Vitamin D and Hypoxia: Points of Interplay in Cancer
Cancers (Basel). 2022 Mar 31;14(7):1791. doi: 10.3390/cancers14071791.
Ioanna-Maria Gkotinakou 1, Ilias Mylonis 1, Andreas Tsakalof 1
Vitamin D is a hormone that, through its action, elicits a broad spectrum of physiological responses ranging from classic to nonclassical actions such as bone morphogenesis and immune function. In parallel, many studies describe the antiproliferative, proapoptotic, antiangiogenic effects of calcitriol (the active hormonal form) that contribute to its anticancer activity. Additionally, epidemiological data signify the inverse correlation between vitamin D levels and cancer risk. On the contrary, tumors possess several adaptive mechanisms that enable them to evade the anticancer effects of calcitriol. Such maladaptive processes are often a characteristic of the cancer microenvironment, which in solid tumors is frequently hypoxic and elicits the overexpression of Hypoxia-Inducible Factors (HIFs). HIF-mediated signaling not only contributes to cancer cell survival and proliferation but also confers resistance to anticancer agents. Taking into consideration that calcitriol intertwines with signaling events elicited by the hypoxic status cells, this review examines their interplay in cellular signaling to give the opportunity to better understand their relationship in cancer development and their prospect for the treatment of cancer.
 Download the PDF from VitaminDWiki
References
- 1. Bouillon, R.; Carmeliet, G.; Verlinden, L.; van Etten, E.; Verstuyf, A.; Luderer, H.F.; Lieben, L.; Mathieu, C.; DeMay, M. Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice. Endocr. Rev. 2008,29, 726-776. [CrossRef] [PubMed]
- 2. Zhang, R.; Naughton, D.P. Vitamin D in health and disease: Current perspectives. Nutr. J. 2010, 9, 65. [CrossRef] [PubMed]
- 3. Bikle, D. Nonclassic Actions of Vitamin D. J. Clin. Endocrinol. Metab. 2009, 94, 26-34. [CrossRef] [PubMed]
- 4. Bouillon, R.; Eelen, G.; Verlinden, L.; Mathieu, C.; Carmeliet, G.; Verstuyf, A. Vitamin D and cancer. J. Steroid Biochem. Mol. Biol. 2006,102,156-162. [CrossRef]
- 5. Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266-281. [CrossRef]
- 6. Masuda, S.; Jones, G. Promise of vitamin D analogues in the treatment of hyperproliferative conditions. Mol. Cancer Ther. 2006,5, 797-808. [CrossRef]
- 7. Bikle, D.D. Extraskeletal actions of vitamin D. Ann. N. Y. Acad. Sci. 2016,1376, 29-52. [CrossRef]
- 8. Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing cancer risk and progression. Nat. Cancer 2014,14, 342-357. [CrossRef]
- 9. Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr. 2004, 80,1678S-1688S. [CrossRef]
- 10. Wang, H.; Chen, W.; Li, D.; Yin, X.; Zhang, X.; Olsen, N.; Zheng, S.G. Vitamin D and Chronic Diseases. Aging Dis. 2017, 8, 346-353. [CrossRef]
- 11. Garland, C.; Garland, F.C.; Shaw, E.; Comstock, G.W.; Helsing, K.J.; Gorham, E.D. Serum 25-Hydroxyvitamin D and Colon Cancer: Eight-Year Prospective Study. Lancet 1989, 334,1176-1178. [CrossRef]
- 12. Engel, P.; Fagherazzi, G.; Boutten, A.; Dupre, T.; Mesrine, S.; Boutron-Ruault, M.-C.; Clavel-Chapelon, F. Serum 25(OH) Vitamin D and Risk of Breast Cancer: A Nested Case-Control Study from the French E3N Cohort. Cancer Epidemiol. Biomark. Prev. 2010,19, 2341-2350. [CrossRef]
- 13. Ahonen, M.H.; Tenkanen, L.; Teppo, L.; Hakama, M.; Tuohimaa, P. Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control 2000,11, 847-852. [CrossRef]
- 14. Tretli, S.; Hernes, E.; Berg, J.P.; Hestvik, U.E.; Robsahm, T.E. Association between serum 25(OH)D and death from prostate cancer. Br. J. Cancer 2009,100, 450-454. [CrossRef]
- 15. Giovannucci, E.; Liu, Y.; Rimm, E.B.; Hollis, B.W.; Fuchs, C.S.; Stampfer, M.J.; Willett, W.C. Prospective Study of Predictors of Vitamin D Status and Cancer Incidence and Mortality in Men. J. Natl. Cancer Inst. 2006, 98, 451-459. [CrossRef]
- 16. Fleet, J.C.; Desmet, M.; Johnson, R.; Li, Y. Vitamin D and cancer: A review of molecular mechanisms. Biochem. J. 2011, 441, 61-76. [CrossRef]
- 17. Giammanco, M.; Di Majo, D.; La Guardia, M.; Aiello, S.; Crescimannno, M.; Flandina, C.; Tumminello, F.M.; Leto, G. Vitamin D in cancer chemoprevention. Pharm. Biol. 2015, 53,1399-1434. [CrossRef]
- 18. Ma, Y.; Trump, D.L.; Johnson, C.S. Vitamin D in combination cancer treatment. J. Cancer 2010,1,101-107. [CrossRef]
- 19. Mehta, R.G.; Peng, X.; Alimirah, F.; Murillo, G.; Mehta, R. Vitamin D and breast cancer: Emerging concepts. Cancer Lett. 2013, 334, 95-100. [CrossRef]
- 20. Angeli-Terzidou, A.E.; Gkotinakou, I.-M.; Pazaitou-Panayiotou, K.; Tsakalof, A. Inhibition of calcitriol inactivating enzyme CYP24A1 gene expression by flavonoids in hepatocellular carcinoma cells under normoxia and hypoxia. Arch. Biochem. Biophys. 2021, 704,108889. [CrossRef]
- 21. Semenza, G.L. The Genomics and Genetics of Oxygen Homeostasis. Annu. Rev. Genom. Hum. Genet. 2020, 21,183-204. [CrossRef]
- 22. Mylonis, I.; Simos, G.; Paraskeva, E. hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells 2019, 8, 214. [CrossRef]
- 23. Schito, L.; Semenza, G.L. hypoxia-Inducible Factors: Master Regulators of Cancer Progression. Trends Cancer 2016, 2, 758-770. [CrossRef]
- 24. Triantafyllou, A.; Mylonis, I.; Simos, G.; Bonanou, S.; Tsakalof, A. Flavonoids induce HIF-1a but impair its nuclear accumulation and activity. Free Radic. Biol. Med. 2008, 44, 657-670. [CrossRef]
- 25. Mylonis, I.; Chachami, G.; Simos, G. Specific Inhibition of HIF Activity: Can Peptides Lead the Way? Cancers 2021, 13, 410. [CrossRef]
- 26. Zhong, J.-C.; Li, X.-B.; Lyu, W.-Y.; Ye, W.-C.; Zhang, D.-M. Natural products as potent inhibitors of hypoxia-inducible factor-1a in cancer therapy. Chin. J. Nat. Med. 2020,18, 696-703. [CrossRef]
- 27. Choudhry, H.; Harris, A.L. Advances in hypoxia-Inducible Factor Biology. Cell Metab. 2018,27, 281-298. [CrossRef]
- 28. Pinto, J.T.; Cooper, A.J.L. From Cholesterogenesis to Steroidogenesis: Role of Riboflavin and Flavoenzymes in the Biosynthesis of Vitamin D. Adv. Nutr. Int. Rev. J. 2014, 5,144-163. [CrossRef]
- 29. Heaney, R.P. Vitamin D in Health and Disease. Clin. J. Am. Soc. Nephrol. 2008, 3,1535-1541. [CrossRef]
- 30. Japelt, R.B.; Jakobsen, J. Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front. Plant Sci. 2013, 4,136. [CrossRef] [PubMed]
- 31. Jones, G.; Prosser, D.E.; Kaufmann, M. Cytochrome P450-mediated metabolism of vitamin D. J. Lipid Res. 2014,55,1331. [CrossRef] [PubMed]
- 32. Schuster, I. Cytochromes P450 are essential players in the vitamin D signaling system. Biochim. Biophys. Acta 2011,1814,186-199. [CrossRef] [PubMed]
- 33. Bikle, D.D. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem. Biol. 2014, 21, 319-329. [CrossRef]
