Vitamin D Receptor Genetic Variation and Cancer Biomarkers among Breast Cancer Patients Supplemented with Vitamin D3: A Single-Arm Non-Randomized Before and After Trial
Nutrients 2019, 11(6), 1264; https://doi.org/10.3390/nu11061264
Elham Kazemian 1,2, Mohammad Esmaeil Akbari 3, Nariman Moradi 4,5, Safoora Gharibzadeh 6, Alison M. Mondul 7OrcID, Yasaman Jamshidi-Naeini 8OrcID, Maryam Khademolmele 9, Katie R. Zarins 10, Nasim Ghodoosi 11, Atieh Amouzegar 2, Sayed Hossein Davoodi 1,3,*,† and Laura S. Rozek 10,*,†
It appears that Breast Cancer, as well as some other Cancers, has learned how to deactivate the Vitamin D Receptor, thus protecting itself from Vitamin D
There are more than a dozen ways to increase the activation of the Vitamin D Receptor
Items in both categories Breast Cancer and Vitamin D Receptor
- Poor Vitamin D Receptor does not increase the risk of Breast Cancer (but the opposite is true) – umbrella meta-analysis Sept 2024
- An activated Vitamin D Receptor fights Autoimmune Diseases, Infections, Cancers, etc. – Dec 2023
- Breast Cancer risk reduced if consume butyrate - Dec 2023
- Breast cancer spreads to bone if poor vitamin D Receptor (no surprise) – Oct 2022
- Some breast cancers may be treated RNA changes caused by Vitamin D – March 2022
- Breast Cancer, Vitamin D, and genes – Welsh Nov 2021
- After lactation Vitamin D levels are low, increased risk of Breast Cancer, vitamin D should decrease risk – Aug 2021
- Breasts process Vitamin D and change gene activation, might prevent breast cancer if given more Vit. D – July 2021
- Breast cancer associated with Vitamin D Receptor (14th study) – Oct 2019
- After breast cancer treatment 4,000 IU of Vitamin D was not enough to help if have poor Vitamin D receptor – June 2019
- Breast Cancer death 1.8 X more likely if poor Vitamin D Receptor – April 2019
- Breast Cancer and Vitamin D review – March 2018
- Women with Breast Cancer were 16.9 times more likely to have a poor Vitamin D Receptor – Jan 2019
- Cancer treatment by Vitamin D sometimes is restricted by genes – Oct 2018
- Two chemicals increase the Vitamin D receptor and decrease the growth of breast cancer cells in the lab - March 2018
- Breast Cancer reduces receptor and thus blocks Vitamin D to the cells – several studies
- Vitamin D receptor as a target for breast cancer therapy (abstract only) – Feb 2017
- Breast Cancer was 4.6 times more likely if have a poor Vitamin D Receptor – Dec 2016
- Increased Breast Cancer metastasis if low vitamin D or poor VDR – Feb 2016
- Increased risk of some female cancers if low vitamin D (due to genes) – meta-analysis June 2015
- Vitamin D receptor in breasts and breast cancer vary with race – March 2013
- Breast Cancer incidence change by 40 percent with vitamin D receptor genes – Oct 2012
- Genes breast cancer and vitamin D receptor - Sept 2010
 Download the PDF from VitaminDWiki
We investigated whether vitamin D receptor (VDR) polymorphisms were associated with cancer biomarkers, i.e., E-cadherin, matrix metallopeptidase 9 (MMP9), interferon β (IFNβ), soluble intercellular adhesion molecule-1 (s-ICAM-1), soluble vascular cell adhesion molecule-1 (s-VCAM-1), tumor necrosis factorα (TNFα), interleukin 6 (IL6), plasminogen activator inhibitor-1(PAI-1), and human high sensitivity C-reactive protein (hs-CRP), among breast cancer survivors who received vitamin D3 supplementation. In a single-arm non-randomized pre- and post trial, 176 breast cancer survivors who had completed treatment protocol including surgery, radio and chemotherapy were enrolled in the study and received 4000 IU of vitamin D3 daily for 12 weeks. The association between the VDR SNPs (ApaI, TaqI, FokI, BsmI and Cdx2) and response variable changes was assessed using linear regression, utilizing the “association” function in the R package “SNPassoc”. We observed that women with AA and GA [codominant model (AA compared to GG) and (GA compared to GG); dominant model (AA & GA compared to GG)] genotypes of Cdx2 showed higher increase in plasma MMP9 levels compared to the GG category. In addition, carriers of BsmI bb showed greater decrease in circulating TNFα levels after vitamin D3 supplementation [recessive model (bb compared to BB & Bb]. Likewise, significant associations were identified between haplotypes of VDR polymorphisms and on-study plasma MMP9 changes. However, our results indicate that VDR genetic polymorphisms were not associated with longitudinal changes in the remaining cancer biomarkers. Overall, our findings suggest that changes in certain inflammatory biomarkers in breast cancer survivors with low plasma 25(OH)D levels, supplemented with vitamin D3, may depend on VDR SNPs and haplotypes.