Toggle Health Problems and D

UV helps your health in 17 ways, the production of Vitamin D is just one of them – March 2024

Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system

PNAS Vol. 121 | No. 14 https://doi.org/10.1073/pnas.2308374121 PDF costs $10
Radomir M. Slominski , Jake Y. Chen, Chander Raman, and Andrzej T. Slominski, aslominski at uabmc.edu

Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.

140 references
  1. A. T. Slominski, M. A. Zmijewski, P. M. Plonka, J. P. Szaflarski, R. Paus, How UV light touches the brain and endocrine system through skin, and why. Endocrinology 159, 1992-2007 (2018). https://doi.org/10.1210/en.2017-03230 FREE PDF
  2. M. Wacker, M. F. Holick, Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol. 5, 51-108 (2013).
  3. J. D'Orazio, S. Jarrett, A. Amaro-Ortiz, T. Scott, UV radiation and the skin. int. J. Mol.Sci. 14, 12222-12248 (2013).
  4. L. O. Bjorn, Photobiology: The Sience of Life and Light (Springer, New York, NY, ed. 2, 2008).
  5. T. Fukui etal., Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans. PLoS One 15, e0235948 (2020).
  6. L. Busch et al., Far-UVC- and UVB-induced DNA damage depending on skin type. Exp. Dermatol. 32, 1582-1587 (2023).
  7. M. Brenner, V. J. Hearing, The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 84, 539-549 (2008).
  8. J. A. Parrish, K. F. Jaenicke, R. R. Anderson, Erythema and melanogenesis action spectra of normal human skin. Photochem. Photobiol. 36, 187-191 (1982).
  9. P. H. Hart, M. Norval, S. N. Byrne, L. E. Rhodes, Exposure to ultraviolet radiation in the modulation of human diseases. Ann. Rev. Pathol. Mech. Dis. 14, 55-81 (2019).
  10. A. T. Slominski et al., Sensing the environment: Regulation of local and global homeostasis by the skin's neuroendocrine system. Adv. Anat. Embryol. Cell Biol. 212, v, vii 1-115 (2012). https://doi.org/10.1007/978-3-642-19683-6_1 FREE PDF
  11. A. R. Young, Chromophores in human skin. Phys. Med. Biol. 42, 789 (1997).
  12. C. S. Cockell, Carbon biochemistry and the ultraviolet radiation environments of F, G, and K main sequence stars. icarus 141, 399-407 (1999).
  13. J. Dworkin, D. Deamer, S. Sandford, L. Allamandola, Self-assembling amphiphilic molecules: Synthesis in simulated interstellar/precometary ices. Proc. Natl. Acad. Sci. U.S.A. 98, 815-819 (2001).
  14. A. Y. Mulkidjanian, D. A. Cherepanov, M. Y. Galperin, Survival of the fittest before the beginning of life: Selection of the first oligonucleotide-like polymers by UV light. BMCEvol. Biol. 3, 12 (2003).
  15. J. A. Raven, C. S. Cockell, C. L. De La Rocha, The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos. Trans. R Soc. Lond. B Biol. Sci. 363, 2641-2650 (2008).
  16. A. Juzeniene et al., Solar radiation and human health. Rep. Progress Phys. 74, 066701 (2011).
  17. M. F. Holick, Vitamin D: A millenium perspective. J. Cell Biochem. 88, 296-307 (2003).
  18. D. D. Bikle, Vitamin D: An ancient hormone. Exp. Dermatol. 20, 7-13 (2011).
  19. A. T. Slominski et al., Melatonin, mitochondria, and the skin. Cell Mol. Life Sci. 74, 3913-3925 (2017), 10.1007/s00018-017-2617-7.
  20. D. J. Sexton, A. Muruganandam, D. J. McKenney, B. Mutus, Visible light photochemical release of nitric oxide from S-nitrosoglutathione: Potential photochemotherapeutic applications. Photochem. Photobiol. 59, 463-467 (1994).
  21. C. C. Addison, G. A. Gamlen, R. Thompson, The ultra-violet absorption spectra of sodium hyponitrite and sodium a-oxyhyponitrite: The analysis of mixtures with sodium nitrite and nitrate. J. Chem.Soc. 1952, 338-345 (1952).
