Effects of vitamin D signaling in cardiovascular disease: centrality of macrophage polarization
Front Cardiovasc Med. 2024 Jun 25:11:1388025. doi: 10.3389/fcvm.2024.1388025
Anton Fliri 1, Shama Kajiji 1 founders of Emergent System Analytics
- "Unlocking the power of proteomics, emergent illuminates a personalized path to health, where precision meets potential, and every individual's unique biology becomes the cornerstone of their well-being."
A small portion of the proteins affected by Calcitriol
Among the leading causes of natural death are cardiovascular diseases, cancer, and respiratory diseases. Factors causing illness include genetic predisposition, aging, stress, chronic inflammation, environmental factors, declining autophagy, and endocrine abnormalities including insufficient vitamin D levels. Inconclusive clinical outcomes of vitamin D supplements in cardiovascular diseases demonstrate the need to identify cause-effect relationships without bias. We employed a spectral clustering methodology capable of analyzing large diverse datasets for examining the role of vitamin D's genomic and non-genomic signaling in disease in this study. The results of this investigation showed the following:
- (1) vitamin D regulates multiple reciprocal feedback loops including p53, macrophage autophagy, nitric oxide, and redox-signaling;
- (2) these regulatory schemes are involved in over 2,000 diseases.
Furthermore, the balance between genomic and non-genomic signaling by vitamin D affects autophagy regulation of macrophage polarization in tissue homeostasis. These findings provide a deeper understanding of how interactions between genomic and non-genomic signaling affect vitamin D pharmacology and offer opportunities for increasing the efficacy of vitamin D-centered treatment of cardiovascular disease and healthy lifespans.
 Download the PDF from VitaminDWiki
Additional diseases are probably fought by local (non-liver) generation of Calcitriol
Vitamin D affects 1289+ Genes, but even more proteins (in current study)
see also
- Vitamin D Receptor has
530 items - Vitamin D Binding Protein = GC has
178 items - CYP27B1 has
63 items - CYP24A1 in title of 39+ items
- CYP2R1 25+ items
- Calcidiol has
48 items - Calcitriol has
62 items - Topical Vitamin D
- Nanoemulsion Vitamin D may be a substantially better form
- 1289 genes changed with higher doses of Vitamin D - RCT Dec 2019
- CYP3A4 (7 as of Dec 2022)
- Getting Vitamin D into your body
Vitamin D blood test misses a lot
- Vitamin D from coming from tissues (vs blood) was speculated to be 50% in 2014, and by 2017 was speculated to be 90%
- Note: Good blood test results (> 40 ng) does not mean that a good amount of Vitamin D actually gets to cells
- A Vitamin D test in cells rather than blood was feasible (2017 personal communication) Commercially available 2019
- However, test results would vary in each tissue due to multiple genes
- Good clues that Vitamin D is being restricted from getting to the cells
1) A vitamin D-related health problem runs in the family
especially if it is one of 51+ diseases related to Vitamin D Receptor
2) Slightly increasing Vitamin D shows benefits (even if conventional Vitamin D test shows an increase)
3) DNA and VDR tests - 100 to 200 dollars $100 to $250
4) PTH bottoms out ( shows that parathyroid cells are getting Vitamin d)
Genes are good, have enough Magnesium, etc.
