Third, after excluding e2/e4 participants (because of the known protective effects of the e2 allele), we observed an interaction DHA x APOE-e4 carriership on incident AD and all-cause dementia, with a trend towards a greater benefit of DHA in e4 carriers than in non-carriers. A plausible explanation for this finding is that APOE-e4 carriers might need more DHA to overcome their lower status of DHA (secondary to accelerated liver catabolism of DHA) coupled to impaired delivery of DHA to the brain [6]. This exploratory finding, which should be confirmed in more prospective studies with adequate statistical power, suggests that the APOE genotype modulates the associations between DHA and incident AD, and reinforces the need to target these particular individuals for supplementation, as expanded upon below.
Our study is in line with that of Tan et al., who reported cross-sectional associations with RBC DHA on cognitive performance and brain volume measurements (with higher DHA being associated with beneficial outcomes) in the same cohort as studied here [28]. Most interestingly, 15 years ago, similar findings were reported by Schaefer et al. in the parents of the individuals who were the focus of this present investigation (i.e., the Original Framingham Heart Study cohort). Schaefer et al. reported that participants in the top quartile of plasma phosphatidylcholine DHA experienced a significant, 47% reduction in the risk of developing all-cause dementia compared with those with lower levels [13]. Similar findings a generation apart in a similar genetic pool provide considerable confirmation of this DHA-dementia relationship.
Despite mounting evidence on the association between circulating DHA and preserved brain structure [9,10], blood-brain barrier integrity [29], and lower cerebral amyloidosis [30], several longitudinal studies on circulating DHA and incident AD/dementia failed to report statistically significant associations for DHA [11,12,17,18], while reporting significant inverse associations for DHA + EPA [12,15] or EPA alone [17,18]. In our study, using RBC EPA + DHA (i.e., the omega-3 index) or RBC EPA as the exposures of interest resulted in weaker and non-significant associations than for DHA alone. Future research is warranted to better delineate the extent to which EPA and/or DHA is the better marker of risk for dementia, and whether plasma concentrations vs. percent composition vs. RBC is the optimal sample type to analyze for omega-3 content when evaluating patients with respect to dementia.
In terms of clinical relevance, the lack of benefits in cognitive performance in randomized controlled trials involving DHA [31-35] urges to improve the design of future trials. Other study designs to elucidate causation (e.g., Mendelian Randomization) may also be valuable, though identifying a good quality genetic instrument for DHA may prove challenging [36,37]. Our results imply that certain people might benefit more from DHA-based interventions than others. This perspective is aligned with the 21st century shift towards "precision nutrition" and "personalized medicine." Specifically, two patient characteristics would be of interest. First, those with low DHA status, as suggested by results from the Multidomain Alzheimer Preventive Trial (MAPT), in which 3-year supplementation with 800 mg DHA + 225 mg EPA showed no significant effect on cognitive decline overall in older people with memory complaints [34], but benefits were observed in a subgroup of individuals with low omega-3 status at baseline [38]. This finding spawned the ongoing "low-omega (LO)-MAPT" trial (18-month intervention in older adults with omega-3 index < 4.83%; [39]), which will hopefully shed light on this issue. The second group that might benefit from DHA supplementation is individuals who are genetically at risk of AD (i.e., APOE-e4 carriers). In these people, subclinical structural and functional brain changes associated with AD take place years (even decades) before AD is present. There is increasing evidence for cognitive benefit from dietary DHA in cognitively healthy e4 carriers (consistent with our findings), but not in those with AD or mild cognitive impairment [6]. Therefore, there may be a window of opportunity to identify cognitive healthy e4 carriers and manage their associated elevated dementia risk with a dietary intervention (i.e., dietary DHA, but requiring doses close to 2 g/d [40]).
The strengths of this study are the inclusion of a large sample of older adults living in a community setting, with comprehensive cognitive assessments, continuous dementia surveillance, and collection of multiple health measures that can be included as potential confounders in statistical models. Furthermore, we used objective measurements of DHA and EPA from RBC, which reflect their long-term intake more accurately than dietary intake questionnaires. However, our study has several limitations. First, given its observational nature, it cannot address causality, and it is not possible to establish the directionality of associations. Second, the low number of e4 carriers resulted in a less precise effect estimates; therefore, our exploratory finding should be replicated in larger studies with greater statistical power. Third, we could not exclude the possibility that uncaptured environmental or other genetic factors may have influenced or caused the observed associations. Fourth, there is no information on whether a single measurement of RBC DHA is appropriate to estimate the risk of AD over long-term follow up when compared to repeated measurements. Finally, additional studies are needed to replicate these results in more diverse populations.Conclusions
In conclusion, in a cohort of dementia-free participants from the Framingham Heart Study aged 65 years and older, we observed that those with a baseline RBC DHA proportion above 6.1% (top quintile) had nearly half the risk of developing AD (and all-cause dementia), and had an estimated 4.7 extra years of life free of AD compared to those with an RBC DHA below 3.8% (bottom quintile). In addition, we observed a trend for a stronger association in between RBC DHA and risk for dementia in e4 carriers than non-carriers, a finding that needs further research. Our results, which concur with a growing experimental research foundation, suggest that an increased DHA intake may be a safe and cost-effective strategy in preventing AD in specific populations.
