Loading...
 
Toggle Health Problems and D

COVID worse if lower Vitamin C, but not Vitamin D in this study – Aug 2022


Vitamin C Deficiency in Blood Samples of COVID-19 Patients

Antioxidants 2022, 11(8), 1580; https://doi.org/10.3390/antiox11081580

Image
Coronavirus disease 2019 (COVID-19) is the most notable pandemic of the modern era. A relationship between ascorbate (vitamin C) and COVID-19 severity is well known, whereas the role of other vitamins is less understood. The present study compared the blood levels of four vitamins in a cohort of COVID-19 patients with different severities and uninfected individuals. Serum concentrations of ascorbate, calcidiol, retinol, and α-tocopherol were measured in a cohort of 74 COVID-19 patients and 8 uninfected volunteers. The blood levels were statistically compared and additional co-morbidity factors were considered.
COVID-19 patients had significantly lower plasma ascorbate levels than the controls (p-value < 0.001), and further stratification revealed that the controls had higher levels than fatal, critical, and severe COVID-19 cases (p-values < 0.001).
However, no such trend was observed for calcidiol, retinol, or α-tocopherol (p-value ≥ 0.093). Survival analysis showed that plasma ascorbate below 11.4 µM was associated with a lengthy hospitalization and a high risk of death. The results indicated that COVID-19 cases had depleted blood ascorbate associated with poor medical conditions, confirming the role of this vitamin in the outcome of COVID-19 infection.
 Download the PDF from VitaminDWiki

Clipped from PDF

  • ..."according to a recent study, vitamin C levels were undetectable in more than 90% of COVID-19 patients with ARDS [43] "
  • "It is estimated that up to 45% of the population in the United States is vitamin C deficient [50] "
  • "Several studies have reported how administration of vitamin C reduced the ARDS’ severity and fatality rate in COVID-19 [14,26,51]
  • Our study includes some limitations. Firstly, there was a high proportion of patients (79.7%) with undetectable plasma ascorbate, which might suggest an artifact due to degradation of this vitamin."
    • Question: if they had "undetectable plasma ascorbate", how did they measure it?