- 34. Masuda, S.; Byford, V.; Arabian, A.; Sakai, Y.; Demay, M.B.; St-Arnaud, R.; Jones, G. Altered Pharmacokinetics of 1a,25-Dihydroxyvitamin D3and 25-Hydroxyvitamin D3in the Blood and Tissues of the 25-Hydroxyvitamin D-24-Hydroxylase (Cyp24a1) Null Mouse. Endocrinology 2005,146, 825-834. [CrossRef]
- 35. St-Arnaud, R.; Arabian, A.; Travers, R.; Barletta, F.; Raval-Pandya, M.; Chapin, K.; Depovere, J.; Mathieu, C.; Christakos, S.; DeMay, M.B.; et al. Deficient Mineralization of Intramembranous Bone in Vitamin D-24-Hydroxylase-Ablated Mice Is Due to Elevated 1,25-Dihydroxyvitamin D and Not to the Absence of 24,25-Dihydroxyvitamin D*. Endocrinology 2000,141, 2658-2666. [CrossRef]
- 36. Slominski, A.; Semak, I.; Zjawiony, J.; Wortsman, J.; Li, W.; Szczesniewski, A.; Tuckey, R.C. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism. FEBS J. 2005, 272, 4080-4090. [CrossRef]
- 37. Slominski, A.; Zmijewski, M.; Semak, I.; Zbytek, B.; Pisarchik, A.; Li, W.; Zjawiony, J.; Tuckey, R. Cytochromes P450 and Skin Cancer: Role of Local Endocrine Pathways. Anti Cancer Agents Med. Chem. 2014,14, 77-96. [CrossRef]
- 38. Slominski, A.T.; Brozyna, A.; Skobowiat, C.; Zmijewski, M.; Kim, T.-K.; Janjetovic, Z.; Oak, A.S.; Jozwicki, W.; Jetten, A.; Mason, R.; et al. On the role of classical and novel forms of vitamin D in melanoma progression and management. J. Steroid Biochem. Mol. Biol. 2018,177,159-170. [CrossRef]
- 39. Slominski, A.T.; Brozyna, A.A.; Zmijewski, M.A.; Janjetovic, Z.; Kim, T.-K.; Slominski, R.M.; Tuckey, R.C.; Mason, R.S.; Jetten, A.M.; Guroji, P.; et al. The Role of Classical and Novel Forms of Vitamin D in the Pathogenesis and Progression of Nonmelanoma Skin Cancers. Adv. Exp. Med. Biol. 2020,1268, 257-283. [CrossRef]
- 40. Tongkao-On, W.; Carter, S.; Reeve, V.E.; Dixon, K.M.; Gordon-Thomson, C.; Halliday, G.M.; Tuckey, R.C.; Mason, R.S. CYP11A1 in skin: An alternative route to photoprotection by vitamin D compounds. J. Steroid Biochem. Mol. Biol. 2015,148, 72-78. [CrossRef]
- 41. Jones, G.; Prosser, D.E.; Kaufmann, M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): Its important role in the degradation of vitamin D. Arch. Biochem. Biophys. 2012, 523, 9-18. [CrossRef]
- 42. Zierold, C.; Darwish, H.M.; DeLuca, H.F. Two vitamin D response elements function in the rat 1,25-dihydroxyvitamin D 24-hydroxylase promoter. J. Biol. Chem. 1995, 270,1675-1678. [CrossRef]
- 43. Meyer, M.B.; Goetsch, P.D.; Pike, J.W. A Downstream Intergenic Cluster of Regulatory Enhancers Contributes to the Induction of CYP24A1 Expression by 1 a,25-Dihydroxyvitamin D3. J. Biol. Chem. 2010,285,15599-15610. [CrossRef]
- 44. Khundmiri, S.J.; Murray, R.D.; Lederer, E. PTH and Vitamin D. Compr. Physiol. 2016, 6, 561-601.
- 45. Rost, C.R.; Bikle, D.D.; Kaplan, R.A. In Vitro Stimulation of 25-Hydroxycholecalciferol la- Hydroxylation by Parathyroid Hormone in Chick Kidney Slices: Evidence for a Role for Adenosine 3',5'- Monophosphate *. Endocrinology 1981,108,1002-1006. [CrossRef]
- 46. Zierold, C.; Mings, J.A.; DeLuca, H.F. Parathyroid hormone regulates 25-hydroxyvitamin D3-24-hydroxylase mRNA by altering its stability. Proc. Natl. Acad. Sci. USA 2001, 98,13572-13576. [CrossRef]
- 47. Perwad, F.; Zhang, M.Y.H.; Tenenhouse, H.S.; Portale, A.A. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1 a-hydroxylase expression in vitro. Am. J. Physiol. Physiol. 2007, 293, F1577-F1583. [CrossRef] [PubMed]
- 48. Haussler, M.R.; Jurutka, P.W.; Mizwicki, M.; Norman, A.W. Vitamin D Receptor (VDR)-mediated actions of 1a,25(OH)2 vitamin D3 : Genomic and non-genomic mechanisms. Best. Pract. Res. Clin. Endocrinol. Metab. 2011,25, 543-559. [CrossRef] [PubMed]
- 49. Haussler, M.R.; Whitfield, G.K.; Kaneko, I.; Haussler, C.A.; Hsieh, D.; Hsieh, J.-C.; Jurutka, P.W. Molecular Mechanisms of Vitamin D Action. Calcif. Tissue Int. 2013, 92, 77-98. [CrossRef]
- 50. Pike, J.W.; Meyer, M.B. Fundamentals of vitamin D hormone-regulated gene expression. J. Steroid Biochem. Mol. Biol. 2013,144, 5-11. [CrossRef] [PubMed]
- 51. Duran, A.; Hernandez, E.D.; Reina-Campos, M.; Castilla, E.A.; Subramaniam, S.; Raghunandan, S.; Roberts, L.R.; Kisseleva, T.; Karin, M.; Diaz-Meco, M.T.; et al. p62/SQSTM1 by Binding to Vitamin D Receptor Inhibits Hepatic Stellate Cell Activity, Fibrosis, and Liver Cancer. Cancer Cell 2016, 30, 595-609. [CrossRef]
- 52. Haberle, V.; Stark, A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol. 2018, 19, 621-637. [CrossRef]
- 53. Carlberg, C.; Muñoz, A. An update on vitamin D signaling and cancer. Semin. Cancer Biol. 2020, 79, 217-230. [CrossRef]
- 54. Seuter, S.; Neme, A.; Carlberg, C. Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF. Nucleic Acids Res. 2016, 44, 4090-4104. [CrossRef]
- 55. Pereira, F.; Barbáchano, A.; Silva, J.; Bonilla, F.; Campbell, M.J.; Muñoz, A.; Larriba, M.J. KDM6B/JMJD3 histone deme-thylase is induced by vitamin D and modulates its effects in colon cancer cells. Hum. Mol. Genet. 2011, 20, 4655-4665. [CrossRef]
- 56. Wei, Z.; Yoshihara, E.; He, N.; Hah, N.; Fan, W.; Pinto, A.F.; Huddy, T.; Wang, Y.; Ross, B.; Estepa, G.; et al. Vitamin D Switches BAF Complexes to Protect |3 Cells. Cell 2018,173,1135-1149.e15. [CrossRef]
- 57. Chichiarelli, S.; Altieri, F.; Paglia, G.; Rubini, E.; Minacori, M.; Eufemi, M. ERp57/PDIA3: New insight. Cell. Mol. Biol. Lett. 2022, 27,12. [CrossRef]
- 58. Kranz, P.; Neumann, F.; Wolf, A.; Classen, F.; Pompsch, M.; Ocklenburg, T.; Baumann, J.; Janke, K.; Baumann, M.; Goepelt, K.; et al. PDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR). Cell Death Dis. 2017, 8, e2986. [CrossRef]
- 59. Ivanova, I.G.; Park, C.V.; Yemm, A.I.; Kenneth, N.S. PERK/eIF2a signaling inhibits HIF-induced gene expression during the unfolded protein response via YB1-dependent regulation of HIF1a translation. Nucleic Acids Res. 2018, 46, 3878-3890. [CrossRef]
- 60. Doroudi, M.; Schwartz, Z.; Boyan, B.D. Membrane-mediated actions of 1,25-dihydroxy vitamin D3: A review of the roles of phospholipase A2 activating protein and Ca2+/calmodulin-dependent protein kinase II. J. Steroid Biochem. Mol. Biol. 2015,147, 81-84. [CrossRef]
- 61. Nemere, I.; Safford, S.E.; Rohe, B.; DeSouza, M.M.; Farach-Carson, M.C. Identification and characterization of 1,25D3-membrane-associated rapid response, steroid (1,25D3-MARRS) binding protein. J. Steroid Biochem. Mol. Biol. 2004, 89, 281-285. [CrossRef]
- 62. Allison, M.W.; Robert, S.; Thao, T.; Michael, E.; Benjamin, K.; Meckling, K.A. Differential effects of the 1,25D3-MARRS Receptor (ERp57/PDIA3) on murine mammary gland development depend on the vitamin D3 dose. Steroids 2020,158,108621.