  22. R. A. Serafim, M. C. Primi, G. H. Trossini, E. I. Ferreira, Nitric oxide: State of the art in drug design. Curr. Med. Chem. 19, 386-405 (2012).
  23. J. A. Lo, D. E. Fisher, The melanoma revolution: From UV carcinogenesis to a new era in therapeutics. Science 346, 945-949 (2014).
  24. M. Hewison et al., Feldman and Pike!s Vitamin D (Academic Press, ed. 5, 2024).
  25. D. Bikle, S. Christakos, New aspects of vitamin D metabolism and action-Addressing the skin as source and target. Nat. Rev. Endocrinol. 16, 234-252 (2020), 10.1038/s41574-019-0312-5.
  26. A. T. Slominski et al., Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci. Rep. 5, 14875 (2015).
  27. A. T. Slominski et al., Novel activities of CYP11A1 and their potential physiological significance. J. Steroid. Biochem. Mol. Biol. 151,25-37 (2015).
  28. R. C. Tuckey, C. Y. S. Cheng, A. T. Slominski, The serum vitamin D metabolome: What we know and what is still to discover. J. Steroid. Biochem. Mol. Biol. 186, 4-21 (2019).
  29. A. T. Slominski et al., In vivo evidence for a novel pathway of vitamin D(3) metabolism initiated by P450scc and modified by CYP27B1. FASEB J. 26, 3901-3915 (2012).
  30. A. T. Slominski et al., Metabolic activation of tachysterol3 to biologically active hydroxyderivatives that act on VDR, AhR, LXRs, and PPARgamma receptors. FASEB J. 36, e22451 (2022).
  31. A. T. Slominski et al., Characterization of a new pathway that activates lumisterol in vivo to biologically active hydroxylumisterols. Sci. Rep. 7, 11434 (2017).
  32. R. C. Tuckey et al., CYP27A1 acts on the pre-vitamin D3 photoproduct, lumisterol, producing biologically active hydroxy-metabolites. J. Steroid. Biochem. Mol. Biol. 181, 1-10 (2018).
  33. P. Ostkamp et al., Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity. Proc. Natl. Acad. Sci. U.S.A. 118, e2018457118 (2021).
  34. R. B. Weller et al., Does incident solar ultraviolet radiation lower blood pressure? J. Am. Heart Assoc. 9, e013837 (2020).
  35. S. Gorman, Sun exposure: An environmental preventer of metabolic dysfunction? Curr Opin. Endocrine and Metab. Res. 11, 1-8 (2020).
  36. H. Zhu et al., Moderate UV exposure enhances learning and memory by promoting a novel glutamate biosynthetic pathway in the brain. Cell 173, 1716-1727.e17 (2018).
  37. S. Parikh et al., Food-seeking behavior is triggered by skin ultraviolet exposure in males. Nat. Metab. 4, 883-900 (2022).
  38. J. M. Bae et al., Both cardiovascular and cerebrovascular events are decreased following long-term narrowband ultraviolet B phototherapy in patients with vitiligo: A propensity score matching analysis. J. Eur. Acad. Dermatol. Venereol. 35, 222-229 (2021).
  39. E. Archier et al., Efficacy of psoralen UV-A therapy vs. narrowband UV-B therapy in chronic plaque psoriasis: A systematic literature review. J. Eur. Acad. Dermatol. Venereol. 26 (suppl. 3), 11-21 (2012).
  40. A. Slominski, J. Wortsman, Neuroendocrinology of the skin. Endocr. Rev 21, 457-487 (2000).
  41. D. J. Tobin, Biochemistry of human skin-our brain on the outside. Chem. Soc. Rev. 35, 52-67 (2006).
  42. A. T. Slominski et al., Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am. J. Physiol. Cell Physiol. 323, C1757-C1776 (2022).