VitaminDWiki - Omega-3 helps many health problems
407 Omega-3 items in category Omega-3 helps with: Autism ( 7 studies), Depression ( 28 studies), Cardiovascular ( 34 studies), Cognition ( 52 studies), Pregnancy ( 44 studies), Infant ( 34 studies), Obesity ( 14 studies), Mortality ( 7 studies), Breast Cancer ( 5 studies), Smoking, Sleep, Stroke, Longevity, Trauma ( 12 studies), Inflammation ( 18 studies), Multiple Sclerosis ( 9 studies), VIRUS ( 12 studies), etc
CIlck here for details
VitaminDWiki -
52 studies in both categories Cognitive and Omega-3 This list is automatically updated
- Risk of Alzheimer’s is decreased by food, supplements, and lifestyle – Aug 2024
- APOE-04 Alzheimer’s progression slowed up by Omega-3 – RCT Aug 2024
- Dementia prevented by Omega-3, Vitamin D, etc. book and video May 2024
- Better cognition associated with higher Omega-3 index – Sept 2023
- Alzheimer’s delayed 4.7 years by high Omega-3 index (7.6 years if also have APOE-4) June - 2022
- Dementia 4.1 X high risk in those with low Vitamin D, Omega-3, etc.2 decades before (behind paywall) – Nov 2021
- Early brain development helped by Iron, Iodine, Vitamin D, Omega-3. Zinc etc. – Oct 2021
- Omega-3 paused Alzheimer's decline - RCT Sept 2021
- Seafood (Omega-3) during pregnancy increased childhood IQ by 8 points – review Dec 2019
- Omega-3 index of 6 to 7 associated with best cognition in this study – Nov 2019
- Eating fish improves cognition (Omega-3 fish during pregnancy in this case) - Oct 2019
- Mental disorders fought by Omega-3 etc. - meta-meta-analysis Oct 2019
- Omega-3 prevents Parkinson’s Disease – Review of RCT July 2019
- Omega-3 helps brains of seniors – May 2019
- Omega-3 helped Alzheimer’s only if good level of B vitamins – RCT April 2019
- Standard Omega-3 not get past blood-brain barrier in seniors at high risk of Alzheimer’s – Patrick hypothesis Oct 2018
- APOE4 gene problems (Alzheimer’s) reduced by both Vitamin D and Omega-3 - Dec 2018
- Omega-3 is important for Brain Health during all phases of life – Aug 2018
- Hypothesis: Omega-3 reduces Alzheimer’s directly and via the gut – Sept 2018
- Improve Cognitive Health and Memory with Vitamin D and Omega-3 – World Patent March 2018
- IQ levels around the world are falling (perhaps lower Vitamin D, Iodine, or Omega-3)
- Adding Vitamin D, Omega-3, etc to children’s milk improved memory (yet again) – RCT June 2018
- Omega-3, Vitamin D, Folic acid etc. during pregnancy and subsequent mental illness of child – March 2018
- Why Alzheimer’s studies using Omega-3 have mixed results – quality, dose size, Omega-6, genes, etc. March 2018
- Benefits of Omega-3 beyond heart health - LEF Feb 2018
- Supplementation while pregnant and psychotic – 20 percent Omega-3, 6 percent Vitamin D – June 2016
- ADHD, Autism, Early Psychosis and Omega-3 – review Dec 2017
- Mild Traumatic Brain Injury prevented with Omega-3, Resveratrol, etc (in rats) – Oct 2017
- Omega-3 found to treat Alzheimer’s and Parkinson’s in animals – Sept 2017
- The End of Alzheimer's and Dementia if adjust Vitamin D, B-12, Iron, Omega-3, etc.