- 63. Axanova, L.S.; Chen, Y.Q.; McCoy, T.; Sui, G.; Cramer, S.D. 1,25-dihydroxyvitamin D3 and PI3K/AKT inhibitors synergistically inhibit growth and induce senescence in prostate cancer cells. Prostate 2010, 70,1658-1671. [CrossRef]
- 64. Nemere, I.; Garbi, N.; Winger, Q. The 1,25D3-MARRS Receptor /PDIA3/ERp57 and lifespan. J. Cell. Biochem. 2015,116, 380-385. [CrossRef]
- 65. Buitrago, C.; Pardo, V.G.; Boland, R. Role of VDR in 1a,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J. Steroid Biochem. Mol. Biol. 2013,136,125-130. [CrossRef]
- 66. Zhao, G.; Simpson, R.U. Membrane localization, Caveolin-3 association and rapid actions of vitamin D Receptor in cardiac myocytes. Steroids 2010, 75, 555-559. [CrossRef]
- 67. Chen, J.; Doroudi, M.; Cheung, J.; Grozier, A.L.; Schwartz, Z.; Boyan, B.D. Plasma membrane Pdia3 and VDR interact to elicit rapid responses to 1a,25(OH)2D3. Cell. Signal. 2013,25,2362-2373. [CrossRef]
- 68. Ema, M.; Taya, S.; Yokotani, N.; Sogawa, K.; Matsuda, Y.; Fujii-Kuriyama, Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor lalpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA 1997, 94, 4273-4278. [CrossRef]
- 69. Gu, Y.Z.; Moran, S.M.; Hogenesch, J.B.; Wartman, L.; Bradfield, C.A. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Exp. 1998, 7, 205-213.
- 70. Semenza, G.L.; Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 1992,12, 5447-5454. [CrossRef]
- 71. Arany, Z.; Huang, L.E.; Eckner, R.; Bhattacharya, S.; Jiang, C.; Goldberg, M.A.; Bunn, H.F.; Livingston, D.M. An essential role for p300/CBP in the cellular response to hypoxia. Proc. Natl. Acad. Sci. USA 1996, 93,12969-12973. [CrossRef] [PubMed]
- 72. Manalo, D.J.; Rowan, A.; Lavoie, T.; Natarajan, L.; Kelly, B.D.; Ye, S.Q.; Garcia, J.G.N.; Semenza, G.L. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 2005,105, 659-669. [CrossRef] [PubMed]
- 73. Dengler, V.L.; Galbraith, M.; Espinosa, J.M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 2014, 49,1-15. [CrossRef] [PubMed]
- 74. Kim, L.C.; Simon, M.C. hypoxia-Inducible Factors in Cancer. Cancer Res. 2022, 82,195-196. [CrossRef] [PubMed]
- 75. Taylor, S.E.; Bagnall, J.; Mason, D.; Levy, R.; Fernig, D.G.; See, V. Differential sub-nuclear distribution of hypoxia-inducible factors (HIF)-1 and -2 alpha impacts on their stability and mobility. Open Biol. 2016, 6,160195. [CrossRef]
- 76. Menrad, H.; Werno, C.; Schmid, T.; Copanaki, E.; Deller, T.; Dehne, N.; Brüne, B. Roles of hypoxia-inducible factor-1alpha (HIF-1alpha) versus HIF-2alpha in the survival of hepatocellular tumor spheroids. Hepatology 2010, 51, 2183-2192. [CrossRef]
- 77. Smythies, J.A.; Sun, M.; Masson, N.; Salama, R.; Simpson, P.D.; Murray, E.; Neumann, V.; Cockman, M.A.-O.; Choudhry, H.; Ratcliffe, P.A.-O.X.; et al. Inherent DNA-binding specificities of the HIF-1 a and HIF-2a transcription factors in chromatin. EMBO Rep. 2019, 20, e46401. [CrossRef]
- 78. Albanese, A.; Daly, L.; Mennerich, D.; Kietzmann, T.; See, V. The Role of hypoxia-Inducible Factor Post-Translational Modifications in Regulating Its Localisation, Stability, and Activity. Int. J. Mol. Sci. 2020,22, 268. [CrossRef]
- 79. Battello, N.; Zimmer, A.D.; Goebel, C.; Dong, X.; Behrmann, I.; Haan, C.; Hiller, K.; Wegner, A. The role of HIF-1 in oncostatin M-dependent metabolic reprogramming of hepatic cells. Cancer Metab. 2016, 4,3. [CrossRef]
- 80. D'Ignazio, L.; Bandarra, D.; Rocha, S. NF-kB and HIF crosstalk in immune responses. FEBS J. 2016,283, 413-424. [CrossRef]
- 81. Obacz, J.; Pastorekova, S.; Vojtesek, B.; Hrstka, R. Cross-talk between HIF and p53 as mediators of molecular responses to physiological and genotoxic stresses. Mol. Cancer 2013,12, 93. [CrossRef]
- 82. Taylor, C.T. Interdependent roles for hypoxia inducible factor and nuclear factor-KB in hypoxic inflammation. J. Physiol. 2008, 586, 4055-4059. [CrossRef]
- 83. Papadakis, A.I.; Paraskeva, E.; Peidis, P.; Muaddi, H.; Li, S.; Raptis, L.; Pantopoulos, K.; Simos, G.; Koromilas, A.E. eIF2a Kinase PKR Modulates the Hypoxic Response by Stat3-Dependent Transcriptional Suppression of HIF-1 a. Cancer Res. 2010, 70, 7820-7829. [CrossRef]
- 84. Al Taleb, Z.; Petry, A.; Chi, T.F.; Mennerich, D.; Görlach, A.; Dimova, E.; Kietzmann, T. Differential transcriptional regulation of hypoxia-inducible factor-1a by arsenite under normoxia and hypoxia: Involvement of Nrf2. Klin. Wochenschr. 2016, 94,1153-1166. [CrossRef]
- 85. Lacher, S.E.; Levings, D.; Freeman, S.; Slattery, M. Identification of a functional antioxidant response element at the HIF1A locus. Redox Biol. 2018,19, 401-411. [CrossRef]
- 86. Frede, S.; Stockmann, C.; Freitag, P.; Fandrey, J. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappa, B. Biochem. J. 2006, 396, 517-527. [CrossRef]
- 87. Rius, J.; Guma, M.; Schachtrup, C.; Akassoglou, K.; Zinkernagel, A.S.; Nizet, V.; Johnson, R.S.; Haddad, G.G.; Karin, M. NF-kB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1a. Nature 2008, 453,807-811. [CrossRef]
- 88. Van Uden, P.; Kenneth, N.S.; Rocha, S. Regulation of hypoxia-inducible factor-1 a by NF-kB. Biochem. J. 2008, 412, 477-484. [CrossRef]
- 89. BelAiba, R.S.; Bonello, S.; Zähringer, C.; Schmidt, S.; Hess, J.; Kietzmann, T.; Görlach, A. hypoxia Up-Regulates hypoxia-Inducible Factor-1 a Transcription by Involving Phosphatidylinositol 3-Kinase and Nuclear Factor kB in Pulmonary Artery Smooth Muscle Cells. Mol. Biol. Cell 2007,18, 4691-4697. [CrossRef]
- 90. Tsapournioti, S.; Mylonis, I.; Hatziefthimiou, A.; Ioannou, M.G.; Stamatiou, R.; Koukoulis, G.K.; Simos, G.; Molyvdas, P.-A.; Paraskeva, E. TNFa induces expression of HIF-1 a mRNA and protein but inhibits hypoxic stimulation of HIF-1 transcriptional activity in airway smooth muscle cells. J. Cell Physiol. 2013,228,1745-1753. [CrossRef]