  43. A. T. Slominski et al., Key role of CRF in the skin stress response system. Endocr. Rev. 34, 827-884 (2013).
  44. G. P. Chrousos, Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5, 374-381 (2009).
  45. A. T. Slominski et al., Regulated proenkephalin expression in human skin and cultured skin cells. J. invest. Dermatol. 131,613-622 (2011).
  46. Y. Ramot, M. Bohm, R. Paus, Translational neuroendocrinology of human skin: Concepts and perspectives. Trends Mol. Med. 27, 60-74 (2021).
  47. J. J. Bernard, R. L. Gallo, J. Krutmann, Photoimmunology: How ultraviolet radiation affects the immune system. Nat. Rev. immunol. 19, 688-701 (2019).
  48. L. Marek-Jozefowicz et al., Molecular mechanisms of neurogenic inflammation of the skin. int. J. Mol. Sci. 24, 5001 (2023).
  49. Z. T. Anderson, A. D. Dawson, A. T. Slominski, M. L. Harris, Current insights into the role of neuropeptide Y in skin physiology and pathology. Front. Endocrinol. (Lausanne) 13, 838434 (2022).
  50. C. R. Moattari, R. D. Granstein, Neuropeptides and neurohormones in immune, inflammatory and cellular responses to ultraviolet radiation. Acta Physiol. 232, e13644 (2021).
  51. A. T. Slominski et al., Characterization of serotonin and N-acetylserotonin systems in the human epidermis and skin cells. J. Pineal. Res. 68, e12626 (2020).
  52. K. U. Schallreuter et al., Blunted epidermal L-tryptophan metabolism in vitiligo affects immune response and ROS scavenging by Fenton chemistry, part 1: Epidermal H2O2/ONOO(-)-mediated stress abrogates
  53. tryptophan hydroxylase and dopa decarboxylase activities, leading to low serotonin and melatonin levels. FASEB J. 26, 2457-2470 (2012).
  54. S. A. Grando, M. R. Pittelkow, K. U. Schallreuter, Adrenergic and cholinergic control in the biology of epidermis: Physiological and clinical significance. J. invest. Dermatol. 126, 1948-1965 (2006).
  55. K. U. Schallreuter, Epidermal adrenergic signal transduction as part of the neuronal network in the human epidermis. J. investig Dermatol. Symp. Proc. 2, 37-40 (1997).
  56. S. A. Grando, K. Kawashima, I. Wessler, A historic perspective on the current progress in elucidation of the biologic significance of non-neuronal acetylcholine. int. immunopharmacol. 81, 106289 (2020).
  57. A. T. Slominski et al., Melatonin: A cutaneous perspective on its production, metabolism, and functions. J. invest. Dermatol. 138, 490-499 (2018).
  58. T. Biro, B. I. Toth, G. Hasko, R. Paus, P. Pacher, The endocannabinoid system of the skin in health and disease: Novel perspectives and therapeutic opportunities. Trends Pharmacol. Sci. 30, 411-420 (2009).
  59. R. M. Slominski et al., Melanoma, melanin, and melanogenesis: The Yin and Yang relationship. Front. Oncol. 12, 842496 (2022).
  60. R. M. Slominski et al., The significance of CYP11A1 expression in skin physiology and pathology. Mol. Cell Endocrinol. 530, 111238 (2021).
  61. T. C. Frommeyer et al., UVB-induced microvesicle particle release and its effects on the cutaneous microenvironment. Front. immunol. 13, 880850 (2022).
  62. R. M. Slominski, C. Raman, J. Y. Chen, A. T. Slominski, How cancer hijacks the body's homeostasis through the neuroendocrine system. Trends Neurosci. 46, 263-275 (2023).
    "During oncogenesis, cancer not only escapes the body’s regulatory mechanisms, but also gains the ability to affect local and systemic homeostasis. Specifically, tumors produce cytokines, immune mediators, classical neurotransmitters, hypothalamic and pituitary hormones, biogenic amines, melatonin, and glucocorticoids, as demonstrated in human and animal models of cancer. The tumor, through the release of these neurohormonal and immune mediators, can control the main neuroendocrine centers such as the hypothalamus, pituitary, adrenals, and thyroid to modulate body homeostasis through central regulatory axes. We hypothesize that the tumor-derived catecholamines, serotonin, melatonin, neuropeptides, and other neurotransmitters can affect body and brain functions. Bidirectional communication between local autonomic and sensory nerves and the tumor, with putative effects on the brain, is also envisioned. Overall, we propose that cancers can take control of the central neuroendocrine and immune systems to reset the body homeostasis in a mode favoring its expansion at the expense of the host."