References
  1. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270-273. [CrossRef] [PubMed]
  2. Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Bio-Med. Atenei Parm. 2020, 91,157-160. [CrossRef]
  3. Johns Hopkins University. Coronavirus Research Center, Center for Systems Science and Engineering (CSSE) Baltimore, MD, USA. Available online: https://coronavirus.jhu.edu/map.html (accessed on 1 April 2022).
  4. Ahammed, T.; Anjum, A.; Rahman, M.M.; Haider, N.; Kock, R.; Uddin, M.J. Estimation of novel coronavirus (COVID-19) reproduction number and case fatality rate: A systematic review and meta-analysis. Health Sci. Rep. 2021, 4, e274. [CrossRef]
  5. Alimohamadi, Y.; Tola, H.H.; Abbasi-Ghahramanloo, A.; Janani, M.; Sepandi, M. Case fatality rate of COVID-19: A systematic review and meta-analysis. J. Prev. Med. Hyg. 2021, 62, E311-E320. [CrossRef] [PubMed]
  6. Meyerowitz-Katz, G.; Merone, L. A systematic review and meta-analysis of published research data on COVID-19 infection fatality rates. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020,101,138-148. [CrossRef] [PubMed]
  7. Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2021, 23, 3-20. [CrossRef] [PubMed]
  8. Brant, A.C.; Tian, W.; Majerciak, V.; Yang, W.; Zheng, Z.M. SARS-CoV-2: From its discovery to genome structure, transcription, and replication. Cell Biosci. 2021,11,136. [CrossRef]
  9. Frese, N.; Schmerer, P.; Wortmann, M.; Schürmann, M.; König, M.; Westphal, M.; Weber, F.; Sudhoff, H.; Gölzhäuser, A. Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy. Beilstein J. Nanotechnol. 2021,12,172-179. [CrossRef]
  10. Zhang, J.; Xiao, T.; Cai, Y.; Chen, B. Structure of SARS-CoV-2 spike protein. Curr. Opin. Virol. 2021, 50,173-182. [CrossRef]
  11. Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141-154. [CrossRef]
  12. Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; et al. Coronavirus infections and immune responses. J. Med. Virol. 2020, 92, 424-432. [CrossRef] [PubMed]
  13. Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020,109,102433. [CrossRef] [PubMed]
  14. Hemilä, H.; Chalker, E. Vitamin C Can Shorten the Length of Stay in the ICU: A Meta-Analysis. Nutrients 2019,11, 708. [CrossRef] [PubMed]
  15. Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients 2020,12, 236. [CrossRef]
  16. Calder, P.C. Nutrition, immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3, 74-92. [CrossRef]
  17. Pinnawala, N.U.; Thrastardottir, T.O.; Constantinou, C. Keeping a Balance during the Pandemic: A Narrative Review on the Important Role of Micronutrients in Preventing Infection and Reducing Complications of COVID-19. Curr. Nutr. Rep. 2021,10, 200-210. [CrossRef]
  18. Caballero-García, A.; Pérez-Valdecantos, D.; Guallar, P.; Caballero-Castillo, A.; Roche, E.; Noriega, D.C.; Córdova, A. Effect of Vitamin D Supplementation on Muscle Status in Old Patients Recovering from COVID-19 Infection. Medicina 2021, 57,1079. [CrossRef]
  19. Pauling, L. Vitamin C and common cold. JAMA 1971, 216, 332. [CrossRef]
  20. Lauer, A.; Burkard, M.; Niessner, H.; Leischner, C.; Renner, O.; Vollbracht, C.; Michels, H.; Busch, C.; Sinnberg, T.; Venturelli, S. Ex Vivo Evaluation of the Sepsis Triple Therapy High-Dose Vitamin C in Combination with Vitamin B1 and Hydrocortisone in a Human Peripheral Blood Mononuclear Cells (PBMCs) Model. Nutrients 2021,13, 2366. [CrossRef]
  21. Erol, N.; Saglam, L.; Saglam, Y.S.; Erol, H.S.; Altun, S.; Aktas, M.S.; Halici, M.B. The Protection Potential of Antioxidant Vitamins Against Acute Respiratory Distress Syndrome: A Rat Trial. Inflammation 2019, 42,1585-1594. [CrossRef]
  22. Venturelli, S.; Sinnberg, T.W.; Niessner, H.; Busch, C. Molecular mechanisms of pharmacological doses of ascorbate on cancer cells. Wien. Med. Wochenschr. 2015,165, 251-257. [CrossRef]
  23. Venturelli, S.; Sinnberg, T.W.; Berger, A.; Noor, S.; Levesque, M.P.; Böcker, A.; Niessner, H.; Lauer, U.M.; Bitzer, M.; Garbe, C.; et al. Epigenetic Impacts of ascorbate on Human Metastatic Melanoma Cells. Front. Oncol. 2014, 4, 227. [CrossRef]
  24. Fisher, B.J.; Kraskauskas, D.; Martin, E.J.; Farkas, D.; Wegelin, J.A.; Brophy, D.; Ward, K.R.; Voelkel, N.F.; Fowler, A.A., III; Natarajan, R. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2012, 303, L20-L32. [CrossRef]
  25. Vollbracht, C.; Kraft, K. Feasibility of Vitamin C in the Treatment of Post Viral Fatigue with Focus on Long COVID, Based on a Systematic Review of IV Vitamin C on Fatigue. Nutrients 2021,13,1154. [CrossRef]