- 91. Takeda, K.; Ho, V.C.; Takeda, H.; Duan, L.-J.; Nagy, A.; Fong, G.-H. Placental but Not Heart Defects Are Associated with Elevated hypoxia-Inducible Factor a Levels in Mice Lacking Prolyl Hydroxylase Domain Protein 2. Mol. Cell. Biol. 2006, 26, 8336-8346. [CrossRef]
- 92. Cui, J.; Duan, B.; Zhao, X.; Chen, Y.; Sun, S.; Deng, W.; Zhang, Y.; Du, J.; Chen, Y.; Gu, L. MBD3 mediates epigenetic regulation on EPAS1 promoter in cancer. Tumor Biol. 2016, 37,13455-13467. [CrossRef]
- 93. Mohlin, S.; Hamidian, A.; Von Stedingk, K.; Bridges, E.; Wigerup, C.; Bexell, D.; Pahlman, S. PI3K-mTORC2 but not PI3K-mTORC1 Regulates Transcription of HIF2A/EPAS1 and Vascularization in Neuroblastoma. Cancer Res. 2015, 75, 4617-4628. [CrossRef]
- 94. Moniz, S.; Bandarra, D.; Biddlestone, J.; Campbell, K.; Komander, D.; Bremm, A.; Rocha, S. Cezanne regulates E2F1-dependent HIF2a expression. J. Cell Sci. 2015,128, 3082-3093. [CrossRef]
- 95. Nakazawa, M.S.; Eisinger-Mathason, T.S.K.; Sadri, N.; Ochocki, J.D.; Gade, T.P.F.; Amin, R.K.; Simon, M.C. Epigenetic reexpression of HIF-2a suppresses soft tissue sarcoma growth. Nat. Commun. 2016, 7,10539. [CrossRef]
- 96. Garcia, R.; Bowman, T.L.; Niu, G.; Yu, H.; Minton, S.; Muro-Cacho, C.A.; Cox, C.E.; Falcone, R.; Fairclough, R.; Parsons, S.; et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 2001,20, 2499-2513. [CrossRef]
- 97. So, J.Y.; Smolarek, A.K.; Salerno, D.M.; Maehr, H.; Uskokovic, M.; Liu, F.; Suh, N. Targeting CD44-STAT3 Signaling by Gemini Vitamin D Analog Leads to Inhibition of Invasion in Basal-Like Breast Cancer. PLoS ONE 2013, 8, e54020. [CrossRef] [PubMed]
- 98. Park, M.R.; Lee, J.H.; Park, M.S.; Hwang, J.E.; Shim, H.J.; Cho, S.H.; Chung, I.-J.; Bae, W.K. Suppressive Effect of 19-nor-1 a-25-Dihydroxyvitamin D2 on Gastric Cancer Cells and Peritoneal Metastasis Model. J. Korean Med Sci. 2012, 27,1037-1043. [CrossRef] [PubMed]
- 99. Krishnan, A.V.; Feldman, D. Molecular pathways mediating the anti-inflammatory effects of calcitriol: Implications for prostate cancer chemoprevention and treatment. Endocr. Relat. Cancer 2010,17, R19-R38. [CrossRef]
- 100. Stio, M.; Martinesi, M.; Bruni, S.; Treves, C.; Mathieu, C.; Verstuyf, A.; d'Albasio, G.; Bagnoli, S.; Bonanomi, A.G. The Vitamin D analogue TX 527 blocks NF-kappaB activation in peripheral blood mononuclear cells of patients with Crohn's disease. J. Steroid Biochem. Mol. Biol. 2007,103, 51-60. [CrossRef] [PubMed]
- 101. Sun, J.; Kong, J.; Duan, Y.; Szeto, F.L.; Liao, A.; Madara, J.L.; Li, Y.C. Increased NF-kappaB activity in fibroblasts lacking the vitamin D Receptor . Am. J. Physiol. Endocrinol. Metab. 2006, 291, E315-E322. [CrossRef]
- 102. Yu, X.P.; Bellido, T.; Manolagas, S.C. Down-regulation of NF-kappa B protein levels in activated human lymphocytes by 1,25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. USA 1995, 92,10990-10994. [CrossRef]
- 103. Chen, Y.; Zhang, J.; Ge, X.; Du, J.; Deb, D.K.; Li, Y.C. Vitamin D Receptor inhibits nuclear factor kB activation by interacting with IkB kinase |3 protein. J. Biol. Chem. 2013,288,19450-19458. [CrossRef]
- 104. Riis, J.L.; Johansen, C.; Gesser, B.; Muller, K.; Larsen, C.G.; Kragballe, K.; Iversen, L. 1alpha,25(OH)(2)D(3) regulates NF-kappaB DNA binding activity in cultured normal human keratinocytes through an increase in IkappaBalpha expres-sion. Arch. Dermatol. Res. 2004, 296,195-202. [CrossRef]
- 105. Karin, M.; Cao, Y.; Greten, F.R.; Li, Z.-W. NF-kappaB in cancer: From innocent bystander to major culprit. Nat. Rev. Cancer 2002, 2, 301-310. [CrossRef]
- 106. DiDonato, J.A.; Mercurio, F.; Karin, M. NF-kB and the link between inflammation and cancer. Immunol. Rev. 2012, 246, 379-400. [CrossRef]
- 107. Li, F.; Zhang, J.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Kumar, A.P.; Ahn, K.S.; Sethi, G. NF-kB in cancer therapy. Arch. Toxicol. 2015, 89, 711-731. [CrossRef]
- 108. Chung, I.; Han, G.; Seshadri, M.; Gillard, B.M.; Yu, W.-D.; Foster, B.A.; Trump, D.L.; Johnson, C.S. Role of Vitamin D Receptor in the Antiproliferative Effects of Calcitriol in Tumor-Derived Endothelial Cells and Tumor AngiogenesisIn vivo. Cancer Res. 2009, 69, 967-975. [CrossRef]
- 109. Dai, Y.; Zhang, J.; Xiang, J.; Li, Y.; Wu, D.; Xu, J. Calcitriol inhibits ROS-NLRP3-IL-113 signaling axis via activation of Nrf2-antioxidant signaling in hyperosmotic stress stimulated human corneal epithelial cells. Redox Biol. 2019, 21,101093. [CrossRef]
- 110. Bardos, J.I.; Ashcroft, M. Negative and positive regulation of HIF-1: A complex network. Biochim. Biophys. Acta 2005, 1755, 107-120. [CrossRef]
- 111. Akeno, N.; Robins, J.; Zhang, M.; Czyzyk-Krzeska, M.F.; Clemens, T.L. Induction of Vascular Endothelial Growth Factor by IGF-I in Osteoblast-Like Cells Is Mediated by the PI3K Signaling Pathway through the hypoxia-Inducible Factor-2 a. Endocrinology 2002,143, 420-425. [CrossRef] [PubMed]
- 112. Guertin, D.A.; Sabatini, D.M. Defining the Role of mTOR in Cancer. Cancer Cell 2007,12, 9-22. [CrossRef] [PubMed]
- 113. Nayak, B.K.; Feliers, D.; Sudarshan, S.; Friedrichs, W.E.; Day, R.T.; New, D.D.; Fitzgerald, J.P.; Eid, A.; DeNapoli, T.; Parekh, D.J.; et al. Stabilization of HIF-2a through redox regulation of mTORC2 activation and initiation of mRNA translation. Oncogene 2013, 32, 3147-3155. [CrossRef] [PubMed]
- 114. Toschi, A.; Lee, E.; Gadir, N.; Ohh, M.; Foster, D.A. Differential Dependence of hypoxia-inducible Factors 1a and 2a on mTORC1 and mTORC2. J. Biol. Chem. 2008,283, 34495-34499. [CrossRef]
- 115. Proietti, S.; Cucina, A.; D'Anselmi, F.; Dinicola, S.; Pasqualato, A.; Lisi, E.; Bizzarri, M. Melatonin and vitamin D3 synergisti-cally down-regulate Akt and MDM2 leading to TGF|3-1-dependent growth inhibition of breast cancer cells. J. Pineal. Res. 2011, 50, 150-158.