  63. C. Skobowiat, J. C. Dowdy, R. M. Sayre, R. C. Tuckey, A. Slominski, Cutaneous hypothalamic-pituitary-adrenal axis homolog: Regulation by ultraviolet radiation. Am. J. Physiol. Endocrinol. Metab. 301, E484-493
  64. (2011).
  65. C. Skobowiat, A. T. Slominski, UVB activates hypothalamic-pituitary-adrenal axis in C57BL/6 mice. J. invest. Dermatol. 135, 1638-1648 (2015).
  66. G. L. Fell, K. C. Robinson, J. Mao, C. J. Woolf, D. E. Fisher, Skin beta-endorphin mediates addiction to UV light. Cell 157, 1527-1534 (2014).
  67. H. Shime et al., Proenkephalin(+) regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc. Natl. Acad. Sci. U.S.A. 117, 20696-20705 (2020).
  68. P. H. Hart, M. Norval, More than effects in skin: Ultraviolet radiation-induced changes in immune cells in human blood. Front. immunol. 12, 694086 (2021).
  69. P. M. Aubert et al., Dopamine efflux in response to ultraviolet radiation in addicted sunbed users. Psychiatry Res. Neuroimag. 251, 7-14 (2016).
  70. A. Slominski, J. Wortsman, D. J. Tobin, The cutaneous serotoninergic/melatoninergic system: Securing a place under the sun. FASEB J. 19, 176-194 (2005).
  71. C. Skobowiat, R. M. Sayre, J. C. Dowdy, A. T. Slominski, Ultraviolet radiation regulates cortisol activity in a waveband-dependent manner in human skin ex vivo. Br. J. Dermatol. 168, 595-601 (2013).
  72. A. T. Slominski, R. C. Tuckey, A. M. Jetten, M. F. Holick, Recent advances in vitamin D biology: Something new under the sun. J. invest. Dermatol. 143, 2340-2342 (2023).  PDF
  73. J. P. Walterscheid et al., Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. Proc. Natl. Acad. Sci. U.S.A. 103, 17420-17425 (2006).
  74. S. E. Ullrich, Sunlight and skin cancer: Lessons from the immune system. Mol. Carcinog. 46, 629-633 (2007).
  75. F. P. Noonan, E. C. De Fabo, Immunosuppression by ultraviolet B radiation: Initiation by urocanic acid. immunol. Today 13, 250-254 (1992).
  76. A. Rannug, E. Fritsche, The aryl hydrocarbon receptor and light. Biol. Chem. 387, 1149-1157 (2006).
  77. E. Fritsche et al., Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc. Natl. Acad. Sci. U.S.A. 104, 8851-8856 (2007).
  78. T. W. Fischer et al., Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J. 20, 1564-1566 (2006).
  79. A. T. Slominski et al., Melatonin and its metabolites can serve as agonists on the aryl hydrocarbon receptor and peroxisome proliferator- activated receptor gamma. int. J. Mol. Sci. 24, 15496 (2023).
  80. L. A. Barber et al., Expression of the platelet-activating factor receptor results in enhanced ultraviolet B radiation-induced apoptosis in a human epidermal cell line. J. Biol. Chem. 273, 18891-18897 (1998).
  81. L. Liu et al., Keratinocyte- derived microvesicle particles mediate ultraviolet B radiation-induced systemic immunosuppression. J. Clin. invest. 131, e144963 (2021).
  82. M. L. Kripke, P. A. Cox, L. G. Alas, D. B. Yarosh, Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc. Natl. Acad. Sci. U.S.A. 89, 7516-7520 (1992).
  83. N. T. Nguyen, D. E. Fisher, MITF and UV responses in skin: From pigmentation to addiction. Pigment Cell Melanoma Res. 32, 224-236 (2019).