  26. Hemilä, H.; Carr, A.; Chalker, E. Vitamin C May Increase the Recovery Rate of Outpatient Cases of SARS-CoV-2 Infection by 70%: Reanalysis of the COVID A to Z Randomized Clinical Trial. Front. Immunol. 2021,12, 674681. [CrossRef]
  27. Milani, G.P.; Macchi, M.; Guz-Mark, A. Vitamin C in the Treatment of COVID-19. Nutrients 2021,13,1172. [CrossRef]
  28. Yamada, S.; Shimojima, M.; Narita, R.; Tsukamoto, Y.; Kato, H.; Saijo, M.; Fujita, T. RIG-I-Like Receptor and Toll-Like Receptor Signaling Pathways Cause Aberrant Production of Inflammatory Cytokines/Chemokines in a Severe Fever with Thrombocytopenia Syndrome Virus Infection Mouse Model. J. Virol. 2018, 92, e02246-17. [CrossRef]
  29. Sarohan, A.R.; Kizil, M.; Inkaya, A.^.; Mahmud, S.; Akram, M.; Cen, O. A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder. Cell. Signal. 2021, 87,110121. [CrossRef]
  30. Casadevall, A.; Pirofski, L.-A. In fatal COVID-19, the immune response can control the virus but kill the patient. Proc. Natl. Acad. Sci. USA 2020,117, 30009-30011. [CrossRef]
  31. Tepasse, P.R.; Vollenberg, R.; Fobker, M.; Kabar, I.; Schmidt, H.; Meier, J.A.; Nowacki, T.; Husing-Kabar, A. Vitamin A Plasma Levels in COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Nutrients 2021,13, 2173. [CrossRef]
  32. Jovic, T.H.; Ali, S.R.; Ibrahim, N.; Jessop, Z.M.; Tarassoli, S.P.; Dobbs, T.D.; Holford, P.; Thornton, C.A.; Whitaker, I.S. Could Vitamins Help in the Fight against COVID-19? Nutrients 2020,12, 2550. [CrossRef]
  33. McCartney, D.M.; Byrne, D.G. Optimisation of Vitamin D Status for Enhanced Immuno-protection against COVID-19. Ir. Med. J. 2020,113, 58. [PubMed]
  34. Vankadari, N.; Wilce, J.A. Emerging WuHan (COVID-19) coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect. 2020, 9, 601-604. [CrossRef] [PubMed]
  35. Braiman, M. Latitude Dependence of the COVID-19 Mortality Rate—A Possible Relationship to Vitamin D Deficiency? SSRN 2020,1-14, preprint. [CrossRef]
  36. Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [CrossRef] [PubMed]
  37. Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526-2533. [CrossRef] [PubMed]
  38. Carstensen, B.; Plummer, M.; Laara, E.; Hills, M. Epi: A Package for Statistical Analysis in Epidemiology; 2021. Available online: https://CRAN.R-project.org/package=Epi (accessed on 1 April 2022).
  39. Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; The National Academies Press: Washington, DC, USA, 2000; ISBN 978-0-309-06935-9.
  40. Crook, J.; Horgas, A.; Yoon, S.J.; Grundmann, O.; Johnson-Mallard, V. Insufficient Vitamin C Levels among Adults in the United States: Results from the NHANES Surveys, 2003-2006. Nutrients 2021,13, 3910. [CrossRef] [PubMed]
  41. Jacob, R.A.; Skala, J.H.; Omaye, S.T. Biochemical indices of human Vitamin C status. Am. J. Clin. Nutr. 1987, 46, 818-826. [CrossRef]
  42. Hodges, R.E. What's new about scurvy? Am. J. Clin. Nutr. 1971, 24, 383-384. [CrossRef]
  43. Venturelli, S.; Leischner, C.; Helling, T.; Burkard, M.; Marongiu, L. Vitamins as Possible Cancer Biomarkers: Significance and Limitations. Nutrients 2021,13, 3914. [CrossRef]
  44. Arvinte, C.; Singh, M.; Marik, P.E. Serum Levels of Vitamin C and Vitamin D in a Cohort of Critically Ill COVID-19 Patients of a North American Community Hospital Intensive Care Unit in May 2020: A Pilot Study. Med. Drug Discov. 2020, 8,100064. [CrossRef]
  45. Tomasa-Irriguible, T.M.; Bielsa-Berrocal, L. COVID-19: Up to 82% critically ill patients had low Vitamin C values. Nutr. J. 2021, 20, 66. [CrossRef]
  46. Chiscano-Camon, L.; Ruiz-Rodriguez, J.C.; Ruiz-Sanmartin, A.; Roca, O.; Ferrer, R. Vitamin C levels in patients with SARS-CoV-2- associated acute respiratory distress syndrome. Crit. Care 2020, 24, 522. [CrossRef]
  47. Holford, P.; Carr, A.C.; Zawari, M.; Vizcaychipi, M.P. Vitamin C Intervention for Critical COVID-19: A Pragmatic Review of the Current Level of Evidence. Life 2021,11,1166. [CrossRef]
  48. Li, Y.; Tong, C.H.; Bare, L.A.; Devlin, J.J. Assessment of the Association of Vitamin D Level with SARS-CoV-2 Seropositivity among Working-Age Adults. JAMA Netw. Open 2021, 4, e2111634. [CrossRef]
  49. Carr, A.C.; Rosengrave, P.C.; Bayer, S.; Chambers, S.; Mehrtens, J.; Shaw, G.M. Hypovitaminosis C and Vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit. Care 2017, 21, 300. [CrossRef]
  50. Reider, C.A.; Chung, R.Y.; Devarshi, P.P.; Grant, R.W.; Hazels Mitmesser, S. Inadequacy of Immune Health Nutrients: Intakes in US Adults, the 2005-2016 NHANES. Nutrients 2020,12,1735. [CrossRef]
  51. Zabet, M.H.; Mohammadi, M.; Ramezani, M.; Khalili, H. Effect of high-dose Ascorbic acid on vasopressor's requirement in septic shock. J. Res. Pharm. Pract. 2016, 5, 94-100. [CrossRef]