- 116. Gkotinakou, I.-M.; Kechagia, E.; Pazaitou-Panayiotou, K.; Mylonis, I.; Liakos, P.; Tsakalof, A. Calcitriol Suppresses HIF-1 and HIF-2 Transcriptional Activity by Reducing HIF-1/2a Protein Levels via a VDR-Independent Mechanism. Cells 2020, 9, 2440. [CrossRef]
- 117. Abu El Maaty, M.A.; Wolfl, S. Vitamin D as a Novel Regulator of Tumor Metabolism: Insights on Potential Mechanisms and Implications for Anti-Cancer Therapy. Int. J. Mol. Sci. 2017,18, 2184. [CrossRef]
- 118. Jin, H.-O.; Seo, S.-K.; Kim, Y.-S.; Woo, S.-H.; Lee, K.-H.; Yi, J.-Y.; Lee, S.-J.; Choe, T.-B.; Lee, J.-H.; An, S.; et al. TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Oncogene 2011, 30, 3792-3801. [CrossRef]
- 119. Horak, P.; Crawford, A.R.; Vadysirisack, D.D.; Nash, Z.M.; DeYoung, M.P.; Sgroi, D.; Ellisen, L.W. Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc. Natl. Acad. Sci. USA 2010,107, 4675-4680. [CrossRef]
- 120. Flügel, D.; Görlach, A.; Michiels, C.; Kietzmann, T. Glycogen Synthase Kinase 3 Phosphorylates hypoxia-Inducible Factor 1a and Mediates Its Destabilization in a VHL-Independent Manner. Mol. Cell. Biol. 2007,27, 3253-3265. [CrossRef]
- 121. Mottet, D.; Dumont, V.; Deccache, Y.; Demazy, C.; Ninane, N.; Raes, M.; Michiels, C. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J. Biol. Chem. 2003, 278, 31277-31285. [CrossRef]
- 122. Flügel, D.; Görlach, A.; Kietzmann, T. GSK-3ß regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1a. Blood 2012,119,1292-1301. [CrossRef]
- 123. González-Sancho, J.M.; Larriba, M.J.; Muñoz, A. Wnt and Vitamin D at the Crossroads in Solid Cancer. Cancers 2020,12, 3434. [CrossRef]
- 124. Xu, D.; Yao, Y.; Lu, L.; Costa, M.; Dai, W. Plk3 Functions as an Essential Component of the hypoxia Regulatory Pathway by Direct Phosphorylation of HIF-1 a. J. Biol. Chem. 2010,285,38944-38950. [CrossRef]
- 125. Bullen, J.W.; Tchernyshyov, I.; Holewinski, R.J.; DeVine, L.; Wu, F.; Venkatraman, V.; Kass, D.L.; Cole, R.N.; Van Eyk, J.; Semenza, G.L. Protein kinase A—Dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci. Signal. 2016, 9, ra56. [CrossRef]
- 126. Hubbi, M.E.; Gilkes, D.M.; Hu, H.; Kshitiz; Ahmed, I.; Semenza, G.L. Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1a to promote cell-cycle progression. Proc. Natl. Acad. Sci. USA 2014,111, E3325-E3334. [CrossRef]
- 127. Warfel, N.A.; Dolloff, N.G.; Dicker, D.T.; Malysz, J.; El-Deiry, W.S. CDK1 stabilizes HIF-1 a via direct phosphorylation of Ser668 to promote tumor growth. Cell Cycle 2013,12, 3689-3701. [CrossRef]
- 128. Peehl, D.M.; Shinghal, R.; Nonn, L.; Seto, E.; Krishnan, A.V.; Brooks, J.D.; Feldman, D. Molecular activity of 1,25-dihydroxyvitamin D3 in primary cultures of human prostatic epithelial cells revealed by cDNA microarray analysis. J. Steroid Biochem. Mol. Biol. 2004, 92,131-141. [CrossRef]
- 129. Swami, S.; Raghavachari, N.; Muller, U.R.; Bao, Y.P.; Feldman, D. Vitamin D Growth Inhibition of Breast Cancer Cells: Gene Expression Patterns Assessed by cDNA Microarray. Breast Cancer Res. Treat. 2003, 80, 49-62. [CrossRef]
- 130. Gradin, K.; Takasaki, C.; Fujii-Kuriyama, Y.; Sogawa, K. The Transcriptional Activation Function of the HIF-like Factor Requires Phosphorylation at a Conserved Threonine. J. Biol. Chem. 2002, 277, 23508-23514. [CrossRef]
- 131. Lancaster, D.E.; McNeill, L.A.; McDonough, M.A.; Aplin, R.T.; Hewitson, K.S.; Pugh, C.W.; Ratcliffe, P.J.; Schofield, C.J. Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Biochem. J. 2004, 383, 429-437. [CrossRef] [PubMed]
- 132. Luo, W.; Yu, W.-D.; Ma, Y.; Chernov, M.; Trump, D.L.; Johnson, C.S. Inhibition of Protein Kinase CK2 ReducesCyp24a1Expression and Enhances 1,25-Dihydroxyvitamin D3Antitumor Activity in Human Prostate Cancer Cells. Cancer Res. 2013, 73, 2289-2297. [CrossRef] [PubMed]
- 133. Pangou, E.; Befani, C.; Mylonis, I.; Samiotaki, M.; Panayotou, G.; Simos, G.; Liakos, P. HIF-2a phosphorylation by CK1delta promotes erythropoietin secretion in liver cancer cells under hypoxia. J. Cell Sci. 2016,129, 4213-4226. [CrossRef] [PubMed]
- 134. Kalousi, A.; Mylonis, I.; Politou, A.S.; Chachami, G.; Paraskeva, E.; Simos, G. Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. J. Cell Sci. 2010,123, 2976-2986. [CrossRef]
- 135. Kourti, M.; Ikonomou, G.; Giakoumakis, N.-N.; Rapsomaniki, M.A.; Landegren, U.; Siniossoglou, S.; Lygerou, Z.; Simos, G.; Mylonis, I. CK1delta restrains lipin-1 induction, lipid droplet formation and cell proliferation under hypoxia by reducing HIF-1a/ARNT complex formation. Cell. Signal. 2015, 27,1129-1140. [CrossRef] [PubMed]
- 136. Gkotinakou, I.-M.; Befani, C.; Simos, G.; Liakos, P. ERK1/2 phosphorylates HIF-2a and regulates its activity by controlling its CRM1-dependent nuclear shuttling. J. Cell Sci. 2019,132, jcs225698. [CrossRef]
- 137. Koukoulas, K.; Giakountis, A.; Karagiota, A.; Samiotaki, M.; Panayotou, G.; Simos, G.; Mylonis, I. ERK signaling controls productive HIF-1 binding to chromatin and cancer cell adaptation to hypoxia through HIF-1a interaction with NPM1. Mol. Oncol. 2021,15, 3468-3489. [CrossRef]
- 138. Mylonis, I.; Chachami, G.; Samiotaki, M.; Panayotou, G.; Paraskeva, E.; Kalousi, A.; Georgatsou, E.; Bonanou, S.; Simos, G. Identification of MAPK Phosphorylation Sites and Their Role in the Localization and Activity of hypoxia-inducible Factor-1 a. J. Biol. Chem. 2006, 281, 33095-33106. [CrossRef]
- 139. Mylonis, I.; Chachami, G.; Paraskeva, E.; Simos, G. Atypical CRM1-dependent Nuclear Export Signal Mediates Regulation of hypoxia-inducible Factor-1 a by MAPK. J. Biol. Chem. 2008, 283,27620-27627. [CrossRef]
- 140. Gkotinakou, I.M.; Befani, C.; Samiotaki, M.; Panayotou, G.; Liakos, P. Novel HIF-2a interaction with Reptin52 impairs HIF-2 transcriptional activity and EPO secretion. Biochem. Biophys. Res. Commun. 2021, 557,143-150. [CrossRef]
- 141. Zhang, A.; Huang, Z.; Tao, W.; Zhai, K.; Wu, Q.; Rich, J.N.; Zhou, W.; Bao, S. USP33 deubiquitinates and stabilizes HIF-2alpha to promote hypoxia response in glioma stem cells. EMBO J. 2022, 41, e109187. [CrossRef]
- 142. Cordes, T.; Diesing, D.; Becker, S.; Diedrich, K.; Reichrath, J.; Friedrich, M. Modulation of MAPK ERK1 and ERK2 in VDR-positive and -negative Breast Cancer Cell Lines. Anticancer Res. 2006, 26, 2749-2754.
- 143. Semenza, G.L. Heritable disorders of oxygen sensing. Am. J. Med Genet. Part A 2021,185, 2576-2581. [CrossRef]
- 144. Keith, B.; Johnson, R.S.; Simon, M.C. HIF1a and HIF2a: Sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 2011,12, 9-22. [CrossRef]
- 145. Semenza, G.L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 2009, 29, 625-634. [CrossRef]
- 146. Semenza, G.L. Pharmacologic Targeting of hypoxia-Inducible Factors. Annu. Rev. Pharmacol. Toxicol. 2019,59,379-403. [CrossRef]
- 147. Huang, C.-Y.; Weng, Y.-T.; Li, P.-C.; Hsieh, N.-T.; Li, C.-I.; Liu, H.-S.; Lee, M.-F. Calcitriol Suppresses Warburg Effect and Cell Growth in Human Colorectal Cancer Cells. Life 2021,11, 963. [CrossRef]
- 148. Pálmer, H.G.; González-Sancho, J.M.; Espada, J.; Berciano, M.T.; Puig, I.; Baulida, J.; Quintanilla, M.; Cano, A.; de Herreros, A.G.; Lafarga, M.; et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J. Cell Biol. 2001,154, 369-387. [CrossRef]
- 149. Shah, S.; Islam, N.; Dakshanamurthy, S.; Rizvi, I.; Rao, M.; Herrell, R.; Zinser, G.; Valrance, M.; Aranda, A.; Moras, D.; et al. The Molecular Basis of Vitamin D Receptor and |3-Catenin Crossregulation. Mol. Cell 2006, 21, 799-809. [CrossRef]
- 150. Xu, H.; Posner, G.H.; Stevenson, M.; Campbell, F.C. Apc MIN modulation of vitamin D secosteroid growth control. Carcinogenesis 2010, 31,1434-1441. [CrossRef]
- 151. Aguilera, O.; Peña, C.; García, J.M.; Jesús Larriba, M.; Ordóñez-Morán, P.; Navarro, D.; Barbáchano, A.; López de Silanes, I.; Ballestar, E.; Fraga, M.F.; et al. The Wnt antagonist DICKKOPF-1 gene is induced by 1,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis 2007,28,1877-1884. [CrossRef]
- 152. Pendás-Franco, N.; García, J.M.; Peña, C.; Valle, N.; Pálmer, H.G.; Heinaniemi, M.; Carlberg, C.; Jiménez, B.; Bonilla, F.; Muñoz, A.; et al. DICKKOPF-4 is induced by TCF/beta-catenin and upregulated in human colon cancer, promotes tumour cell invasion and angiogenesis and is repressed by 1alpha,25-dihydroxyvitamin D3. Oncogene 2008, 27, 4467-4477. [CrossRef]
- 153. Cordero, J.B.; Cozzolino, M.; Lu, Y.; Vidal, M.; Slatopolsky, E.; Stahl, P.D.; Barbieri, M.A.; Dusso, A. 1,25-Dihydroxyvitamin D Down-regulates Cell Membrane Growth- and Nuclear Growth-promoting Signals by the Epidermal Growth Factor Receptor . J. Biol. Chem. 2002, 277,38965-38971. [CrossRef]
- 154. McGaffin, K.R.; Chrysogelos, S.A. Identification and characterization of a response element in the EGFR promoter that mediates transcriptional repression by 1,25-dihydroxyvitamin D3 in breast cancer cells. J. Mol. Endocrinol. 2005, 35,117-133. [CrossRef]
- 155. Tong, W.M.; Hofer, H.; Ellinger, A.; Peterlik, M.; Cross, H.S. Mechanism of antimitogenic action of vitamin D in human colon carcinoma cells: Relevance for suppression of epidermal growth factor-stimulated cell growth. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 1999,11, 77-84.
