Loading...
 
Toggle Health Problems and D

Vitamin D receptor as a target for breast cancer therapy (abstract only) – Feb 2017

Endocr Relat Cancer. 2017 Feb 17. pii: ERC-16-0463. doi: 10.1530/ERC-16-0463. [Epub ahead of print]
Murray A1, Madden S2, Synnott NC3, Klinger R4, O'Connor D5, O'Donovan N6, Gallagher W7, Crown J8, Duffy M9.

VitaminDWiki
  • There have been strong hints that high vitamin D dosing along with adjusting cofactors may allow treating of many Cancers.
  • Note1: Breast Cancer is 4.6 times more likely to occur if have poor Vitamin D Receptor (see below)
  • Note2: Reducing Calcium intake and drinking lots of water both reduce "calcemic potential,"

Items in both VitaminDWiki categories Breast Cancer and Vitamin D Receptor are listed here:

Vitamin D Receptor category has the following

523 studies in Vitamin D Receptor category

Vitamin D tests cannot detect Vitamin D Receptor (VDR) problems
A poor VDR restricts Vitamin D from getting in the cells

See also: 48 studies in the Resveratrol category

It appears that 30% of the population have a poor VDR (40% of the Obese )
Several diseases protect themselves by deactivating the Vitamin D receptor. Example: Breast Cancer
- - - - - - - -
The Vitamin D Receptor is associated with many health problems

Health problems include: Autoimmune (19 studies), Breast Cancer (23 studies), Colon Cancer (13 studies), Cardiovascular (23 studies), Cognition (16 studies), Diabetes (24 studies), Hypertension (9 studies), Infant (22 studies), Lupus (6 studies), Metabolic Syndrome (4 studies), Mortality (4 studies), Multiple Sclerosis (12 studies), Obesity (17 studies), Pregnancy (24 studies), Rheumatoid Arthritis (10 studies), TB (8 studies), VIRUS (36 studies),   Click here for details
Some health problems, such as Breast Cancer, Diabetes, and COVID protect themselves by reducing VDR activation

55 health problems associated with poor VDR


A poor VDR is associated with the risk of 55 health problems  click here for details
The risk of 48 diseases at least double with poor VDR as of Jan 2023  click here for details
Some health problem, such as Breast Cancer reduce the VDR

VDR at-home test $29 - results not easily understood in 2016
There are hints that you may have inherited a poor VDR


How to increase VDR activation


Compensate for poor VDR by increasing one or more:

IncreasingIncreases
1) Vitamin D supplement  Sun
Ultraviolet -B
Vitamin D in the blood
and thus in the cells
2) MagnesiumVitamin D in the blood
 AND in the cells
3) Omega-3 Vitamin D in the cells
4) Resveratrol Vitamin D Receptor
5) Intense exercise Vitamin D Receptor
6) Get prescription for VDR activator
   paricalcitol, maxacalcitol?
Vitamin D Receptor
7) Quercetin (flavonoid) Vitamin D Receptor
8) Zinc is in the VDRVitamin D Receptor
9) BoronVitamin D Receptor ?,
etc
10) Essential oils e.g. ginger, curcuminVitamin D Receptor
11) ProgesteroneVitamin D Receptor
12) Infrequent high concentration Vitamin D
Increases the concentration gradient
Vitamin D Receptor
13) Sulfroaphane and perhaps sulfurVitamin D Receptor
14) Butyrate especially gutVitamin D Receptor
15) BerberineVitamin D Receptor

Note: If you are not feeling enough benefit from Vitamin D, you might try increasing VDR activation. You might feel the benefit within days of adding one or more of the above

Far healthier and stronger at age 72 due to supplements Includes 6 supplements that help the VDR


Increased risk of diseases if poor VDR

Increased risk associated with a poor Vitamin D Receptor
   Note: Some diseases reduce VDR activation
those with a * are known to decrease activation

Risk
increase
Health Problem
50Lyme Disease *
28Leprosy - another says 3X
15Chronic Heart Failure
15Temporary hair loss
14.7Childhood solid cancers
14Hand, Foot, and Mouth disease
13Sepsis
12COVID Death
11Metabolic Syndrome
9.6Chronic Periodontitis
   and smoke
8Juvenile Rheumatoid Arthritis
8.0Preterm birth
7.6Crohn's disease
7.5Respiratory Tract Infections
7.0Lung Cancer
5.8Low back pain in athletes
5 Respiratory Distress in preemies
5Ulcerative Colitis
5Coronary Artery Disease
5Asthma Child see also 1.3, 2.0 and 3.7
4.6Breast Cancer * 16.9 X another study
4.3Severe COVID in kids
4.1Vitiligo
4Liver Cirhosis
4Polycystic ovary syndrome
3.8Lupus
3.6 Pneumonia - children
3.3 Pre-term birth
3.1 Colon Cancer survival
3 Multiple Sclerosis
3Dengue
3 Waist size
3 Ischemic Stroke
3Alzheimer’s
9X in women
3Parkinson’s
3Gestational Diabetes
2.9Hand, Foot, Mouth Disease
2.8Osteoporosis & COPD
2.7Gastric Cancer
2.6Lupus in children
2.5 Lumbar Disc Degeneration
2.4Lung Cancer
2.3Cardio
2.3Autism
2.2Juvenile idiopathic arthritis
2.1Adolescent idiopathic scoliosis in Asians
2Obesity
2Diabetic Retinopathy
2Parkinson's
2 Wheezing/Asthma see also 5X
2 Melanoma   Non-melanoma Skin Cancers
2Myopia
2Preeclampsia
1.9Uterine Fibroids
1.9Early tooth decay
1.8Diabetic nephropathy
1.8Sleep Apnea
1.6Diabetes - Type I
1.6Prostate Cancer while black
1.5 Diabetes -Type II
1.5Gout
1.5Pertussis
1.5Obesity
1.4Graves Disease
1.4 Rheumatoid arthritis
1.3Hypertension
1.3Childhood asthma see also 5X
1.3Psoriasis in Caucasians
1.3Tuberculosis

Considerable epidemiological evidence suggests that high levels of circulating vitamin D (VD) are associated with a decreased incidence and increased survival from cancer, i.e., VD may possess anti-cancer properties. The aim of this investigation was therefore to investigate the anti-cancer potential of a low calcemic vitamin D analogue, i.e., inecalcitol and compare it with the active form of vitamin D, i.e., calcitriol, in a panel of breast cancer cell lines (n = 15). Using the MTT assay, IC50 concentrations for response to calcitriol varied from 0.12 µM to >20 µM, while those for inecalcitol were significantly lower, ranging from 2.5 nM to 63 nM (p = 0.001). Sensitivity to calcitriol and inecalcitol was higher in VD receptor (VDR)-positive compared to VDR-negative cell lines (p = 0.0007 and 0.0080, respectively) and in ER-positive compared to ER-negative cell lines (p = 0.043 and 0.005, respectively). Using RNA-seq analysis, substantial but not complete overlap was found between genes differentially regulated by calcitriol and inecalcitol. In particular, significantly enriched gene ontology terms such as cell surface signalling and cell communication were found following treatment with inecalcitol but not with calcitriol. In contrast, ossification and bone morphogenesis were found significantly enriched following treatment with calcitriol but not with inecalcitol. Our preclinical results suggest that calcitriol and inecalcitol can inhibit breast cancer cell line growth, especially in cells expressing ER and VDR. As inecalcitol, is significantly more potent than calcitriol and has low calcemic potential, it should be further investigated for the treatment of breast cancer.

PMID: 28213567 DOI: 10.1530/ERC-16-0463

Publisher wants $30 for the PDF