  52. Zhao, B.; Ling, Y.; Li, J.; Peng, Y.; Huang, J.; Wang, Y.; Qu, H.; Gao, Y.; Li, Y.; Hu, B.; et al. Beneficial aspects of high dose intravenous Vitamin C on patients with COVID-19 pneumonia in severe condition: A retrospective case series study. Ann. Palliat. Med. 2021,10,1599-1609. [CrossRef]
  53. Zhao, B.; Liu, M.; Liu, P.; Peng, Y.; Huang, J.; Li, M.; Wang, Y.; Xu, L.; Sun, S.; Qi, X.; et al. High Dose Intravenous Vitamin C for Preventing the Disease Aggravation of Moderate COVID-19 Pneumonia. A Retrospective Propensity Matched before-after Study. Front. Pharmacol. 2021,12, 638556. [CrossRef]
  54. JamaliMoghadamSiahkali, S.; Zarezade, B.; Koolaji, S.; SeyedAlinaghi, S.; Zendehdel, A.; Tabarestani, M.; Sekhavati Moghadam, E.; Abbasian, L.; Dehghan Manshadi, S.A.; Salehi, M.; et al. Safety and effectiveness of high-dose Vitamin C in patients with COVID-19: A randomized open-label clinical trial. Eur. J. Med. Res. 2021, 26, 20. [CrossRef] [PubMed]
  55. Quek, A.M.L.; Ooi, D.S.Q.; Teng, O.; Chan, C.Y.; Ng, G.J.L.; Ng, M.Y.; Yee, S.; Cheong, E.W.; Weng, R.; Cook, A.R.; et al. Zinc and Vitamin C intake increases spike and neutralising antibody production following SARS-CoV-2 infection. Clin. Transl. Med. 2022, 12, e731. [CrossRef] [PubMed]
  56. Bowie, A.G.; O'Neill, L.A.J. Vitamin C Inhibits NF-kB Activation by TNF via the Activation of p38 Mitogen-Activated Protein Kinase. J. Immunol. 2000,165, 7180. [CrossRef] [PubMed]
  57. Chen, Y.; Luo, G.; Yuan, J.; Wang, Y.; Yang, X.; Wang, X.; Li, G.; Liu, Z.; Zhong, N. Vitamin C Mitigates Oxidative Stress and Tumor Necrosis Factor-Alpha in Severe Community-Acquired Pneumonia and LPS-Induced Macrophages. Mediat. Inflamm. 2014, 2014, 426740. [CrossRef]
  58. Zhang, J.; Rao, X.; Li, Y.; Zhu, Y.; Liu, F.; Guo, G.; Luo, G.; Meng, Z.; de Backer, D.; Xiang, H.; et al. Pilot trial of high-dose Vitamin C in critically ill COVID-19 patients. Ann. Intensive Care 2021,11, 5. [CrossRef]
  59. Cecchini, R.; Cecchini, A.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med. Hypotheses 2020,143,110102. [CrossRef]
  60. Muhammad, Y.; Kani, Y.A.; Iliya, S.; Muhammad, J.B.; Binji, A.; El-Fulaty Ahmad, A.; Kabir, M.B.; Umar Bindawa, K.; Ahmed, A. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open Med. 2021, 9, 2050312121991246. [CrossRef]
  61. Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000-1013. [CrossRef]
  62. Hati, S.; Bhattacharyya, S. Impact of Thiol-Disulfide Balance on the Binding of COVID-19 Spike Protein with AngiotensinConverting Enzyme 2 Receptor. ACS Omega 2020, 5,16292-16298. [CrossRef]
  63. Busse, L.W.; Chow, J.H.; McCurdy, M.T.; Khanna, A.K. COVID-19 and the RAAS-a potential role for angiotensin II? Crit. Care 2020, 24,136. [CrossRef]
  64. Suhail, S.; Zajac, J.; Fossum, C.; Lowater, H.; McCracken, C.; Severson, N.; Laatsch, B.; Narkiewicz-Jodko, A.; Johnson, B.; Liebau, J.; et al. Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review. Protein J. 2020, 39, 644-656. [CrossRef]
  65. Holford, P.; Carr, A.C.; Jovic, T.H.; Ali, S.R.; Whitaker, I.S.; Marik, P.E.; Smith, A.D. Vitamin C—An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients 2020,12, 3760. [CrossRef]
  66. Carr, A.C.; Spencer, E.; Dixon, L.; Chambers, S.T. Patients with Community Acquired Pneumonia Exhibit Depleted Vitamin C Status and Elevated Oxidative Stress. Nutrients 2020,12,1318. [CrossRef]
  67. Kumari, P.; Dembra, S.; Dembra, P.; Bhawna, F.; Gul, A.; Ali, B.; Sohail, H.; Kumar, B.; Memon, M.K.; Rizwan, A. The Role of Vitamin C as Adjuvant Therapy in COVID-19. Cureus 2020,12, e11779. [CrossRef]
  68. Yang, X.; Wang, Y.; Liu, Y.; Shang, L.; Cheng, Z.; Fang, L.; Zhang, J.; Feng, Y.; Zhang, K.; Jiang, S.; et al. Traditional Chinese medicine together with high-dose Vitamin C improves the therapeutic effect of western medicine against COVID-19. Am. J. Transl. Res. 2022, 14, 501-510.
  69. Tehrani, S.; Yadegarynia, D.; Abrishami, A.; Moradi, H.; Gharaei, B.; Rauofi, M.; Maghsoudi Nejad, F.; Sali, S.; Khabiri, N.; Abolghasemi, S. An investigation into the Effects of Intravenous Vitamin C on Pulmonary CT Findings and Clinical Outcomes of Patients with COVID 19 Pneumonia A Randomized Clinical Trial. Urol. J. 2021,18, 6863. [CrossRef]
  70. Tyml, K. Vitamin C and Microvascular Dysfunction in Systemic Inflammation. Antioxidants 2017, 6, 49. [CrossRef]
  71. Hiedra, R.; Lo, K.B.; Elbashabsheh, M.; Gul, F.; Wright, R.M.; Albano, J.; Azmaiparashvili, Z.; Patarroyo Aponte, G. The use of IV Vitamin C for patients with COVID-19: A case series. Expert Rev. Anti-Infect. Ther. 2020,18,1259-1261. [CrossRef]