- 156. Colston, K.W.; Perks, C.M.; Xie, S.P.; Holly, J.M. Growth inhibition of both MCF-7 and Hs578T human breast cancer cell lines by vitamin D analogues is associated with increased expression of insulin-like growth factor binding protein-3. J. Mol. Endocrinol. 1998, 20,157-162. [CrossRef]
- 157. Sprenger, C.C.; Peterson, A.; Lance, R.; Ware, J.L.; Drivdahl, R.H.; Plymate, S.R. Regulation of proliferation of prostate epithelial cells by 1,25-dihydroxyvitamin D3 is accompanied by an increase in insulin-like growth factor binding protein-3. J. Endocrinol. 2001,170, 609-618. [CrossRef]
- 158. Yang, E.S.; Burnstein, K.L. Vitamin D inhibits G1 to S progression in LNCaP prostate cancer cells through p27Kip1 stabilization and Cdk2 mislocalization to the cytoplasm. J. Biol. Chem. 2003, 278, 46862-46868. [CrossRef]
- 159. Blutt, S.E.; McDonnell, T.J.; Polek, T.C.; Weigel, N.L. Calcitriol-induced apoptosis in LNCaP cells is blocked by overex-pression of Bcl-2. Endocrinology 2000,141,10-17. [CrossRef]
- 160. Wagner, N.; Wagner, K.-D.; Schley, G.; Badiali, L.; Theres, H.; Scholz, H. 1,25-dihydroxyvitamin D3-induced apoptosis of retinoblastoma cells is associated with reciprocal changes of Bcl-2 and bax. Exp. Eye Res. 2003, 77,1-9. [CrossRef]
- 161. Reitsma, P.H.; Rothberg, P.G.; Astrin, S.M.; Trial, J.; Bar-Shavit, Z.; Hall, A.; Teitelbaum, S.; Kahn, A.J. Regulation of myc gene expression in HL-60 leukaemia cells by a vitamin D metabolite. Nature 1983, 306, 492-494. [CrossRef] [PubMed]
- 162. Rohan, J.N.P.; Weigel, N.L. 1 a,25-Dihydroxyvitamin D3 Reduces c-Myc Expression, Inhibiting Proliferation and Causing G1 Accumulation in C4-2 Prostate Cancer Cells. Endocrinology 2009,150, 2046-2054. [CrossRef] [PubMed]
- 163. Moreno, J.; Krishnan, A.V.; Swami, S.; Nonn, L.; Peehl, D.M.; Feldman, D. Regulation of Prostaglandin Metabolism by Calcitriol Attenuates Growth Stimulation in Prostate Cancer Cells. Cancer Res. 2005, 65, 7917-7925. [CrossRef] [PubMed]
- 164. Nonn, L.; Peng, L.; Feldman, D.; Peehl, D.M. Inhibition of p38 by Vitamin D Reduces Interleukin-6 Production in Normal Prostate Cells via Mitogen-Activated Protein Kinase Phosphatase 5: Implications for Prostate Cancer Prevention by Vitamin D. Cancer Res. 2006, 66, 4516-4524. [CrossRef] [PubMed]
- 165. Harant, H.; Wolff, B.; Lindley, I.J. 1Alpha,25-dihydroxyvitamin D3 decreases DNA binding of nuclear factor-kappaB in human fibroblasts. FEBS Lett. 1998, 436, 329-334. [CrossRef]
- 166. Iseki, K.; Tatsuta, M.; Uehara, H.; Iishi, H.; Yano, H.; Sakai, N.; Ishiguro, S. Inhibition of angiogenesis as a mechanism for inhibition by 1-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 of colon carcinogenesis induced by azoxymethane in wistar rats. Int. J. Cancer 1999, 81, 730-733. [CrossRef]
- 167. Merrigan, S.L.; Park, B.; Ali, Z.; Jensen, L.D.; Corson, T.W.; Kennedy, B.N. Calcitriol and non-calcemic vitamin D analogue, 22-oxacalcitriol, attenuate developmental and pathological choroidal vasculature angiogenesis ex vivo and in vivo. Oncotarget 2020, 11, 493-509. [CrossRef]
- 168. Calvani, M.; Trisciuoglio, D.; Bergamaschi, C.; Shoemaker, R.H.; Melillo, G. Differential Involvement of Vascular Endothelial Growth Factor in the Survival of Hypoxic Colon Cancer Cells. Cancer Res. 2008, 68, 285-291. [CrossRef]
- 169. Górlach, A.; Diebold, I.; Schini-Kerth, V.B.; Berchner-Pfannschmidt, U.; Roth, U.; Brandes, R.P.; Kietzmann, T.; Busse, R. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22(phox)-containing NADPH oxidase. Circ. Res. 2001, 89, 47-54. [CrossRef]
- 170. Kietzmann, T.; Mennerich, D.; Dimova, E.Y. hypoxia-Inducible Factors (HIFs) and Phosphorylation: Impact on Stability, Localization, and Transactivity. Front. Cell Dev. Biol. 2016, 4,11. [CrossRef]
- 171. Richard, D.E.; Berra, E.; Pouysségur, J. Nonhypoxic Pathway Mediates the Induction of hypoxia-inducible Factor 1a in Vascular Smooth Muscle Cells. J. Biol. Chem. 2000, 275, 26765-26771. [CrossRef]
- 172. Stiehl, D.; Jelkmann, W.; Wenger, R.H.; Hellwig-Bürgel, T. Normoxic induction of the hypoxia-inducible factor 1a by insulin and interleukin-113 involves the phosphatidylinositol 3-kinase pathway. FEBS Lett. 2002, 512,157-162. [CrossRef]
- 173. Liu, Q.; Liu, L.; Zhao, Y.; Zhang, J.; Wang, D.; Chen, J.; He, Y.; Wu, J.; Zhang, Z.; Liu, Z. hypoxia Induces Genomic DNA Demethylation through the Activation of HIF-1a and Transcriptional Upregulation of MAT2A in Hepatoma Cells. Mol. Cancer Ther. 2011,10,1113-1123. [CrossRef]
- 174. Minet, E.; Arnould, T.; Michel, G.; Roland, I.; Mottet, D.; Raes, M.; Remacle, J.; Michiels, C. ERK activation upon hypoxia: Involvement in HIF-1 activation. FEBS Lett. 2000, 468, 53-58. [CrossRef]
- 175. Krishnan, A.V.; Feldman, D. Mechanisms of the Anti-Cancer and Anti-Inflammatory Actions of Vitamin D. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 311-336. [CrossRef]
- 176. Schneikert, J.; Behrens, J. The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut 2007,56, 417-425. [CrossRef]
- 177. Barbáchano, A.; Ordóñez-Morán, P.; García, J.M.; Sánchez, A.; Pereira, F.; Larriba, M.J.; Martínez, N.; Hernández, J.; Landolfi, S.; Bonilla, F.; et al. SPROUTY-2 and E-cadherin regulate reciprocally and dictate colon cancer cell tumourigenicity. Oncogene 2010, 29, 4800-4813. [CrossRef]
- 178. Cui, M.; Zhao, Y.; Hance, K.W.; Shao, A.; Wood, R.J.; Fleet, J.C. Effects of MAPK signaling on 1,25-dihydroxyvitamin D-mediated CYP24 gene expression in the enterocyte-like cell line, Caco-2. J. Cell. Physiol. 2009, 219,132-142. [CrossRef]
- 179. Zhang, Z.; Kovalenko, P.; Cui, M.; DeSmet, M.; Clinton, S.K.; Fleet, J.C. Constitutive activation of the mitogen-activated protein kinase pathway impairs vitamin D signaling in human prostate epithelial cells. J. Cell. Physiol. 2010,224, 433-442. [CrossRef]
- 180. Peng, L.; Malloy, P.J.; Feldman, D. Identification of a Functional Vitamin D Response Element in the Human Insulin-Like Growth Factor Binding Protein-3 Promoter. Mol. Endocrinol. 2004,18,1109-1119. [CrossRef]
- 181. Boyle, B.J.; Zhao, X.Y.; Cohen, P.; Feldman, D. Insulin-like growth factor binding protein-3 mediates 1 al-pha,25-dihydroxyvitamin d(3) growth inhibition in the LNCaP prostate cancer cell line through p21/WAF1. J. Urol. 2001,165,1319-1324. [CrossRef]