- Violent schizophrenia patients treated by 3 months of Omega-3 – RCT Aug 2017
- Psychosis risk reduced for 80 weeks by just 12 weeks of Omega-3 – RCT Aug 2017
- Alzheimer’s (apoE4) may require more than Omega-3 - May 2017
- Infants getting 1 g of Omega-3 for 12 weeks got better brains – RCT March 2017
- Omega-3 reduces many psychiatric disorders – 2 reviews 2016
- Cognitive Impairment 1.8 times more likely if low Omega-3– Oct 2016
- Omega-3 may treat schizophrenia
- Benefits of Omega-3 on brain development
- Omega-3 helps childhood cognition – meta-analysis April 2016
- Football Brain injuries prevented by Omega-3 – RCT Jan 2016
- Schizophrenia treated by 6 months of Omega-3 – RCT Nov 2015
- Omega-3 and infant development - dissertation Sept 2015
- Omega-3 etc improved both cognition and mobility of older women – Aug 2015
- Schizophrenia relapses reduced 3X by Omega-3 – RCT Mar 2015
- Cognitive decline in elderly slowed by Omega-3 – meta-analysis May 2015
- Cognitively impaired brain atrophy was slowed 40 percent by Omega-3 and B vitamins – RCT July 2015
- Omega-3, Vitamin D, and other nutrients decrease mental health problems – March 2015
- Vitamin D, Omega-3 supplementation helps cognition – perhaps due to serotonin – Feb 2015
- Vitamin D and Omega-3 may reduce cortical atrophy with age – Nov 2013
- Alzheimer’s and Vitamins D, B, C, E, as well as Omega-3, metals, etc. – June 2013
VitaminDWiki - Overview Alzheimer's-Cognition and Vitamin D contains
- FACT: Cognitive decline is 19X more likely if low vitamin D
- FACT: Dementia is associated with low vitamin D levels.
- FACT: Alzheimer’s Dementia 2.3X more likely in elderly if low vitamin D – Dec 2022
- FACT: Dementia is associated with low vitamin D - many studies
- FACT: Alzheimer's Disease is 4X less likely if high vitamin D
- FACT: Every single risk factor listed for Alzheimer's Disease is also a risk factor for low vitamin D levels
- FACT: Elderly cognition gets worse as the elderly vitamin D levels get even lower (while in senior homes)
- OBSERVATION: Reports of increased vitamin D levels result in improved cognition
- OBSERVATION: Alzheimer’s patients 3X more likely to have a malfunctioning vitamin D receptor gene – 2012
- OBSERVATION: Alzheimer's Disease has been seen to halt when vitamin D was added.
- OBSERVATION: Alzheimer’s is associated with all 7 of the genes which restrict vitamin D
- OBSERVATION: 39 vitamin D and Alz. or Cognition intervention trials as of Sept 2018
- OBSERVATION: 2 Meta-analysis in 2012 agreed that Alzheimer's Disease. associated with low vitamin D
- OBSERVATION: 50X increase in Alzheimer's while decrease in vitamin D
- OBSERVATION: Vitamin D reduces Alzheimer’s disease in 11 ways
- OBSERVATION: Alzheimer’s cognition improved by 4,000 IU of vitamin D
- OBSERVATION: Plaque removed in mice by equiv. of 14,000 IU daily
- OBSERVATION: DDT (which decreases Vit D) increases risk of Alzheimer's by up to 3.8X
- OBSERVATION: 2% of people have 2 copies of the poor gene reference: Alz Org
- OBSERVATION: Genes do not change rapidly enough to account for the huge increase in incidence
- OBSERVATION: End of Alzheimer's videos, transcripts and many studies protocol has been very successful
- It adjusts Vitamin D, B-12, Iron, Omega-3, food, etc, and can now be done at home.
- FACT: Vitamin D is extremely low cost and has very very few side effects
- CONCLUSION: Everyone concerned about cognitive decline or Alzheimer's Disease should take vitamin D
- PREDICTION MET: By 2024 Omega-3 and high dose Vitamin D will be found to reverse Alzheimer's in humans
There are 13+ Alzheimer’s meta-analyses in VitaminDWiki
There are 97+ Alzheimer’s studies in VitaminDWiki
Dementia is associated with low vitamin D - many studies 50+ studies
16+ studies in both categories Cognitive and Omega-3
VitaminDWiki pages with ALZHEIMER in title (78 as of June 2022)
This list is automatically updated
Items found: 102
VitaminDWiki pages with DEMENTIA in title (41 as of June 2022)
This list is automatically updated
Items found: 61Alzheimer’s delayed 4.7 years by high Omega-3 index (7.6 years if also have APOE-4) June - 20222349 visitors, last modified 18 Jun, 2022, This page is in the following categories (# of items in each category)Attached files
ID Name Uploaded Size Downloads 17900 Omega-3 index and AD. Dem.jpg admin 17 Jun, 2022 38.65 Kb 309 17899 Alz delayed.jpg admin 17 Jun, 2022 32.94 Kb 426 17898 High DHA delays Alz by 4.7 years_CompressPdf.pdf admin 17 Jun, 2022 322.45 Kb 148