VitaminDWiki - 24 studies in both categories Vitamin C and Virus

This list is automatically updated


VitaminDWiki – Vitamin C category has 49 studies


VitaminDWiki – COVID-19 treated by Vitamin D - studies, reports, videos

As of Nov 25, 2022, the VitaminDWiki COVID page had:  19 trial results,   37 meta-analyses and reviews,   Mortality studies   see related:   Governments,   HealthProblems,   Hospitals,  Dark Skins,   26 risk factors are ALL associated with low Vit D,   Recent Virus pages   Fight COVID-19 with 50K Vit D weekly   Vaccines   Take lots of Vitamin D at first signs of COVID   116 COVID Clinical Trials using Vitamin D (08/2022)
5 most-recently changed Virus entries


Observation by a reader on Vitamin C and humans

Humans are one of only four mammals that fails to produce vitamin C as a stress hormone. All of the other mammals produce vitamin C in the non-stressed state of at least 2,000 mg per day. Many mammals, like the goats and cattle, produce over 10,000 mg per day unstressed, and just like two other stress hormones (cortisol and adrenaline), vitamin C is stored and released from the adrenal glands. When stressed these C-producing mammals double or triple their baseline amounts. As C is made from blood sugar (glucose), it is routinely available for production in the liver. Both cortisol and adrenaline require vitamin C for their production. This makes humans particularly vulnerable to sudden oxidative stresses, like serious viral infections.


Created by admin. Last Modification: Saturday August 27, 2022 14:48:22 GMT-0000 by admin. (Version 12)

Attached files

ID Name Comment Uploaded Size Downloads
18337 Ascorbate and Calcidiol.jpg admin 26 Aug, 2022 21:27 92.23 Kb 141
18336 Vit C COVID_CompressPdf.pdf PDF 2022 admin 26 Aug, 2022 21:17 360.03 Kb 52
See any problem with this page? Report it (WORKS NOV 2021)