- 182. Blutt, S.E.; Allegretto, E.A.; Pike, J.W.; Weigel, N.L. 1,25-Dihydroxyvitamin D3 and 9-cis-Retinoic Acid Act Synergistically to Inhibit the Growth of LNCaP Prostate Cells and Cause Accumulation of Cells in G1*. Endocrinology 1997, 138, 1491-1497. [CrossRef]
- 183. Liu, M.; Lee, M.H.; Cohen, M.; Bommakanti, M.; Freedman, L.P. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev. 1996,10,142-153. [CrossRef]
- 184. Lin, R.; Nagai, Y.; Sladek, R.; Bastien, Y.; Ho, J.; Petrecca, K.; Sotiropoulou, G.; Diamandis, E.P.; Hudson, T.J.; White, J.H. Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol. Endocrinol. 2002,16,1243-1256. [CrossRef]
- 185. Lin, R.; White, J.H. The pleiotropic actions of vitamin D. BioEssays 2004,26, 21-28. [CrossRef]
- 186. Brahimi-Horn, M.C.; Ben-Hail, D.; Ilie, M.; Gounon, P.; Rouleau, M.; Hofman, V.; Doyen, J.; Mari, B.; Shoshan-Barmatz, V.; Hofman, P.; et al. Expression of a Truncated Active Form of VDAC1 in Lung Cancer Associates with Hypoxic Cell Survival and Correlates with Progression to Chemotherapy Resistance. Cancer Res. 2012, 72, 2140-2150. [CrossRef]
- 187. Brahimi-Horn, M.C.; Giuliano, S.; Saland, E.; Lacas-Gervais, S.; Sheiko, T.; Pelletier, J.; Bourget, I.; Bost, F.; Feral, C.; Boulter, E.; et al. Knockout of Vdac1 activates hypoxia-inducible factor through reactive oxygen species generation and induces tumor growth by promoting metabolic reprogramming and inflammation. Cancer Metab. 2015, 3, 8. [CrossRef]
- 188. Mylonis, I.; Kourti, M.; Samiotaki, M.; Panayotou, G.; Simos, G. Mortalin-mediated and ERK-controlled targeting of HIF-1 a to mitochondria confers resistance to apoptosis under hypoxia. J. Cell Sci. 2017,130, 466-479. [CrossRef]
- 189. Allavena, P.; Garlanda, C.; Borrello, M.G.; Sica, A.; Mantovani, A. Pathways connecting inflammation and cancer. Curr. Opin. Genet. Dev. 2008,18, 3-10. [CrossRef]
- 190. Lucia, M.S.; Torkko, K.C. Inflammation as a target for prostate cancer chemoprevention: Pathological and laboratory rationale. J. Urol. 2004,171, S30-S34.
- 191. Eltzschig, H.K.; Bratton, D.L.; Colgan, S.P. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat. Rev. Drug Discov. 2014,13, 852-869. [CrossRef] [PubMed]
- 192. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1995,1, 27-31. [CrossRef] [PubMed]
- 193. Rosmorduc, O.; Housset, C. hypoxia: A Link between Fibrogenesis, Angiogenesis, and Carcinogenesis in Liver Disease. Semin. Liver Dis. 2010, 30, 258-270. [CrossRef] [PubMed]
- 194. Hassan, M.; Selimovic, D.; Ghozlan, H.; Abdel-Kader, O. Hepatitis C virus core protein triggers hepatic angiogenesis by a mechanism including multiple pathways. Hepatology 2009, 49,1469-1482. [CrossRef] [PubMed]
- 195. Giaccia, A.; Siim, B.G.; Johnson, R. HIF-1 as a target for drug development. Nat. Rev. Drug Discov. 2003,2, 803-811. [CrossRef]
- 196. Rankin, E.B.; Giaccia, A.J. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008,15, 678-685. [CrossRef] [PubMed]
- 197. Von Marschall, Z.; Cramer, T.; Hocker, M.; Finkenzeller, G.; Wiedenmann, B.; Rosewicz, S. Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut 2001, 48, 87-96. [CrossRef]
- 198. Bougatef, F.; Quemener, C.; Kellouche, S.; Naïmi, B.; Podgorniak, M.-P.; Millot, G.; Gabison, E.E.; Calvo, F.; Dosquet, C.; Lebbé, C.; et al. EMMPRIN promotes angiogenesis through hypoxia-inducible factor-2a-mediated regulation of soluble VEGF isoforms and their Receptor VEGFR-2. Blood 2009,114, 5547-5556. [CrossRef]
- 199. Imura, S.; Miyake, H.; Izumi, K.; Tashiro, S.; Uehara, H. Correlation of vascular endothelial cell proliferation with microvessel density and expression of vascular endothelial growth factor and basic fibroblast growth factor in hepatocellular carcinoma. J. Med. Investig. 2004, 51, 202-209. [CrossRef]
- 200. Simiantonaki, N.; Jayasinghe, C.; Michel-Schmidt, R.; Peters, K.; Hermanns, M.I.; Kirkpatrick, C.J. hypoxia-induced epi-thelial VEGF-C/VEGFR-3 upregulation in carcinoma cell lines. Int. J. Oncol. 2008, 32, 585-592.
- 201. Chiang, K.-C.; Chen, T.C. The anti-cancer actions of vitamin D. Anti Cancer Agents Med. Chem. 2013,13,126-139. [CrossRef]
- 202. Ben-Shoshan, M.; Amir, S.; Dang, D.T.; Dang, L.H.; Weisman, Y.; Mabjeesh, N.J. 1 a,25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol. Cancer Ther. 2007, 6, 1433-1439. [CrossRef]
- 203. Whitfield, G.K.; Lenore, S.R.; Peter, W.J.; Heike, Z.; Anish, K.O.; Hope, T.L.D.; Carol, A.H.; Michael, A.G.; Michelle, L.T.; Carlos Encinas, D.; et al. Functionally relevant polymorphisms in the human nuclear vitamin D Receptor gene. Mol. Cell. Endocrinol. 2001,177,145-159. [CrossRef]
- 204. Uitterlinden, A.G.; Fang, Y.; van Meurs, J.B.; Pols, H.A.; van Leeuwen, J.P. Genetics and biology of vitamin D Receptor polymorphisms. Gene 2004, 338,143-156. [CrossRef]
- 205. Raimondi, S.; Johansson, H.; Maisonneuve, P.; Gandini, S. Review and meta-analysis on vitamin D Receptor polymorphisms and cancer risk. Carcinogenesis 2009, 30,1170-1180. [CrossRef]
- 206. Ben-Eltriki, M.; Deb, S.; Guns, E.S.T. Calcitriol in Combination Therapy for Prostate Cancer: Pharmacokinetic and Pharmacodynamic Interactions. J. Cancer 2016, 7, 391-407. [CrossRef]
- 207. Hu, K.; Callen, D.F.; Li, J.; Zheng, H. Circulating Vitamin D and Overall Survival in Breast Cancer Patients: A Dose-Response Meta-Analysis of Cohort Studies. Integr. Cancer Ther. 2018,17, 217-225. [CrossRef]
- 208. Trump, D.L. Calcitriol and cancer therapy: A missed opportunity. Bone Rep. 2018, 9,110-119. [CrossRef]
- 209. Cabrera-Cano, A.; Dávila-Borja, V.M.; Juárez-Méndez, S.; Marcial-Quino, J.; Gómez-Manzo, S.; Castillo-Rodríguez, R.A. hypoxia as a modulator of cytochromes P450: Overexpression of the cytochromes CYP2S1 and CYP24A1 in human liver cancer cells in hypoxia. Cell Biochem. Funct. 2021, 39, 478-487. [CrossRef]
- 210. Zhalehjoo, N.; Shakiba, Y.; Panjehpour, M. Gene expression profiles of CYP24A1 and CYP27B1 in malignant and normal breast tissues. Mol. Med. Rep. 2016,15, 467-473. [CrossRef]
- 211. Ma, R.; Gu, Y.; Zhao, S.; Sun, J.; Groome, L.J.; Wang, Y. Expressions of vitamin D metabolic components VDBP, CYP2R1, CYP27B1, CYP24A1, and VDR in placentas from normal and preeclamptic pregnancies. Am. J. Physiol. Metab. 2012, 303, E928-E935. [CrossRef]
- 212. Beer, T.M.; Myrthue, A. Calcitriol in the treatment of prostate cancer. Anticancer Res. 2006, 26, 2647-2652.