  84. V. B. Swope, Z. A. Abdel-Malek, MC1R: Front and center in the bright side of dark eumelanin and DNA repair. int. J. Mol. Sci. 19, 2667 (2018).
  85. A. V. Turnbull, C. L. Rivier, Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: Actions and mechanisms of action. Physiol. Rev. 79, 1-71 (1999).
  86. G. Eisenhofer et al., Tyrosinase: A developmentally specific major determinant of peripheral dopamine. FASEB J. 17, 1248-1255 (2003).
  87. S. J. Felton et al., Serum endocannabinoids and N-acyl ethanolamines and the influence of simulated solar UVR exposure in humans in vivo. Photochem. Photobiol. Sci. 16, 564-574 (2017).
  88. L. Misery, K. Loser, S. Stander, Sensitive skin. J. Eur. Acad. Dermatol. Venereol. 30 (suppl 1), 2-8 (2016).
  89. J. E. Choi, A. Di Nardo, Skin neurogenic inflammation. Semin. Immunopathol. 40, 249-259 (2018).
  90. D. Roosterman, T. Goerge, S. W. Schneider, N. W. Bunnett, M. Steinhoff, Neuronal control of skin function: The skin as a neuroimmunoendocrine organ. Physiol. Rev. 86, 1309-1379 (2006).
  91. E. A. Mayer, K. Nance, S. Chen, The gut-brain axis. Annu. Rev. Med. 73, 439-453 (2022).
  92. O. M. Arenas et al., Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception. Nat. Neurosci. 20, 1686-1693 (2017).
  93. R. Bouillon et al., Skeletal and extraskeletal actions of vitamin D: Current evidence and outstanding questions. Endocr. Rev. 40, 1109-1151 (2019).
  94. A. T. Slominski et al., Photoprotective properties of vitamin D and lumisterol hydroxyderivatives. Cell Biochem. Biophys. 78, 165-180 (2020).
  95. A. T. Slominski et al., Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs). Sci. Rep. 11, 8002 (2021).
  96. Y. Song et al., Molecular and structural basis of interactions of vitamin D3 hydroxyderivatives with aryl hydrocarbon receptor (AhR): An integrated experimental and computational study. Int. J. Biol. Macromol. 209, 1111-1123 (2022).
  97. C. Jenkinson et al., Simultaneous measurement of 13 circulating vitamin D3 and D2 mono and dihydroxy metabolites using liquid chromatography mass spectrometry. Clin. Chem. Lab Med. 59, 1642-1652 (2021).
  98. T. K. Kim et al., Detection of 7-dehydrocholesterol and vitamin D3 derivatives in honey. Molecules 25, 2583 (2020).
  99. J. M. Wierzbicka et al., Bioactive forms of vitamin D selectively stimulate the skin analog of the hypothalamus-pituitary-adrenal axis in human epidermal keratinocytes. Mol. Cell Endocrinol. 437, 312-322 (2016).
  100. R. P. Patrick, B. N. Ames, Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J 28, 2398-2413 (2014).
  101. I. Kaneko et al., 1,25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: Implication for behavioral influences of vitamin D. FASEB J. 29, 4023-4035 (2015).
  102. R. P. Patrick, B. N. Ames, Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 29, 2207-2222 (2015).
  103. A. T. Slominski et al., Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin. PLoS One 4, e4309 (2009).
  104. C. Nishigori et al., Evidence that DNA damage triggers interleukin 10 cytokine production in UV-irradiated murine keratinocytes. Proc. Natl. Acad. Sci. U.S.A. 93, 10354-10359 (1996).
  105. M. S. Eller, K. Ostrom, B. A. Gilchrest, DNA damage enhances melanogenesis. Proc. Natl. Acad. Sci. U.S.A. 93, 1087-1092 (1996).
  106. B. A. Gilchrest, H. Y. Park, M. S. Eller, M. Yaar, Mechanisms of ultraviolet light-induced pigmentation. Photochem. Photobiol. 63, 1-10 (1996).
  107. C. S. Sreevidya, N. M. Khaskhely, A. Fukunaga, P. Khaskina, S. E. Ullrich, Inhibition of photocarcinogenesis by platelet-activating factor or serotonin receptor antagonists. Cancer Res. 68, 3978-3984 (2008).
  108. Z. Janjetovic et al., Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Sci. Rep. 7, 1274 (2017).
  109. T. K. Kim et al., Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. FASEB J. 27, 2742-2755 (2013).
  110. J. M. Pawelek et al., Molecular cascades in UV-induced melanogenesis: A central role for melanotropins? Pigment Cell Res. 5, 348-356 (1992).
  111. A. Slominski, J. Pawelek, Animals under the sun: Effects of ultraviolet radiation on mammalian skin. Clin. Dermatol. 16, 503-515 (1998).
  112. N. W. Bellono, J. A. Najera, E. Oancea, UV light activates a Galphaq/11-coupled phototransduction pathway in human melanocytes. J. Gen. Physiol. 143, 203-214 (2014).
  113. N. W. Bellono, L. G. Kammel, A. L. Zimmerman, E. Oancea, UV light phototransduction activates transient receptor potential A1 ion channels in human melanocytes. Proc. Natl. Acad. Sci. U.S.A. 110, 2383-2388 (2013).
  114. Q. M. Hu et al., Induction of retinal-dependent calcium influx in human melanocytes by UVA or UVB radiation contributes to the stimulation of melanosome transfer. Cell Prolif. 50, e12372 (2017).
  115. K. Haltaufderhyde, R. N. Ozdeslik, N. L. Wicks, J. A. Najera, E. Oancea, Opsin expression in human epidermal skin. Photochem. Photobiol. 91, 117-123 (2015).
  116. H. J. Kim et al., Violet light down-regulates the expression of specific differentiation markers through Rhodopsin in normal human epidermal keratinocytes. PLoS One 8, e73678 (2013).
  117. M. Tsutsumi et al., Expressions of rod and cone photoreceptor-like proteins in human epidermis. Exp. Dermatol. 18, 567-570 (2009).
  118. Y. Al-Nuaimi et al., A meeting of two chronobiological systems: Circadian proteins Period1 and BMAL1 modulate the human hair cycle clock. J. Invest. Dermatol. 134, 610-619 (2014).
  119. S. B. Zanello, D. M. Jackson, M. F. Holick, Expression of the circadian clock genes clock and period1 in human skin. J. Invest. Dermatol. 115, 757-760 (2000).
  120. Y. Lan, Y. Wang, H. Lu, Opsin 3 is a key regulator of ultraviolet A-induced photoageing in human dermal fibroblast cells. Br. J. Dermatol. 182, 1228-1244 (2020).
  121. R. Karthikeyan, W. I. L. Davies, L. Gunhaga, Non-image-forming functional roles of OPN3, OPN4 and OPN5 photopigments. J. Photochem. Photobiol. 15, 100177 (2023).
  122. L. E. Olinski, E. M. Lin, E. Oancea, Illuminating insights into opsin 3 function in the skin. Adv. Biol. Regul. 75, 100668 (2020).
  123. L. V. de Assis, M. N. Moraes, S. da Silveira Cruz-Machado, A. M. Castrucci, The effect of white light on normal and malignant murine melanocytes: A link between opsins, clock genes, and melanogenesis. Biochim. Biophys. Acta 1863, 1119-1133 (2016).
  124. N. L. Wicks, J. W. Chan, J. A. Najera, J. M. Ciriello, E. Oancea, UVA phototransduction drives early melanin synthesis in human melanocytes. Curr. Biol. 21, 1906-1911 (2011).
  125. M. Randhawa et al., Visible light induces melanogenesis in human skin through a photoadaptive response. PLoS One 10, e0130949 (2015).
  126. C. Skobowiat, A. E. Postlethwaite, A. T. Slominski, Skin exposure to ultraviolet B rapidly activates systemic neuroendocrine and immunosuppressive responses. Photochem. Photobiol. 93, 1008-1015 (2017).
  127. C. Skobowiat, A. T. Slominski, Ultraviolet B stimulates proopiomelanocortin signalling in the arcuate nucleus of the hypothalamus in mice. Exp. Dermatol. 25, 120-123 (2016).