- 213. Osborn, J.L.; Schwartz, G.G.; Smith, D.C.; Bahnson, R.; Day, R.; Trump, D.L. Phase II trial of oral 1,25-dihydroxyvitamin D (calcitriol) in hormone refractory prostate cancer. Urol. Oncol. Semin. Orig. Investig. 1995,1,195-198. [CrossRef]
- 214. Beer, T.M.; Garzotto, M.; Katovic, N.M. High-Dose Calcitriol and Carboplatin in Metastatic Androgen-Independent Prostate Cancer. Am. J. Clin. Oncol. 2004, 27, 535-541. [CrossRef]
- 215. Beer, T.M.; Eilers, K.M.; Garzotto, M.; Egorin, M.J.; Lowe, B.A.; Henner, W.D. Weekly High-Dose Calcitriol and Docetaxel in Metastatic Androgen-Independent Prostate Cancer. J. Clin. Oncol. 2003, 21,123-128. [CrossRef]
- 216. Trump, D.L.; Potter, D.M.; Muindi, J.; Brufsky, A.; Johnson, C.S. Phase II trial of high-dose, intermittent calcitriol (1,25 dihydrox-yvitamin D3) and dexamethasone in androgen-independent prostate cancer. Cancer 2006,106, 2136-2142. [CrossRef]
- 217. Guan, X.; Ding, Y.; Qi, T. Safety and efficacy of high dose pulse calcitriol and docetaxel for androgen-independent prostate cancer. Med. Case Rep. Study Protoc. 2021,2, e0151. [CrossRef]
- 218. Sanghani, N.S.; Haase, V.H. hypoxia-Inducible Factor Activators in Renal Anemia: Current Clinical Experience. Adv. Chronic Kidney Dis. 2019, 26, 253-266. [CrossRef]
- 219. Chen, W.; Hill, H.; Christie, A.; Kim, M.S.; Holloman, E.; Pavia-Jimenez, A.; Homayoun, F.; Ma, Y.; Patel, N.; Yell, P.; et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 2016, 539,112-117. [CrossRef]
- 220. Cho, H.; Du, X.; Rizzi, J.P.; Liberzon, E.; Chakraborty, A.A.; Gao, W.; Carvo, I.; Signoretti, S.; Bruick, R.K.; Josey, J.A.; et al. On-target efficacy of a HIF-2a antagonist in preclinical kidney cancer models. Nature 2016, 539,107-111. [CrossRef]
- 221. Courtney, K.D.; Infante, J.R.; Lam, E.T.; Figlin, R.A.; Rini, B.I.; Brugarolas, J.; Zojwalla, N.J.; Lowe, A.M.; Wang, K.; Wallace, E.M.; et al. Phase I Dose-Escalation Trial of PT2385, a First-in-Class hypoxia-Inducible Factor-2a Antagonist in Patients with Previously Treated Advanced Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2018, 36, 867-874. [CrossRef] [PubMed]
- 222. Wu, J.; Yang, N.; Yuan, M. Dietary and circulating vitamin D and risk of renal cell carcinoma: A meta-analysis of observational studies. Int. Braz. J. Urol 2021, 47, 733-744. [CrossRef] [PubMed]
- 223. Mylonis, I.; Lakka, A.; Tsakalof, A.; Simos, G. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochem. Biophys. Res. Commun. 2010, 398, 74-78. [CrossRef] [PubMed]
- 224. Lim, H.Y.; Ong, P.S.; Wang, L.; Goel, A.; Ding, L.; Wong, A.L.-A.; Ho, P.C.-L.; Sethi, G.; Xiang, X.; Goh, B.C. Celastrol in cancer therapy: Recent developments, challenges and prospects. Cancer Letters 2021, 521, 252-267. [CrossRef] [PubMed]
- 225. Ren, B.; Kwah, M.X.-Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.-L.; Wang, L.; Ong, P.S.; et al. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Letters 2021, 515, 63-72. [CrossRef] [PubMed]
Google Scholar Search (hypoxia cancer "vitamin d") 5,600 items as of April 2022
Google Scholar Query Examples
- Hypoxia and cancer Nov 2007PDF
- Hypoxia as a modulator of cytochromes P450: Overexpression of the cytochromes CYP2S1 and CYP24A1 in human liver cancer cells in hypoxia - July 2021 https://doi.org/10.1002/cbf.3612
- Preclinical Researches of Vitamin D Role in Preventing Malignant Diseased, a Systematic Review 2021 PDF
- Molecular Link between Vitamin D and Cancer Prevention - Sept 2013
- Role of hypoxia in cancer therapy by regulating the tumor microenvironment - Nov 2019 PDF
- The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy - 2015 PDF
- Tumor Hypoxia as a Barrier in Cancer Therapy: Why Levels Matter - 2021 PDF
- High altitude and cancer: An old controversy - July 2021 https://doi.org/10.1016/j.resp.2021.103655
- "Cancer prevalence and mortality is lower in high altitude populations of the United States and China, but higher in high altitude dwellers of Ecuador and India./// Some genetic and molecular modifications that allow for chronic hypoxia tolerance are known to facilitate oncogenesis.// /Lung cancer, lymphoma, colon cancer, esophageal carcinoma may have a decreased incidence at high altitude/// Gallbladder and biliary duct cancer, stomach carcinoma, skin cancer may be more frequent at high altitude."
VitaminDWiki - Cancer category starts
- Cancer
293 items Overview Cancer and vitamin D - Cancer and Vitamin D - many studies
- After Cancer Diagnosis
113 items - Bladder Cancer
28 items - Breast Cancer
259 items Overview Breast Cancer and Vitamin D - Colon Cancer
144 items Overview Cancer-Colon and vitamin D - Leukemia
19 items - Liver Cancer
17 items - Lung Cancer
55 items Overview Lung cancer and vitamin D - Lymphoma Cancer
26 items - Other Cancer
66 items - Ovarian Cancer
26 items - Pancreatic Cancer
57 items - Prostate Cancer
103 items Overview Prostate Cancer and Vitamin D - Skin Cancer
121 items Overview Suntan, melanoma and vitamin D - Childhood Cancers - Vitamin D can help - many studies
- Easiest way to treat cancer – take Vitamin D – Nov 2022
- 13 Cancers are helped by Vitamin D – Biobank July 2023
- 2X increase of 14 cancers in non-seniors in 20 years (low vitamin D) – Sept 2022
- Vitamin D prevents and treats cancer in many ways – May 2021
- Those with recent cancer diagnosis had 7X increased risk of COVID-19 (more if A-A )- Dec 2020
- Deaths from many types of Cancer associated with low vitamin D- review of meta-analyses Sept 2020
- Cancer incidence and mortality is decreased if 40-60 ng of Vitamin D – April 2019
- 8 ways that Cancer might be prevented by Vitamin D - June 2019
- Cancer stem cells and Vitamin D - many studies
- Vitamin D Reduces Cancer Risk - Why Scientists Accept It but Physicians Do Not - Feb 2019
- Overview of Vitamin D Actions in Cancer – 31 page chapter in a book – 2018
- Vitamin D prevents breast cancer, reduces BC mortality, and reduces BC chemotherapy problems – Sept 2018
- Diagnosed with breast cancer – take vitamin D to cut chance of death by half – July 2018
- Melanoma 25 X more likely if low vitamin D – Feb 2018
- Better Cancer survival if higher vitamin D a decade earlier (esp. Melanoma, Kidney, Prostate)– Aug 2018
Cancers get less Vitamin D when there is a poor Vitamin D Receptor- Vitamin D Receptor pages in VitaminDWiki with CANCER in title 86 as of July 2023
- Cancer and the Vitamin D Receptor, a primer – Sept 2017
- Vitamin D Receptor (Cancers OR Viruses) - many studies
- Risk of Cancer increased if poor Vitamin D Receptor – meta-analysis of 73 studies Jan 2016
- Cancer (general) and VDR
23 articles - Breast Cancer and VDR
24 articles - Colon Cancer and VDR
13 articles - Prostate Cancer and VDR
7 articles - Skin Cancer and VDR
10 articles - Note some Health problems, such as some Cancers, protect themselves
by actively reducing Receptor activation
VitaminDWiki Vitamin D Receptor pages with CANCER in title (75 as of April 2022)
This list is automatically updated
Items found: 90Many cancers reduce oxygen to protect themselves in 6 ways. Vitamin D stops all 6 ways – March 20223687 visitors, last modified 13 Apr, 2022, This page is in the following categories (# of items in each category)Attached files
ID Name Uploaded Size Downloads 17406 The role of hypoxia in cancer progression.pdf admin 13 Apr, 2022 686.36 Kb 236 17405 Tumor Hypoxia as a Barrier Jan 2021_CompressPdf.pdf admin 13 Apr, 2022 415.68 Kb 163 17403 Role of hypoxia in cancer therapy.pdf admin 13 Apr, 2022 1,006.18 Kb 639 17402 Preclinical Researches of Vitamin D Role.pdf admin 13 Apr, 2022 520.22 Kb 157 17401 Hypoxia and cancer.pdf admin 13 Apr, 2022 320.11 Kb 144 17400 Vitamin D, Hypoxia, Cancer_CompressPdf.pdf admin 13 Apr, 2022 462.33 Kb 162 17399 Cancer Hypoxia.jpg admin 13 Apr, 2022 54.52 Kb 436 - Breast Cancer and VDR