  128. K. Hiramoto, N. Yanagihara, E. F. Sato, M. Inoue, Ultraviolet B irradiation of the eye activates a nitric oxide-dependent hypothalamopituitary proopiomelanocortin pathway and modulates functions of alpha- melanocyte-stimulating hormone-responsive cells. J. Invest. Dermatol. 120, 123-127 (2003).
  129. K. Hiramoto, M. Jikumaru, Y. Yamate, E. F. Sato, M. Inoue, Ultraviolet A irradiation of the eye induces immunomodulation of skin and intestine in mice via hypothalomo-pituitary-adrenal pathways. Arch. Dermatol. Res. 301, 239-244 (2009).
  130. R. Parikh et al., Skin exposure to UVB light induces a skin-brain-gonad axis and sexual behavior. Cell Rep. 36, 109579 (2021).
  131. C. Dieguez, R. Nogueiras, Sun exposure stimulates appetite in males. Nat. Metab. 4, 796-797 (2022).
  132. A. L. Ferguson et al., Exposure to solar ultraviolet radiation limits diet-induced weight gain, increases liver triglycerides and prevents the early signs of cardiovascular disease in mice. Nutr. Metab. Cardiovasc. Dis. 29, 633-638 (2019).
  133. A. L. Hermann et al., beta-Endorphin mediates radiation therapy fatigue. Sci. Adv. 8, eabn6025 (2022).
  134. L. V. Kemeny et al., Vitamin D deficiency exacerbates UV/endorphin and opioid addiction. Sci. Adv. 7, eabe4577 (2021).
  135. K. Iacopetta, L. E. Collins-Praino, F. T. Buisman-Pijlman, M. R. Hutchinson, Can neuroimmune mechanisms explain the link between ultraviolet light (UV) exposure and addictive behavior? Brain Behav. Immunity 73, 125-132 (2018).
  136. B. I. Veleva, R. L. van Bezooijen, V. G. M. Chel, M. E. Numans, M. A. A. Caljouw, Effect of ultraviolet light on mood, depressive disorders and well-being. Photodermatol. Photoimmunol. Photomed. 34, 288-297 (2018).
  137. A. A. Irving, S. J. Marling, J. Seeman, L. A. Plum, H. F. DeLuca, UV light suppression of EAE (a mouse model of multiple sclerosis) is independent of vitamin D and its receptor. Proc. Natl. Acad. Sci. U.S.A. 116, 22552-22555 (2019).
  138. Y. Wang, S. J. Marling, V. M. Martino, J. M. Prahl, H. F. Deluca, The absence of 25-hydroxyvitamin D3-1alpha-hydroxylase potentiates the suppression of EAE in mice by ultraviolet light. J. Steroid. Biochem. Mol. Biol. 163, 98-102 (2016).
  139. Y. Wang, S. J. Marling, J. G. Zhu, K. S. Severson, H. F. DeLuca, Development of experimental autoimmune encephalomyelitis (EAE) in mice requires vitamin D and the vitamin D receptor. Proc. Natl. Acad. Sci. U.S.A. 109, 8501-8504 (2012).
  140. A. Slominski, J. Wortsman, T. Luger, R. Paus, S. Solomon, Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev. 80, 979-1020 (2000).
  141. Z. Yue et al., PAGER-CoV: A comprehensive collection of pathways, annotated gene-lists and gene signatures for coronavirus disease studies. Nucleic Acids Res. 49, D589-D599 (2021).
  142. Z. Yue, R. Slominski, S. Bharti, J. Y. Chen, PAGER web APP: An interactive, online gene set and network interpretation tool for functional genomics. Front. Genet. 13, 820361 (2022).

VitaminDWiki – UV and D category contains

377 items in UV category   see also

Attached files

ID Name Comment Uploaded Size Downloads
20971 Something New under the Sun_CompressPdf.pdf admin 16 Mar, 2024 148.77 Kb 15
20970 UV helps health.png admin 15 Mar, 2024 66.68 Kb 147