5) Back Pain
probably want at least 2 clues before taking adding vitamin D, Omega-3, Magnesium, Resveratrol, etc- The founder of VitaminDWiki took action with clues #3&5
212+ references in the study
- Sniderman AD, Furberg CD. Age as a modifiable risk factor for cardiovascular disease. Lancet. (2008) 371:1547-9. https://10.1016/S0140-6736(08)60313-X
- Sánchez-Cabo F, Fuster V, Silla-Castro JC, González G, Lorenzo-Vivas E, Alvarez R, et al. Subclinical atherosclerosis and accelerated epigenetic age mediated by inflammation: a multi-omics study. Eur Heart J. (2023) 44(29):2698-709. https://10.1093/eurheartj/ehad361
- Spagnoli LG, Bonanno E, Sangiorgi G, Mauriello A. Role of inflammation in atherosclerosis. J Nucl Med. (2007) 48(11):1800-15. https://10.2967/jnumed.107.038661
- Ribeiro ASF, Zerolo BE, López-Espuela F, Sánchez R, Fernandes VS. Cardiac system during the aging process. Aging Dis. (2023) 14(4):1105-22. https://10.14336/ AD.2023.0115
- North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. (2012) 110(8):1097-108. https://10.1161/CIRCRESAHA.111.246876
- Gogulamudi VR, Durrant JR, Adeyemo AO, Ho HM, Walker AE, Lesniewski LA. Advancing age increases the size and severity of spontaneous atheromas in mouse models of atherosclerosis. Geroscience. (2023) 45(3):1913-31. https://10.1007/s11357- 023-00776-8
- Boss GR, Seegmiller JE. Age-related physiological changes and their clinical significance. West JMed. (1981) 135(6):434-40. PMID: 7336713; PMCID: PMC1273316
- Lv J, Zhang C, Liu X, Gu C, Liu Y, Gao Y, et al. An aging-related immune landscape in the hematopoietic immune system. Immun Ageing. (2024) 21(1):3. https://10.1186/s12979-023-00403-2
- Ambale-Venkatesh B, Liu CY, Liu YC, Donekal S, Ohyama Y, Sharma RK, et al. Association of myocardial fibrosis and cardiovascular events: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging. (2019) 20(2):168-76. https://10.1093/ ehjci/jey140
- Meizlish ML, Franklin RA, Zhou X, Medzhitov R. Tissue homeostasis and inflammation. Annu Rev Immunol. (2021) 39:557-81. https://10.1146/annurev- immunol-061020-053734
- Hu H, Cheng X, Li F, Guan Z, Xu J, Wu D, et al. Defective efferocytosis by aged macrophages promotes STING signaling mediated inflammatory liver injury. Cell Death Discov. (2023) 9(1):236. https://10.1038/s41420-023-01497-9
- Zhong W, Rao Z, Xu J, Sun Y, Hu H, Wang P, et al. Defective mitophagy in aged macrophages promotes mitochondrial DNA cytosolic leakage to activate STING signaling during liver sterile inflammation. Aging Cell. (2022) 21(6):e13622. https://10.1111/acel.13622
- Tran M, Reddy PH. Defective autophagy and mitophagy in aging and Alzheimer’s disease. Front Neurosci. (2021) 14:612757. https://10.3389/fnins.2020. 612757
- Gladyshev VN, Kritchevsky SB, Clarke SG, Cuervo AM, Fiehn O, de Magalhâes JP, et al. Molecular damage in aging. Nat Aging. (2021) 1(12):1096-106. https://10.1038/ s43587-021-00150-3
- Zhang Z, Guo Q, Zhao Z, Nie M, Shi Q, Li E, et al. DNMT3B activates FGFR3- mediated endoplasmic reticulum stress by regulating PTPN2 promoter methylation to promote the development of atherosclerosis. FASEB J. (2023) 37(8):e23085. https://10.1096/fj.202300665R
- Jones L, Passegue E. Stem cells homeostasis and aging. Innov Aging. (2023) 7 (Suppl 1):259-60. https://10.1093/geroni/igad104.0862
- Li Y, Li Q, Fan GC. Macrophage efferocytosis in cardiac pathophysiology and repair. Shock. (2021) 55(2):177-88. https://10.1097/SHK.0000000000001625
- van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ. The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol. (2018) 6(8):647-58. https://10.1016/S2213-8587(18)30026-3
- Cookson MR. Aging-RNA in development and disease. Wiley Interdiscip Rev RNA. (2012) 3(1):133-43. https://10.1002/wrna.109
- Smit V, de Mol J, Schaftenaar FH, Depuydt MAC, Postel RJ, Smeets D, et al. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc Res. (2023) 119(15):2508-21. https://10.1093/cvr/cvad099
- Popa-Fotea NM, Ferdoschi CE, Micheu MM. Molecular and cellular mechanisms of inflammation in atherosclerosis. Front Cardiovasc Med. (2023) 10:1200341. https://10.3389/fcvm.2023.1200341
- Vidak S, Serebryannyy LA, Pegoraro G, Misteli T. Activation of endoplasmic reticulum stress in premature aging via the inner nuclear membrane protein SUN2. Cell Rep. (2023) 42(5):112534. https://10.1016/j.celrep.2023.112534
- Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. (2008) 454(7203):455-62. https://10.1038/nature07203
- Lopez DV, Al-Jaberi FAH, Woetmann A, 0dum N, Bonefeld CM, Kongsbak- Wismann M, et al. macrophages control the bioavailability of vitamin D and vitamin D-regulated T cell responses. Front Immunol. (2021) 12:722806. https://10.3389/fimmu.2021.722806
- Sendama W. The effect of ageing on the resolution of inflammation. Ageing Res Rev. (2020) 57:101000. https://10.1016/j.arr.2019.101000
- Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Interplay between efferocytosis and atherosclerosis. Arch Cardiovasc Dis. (2023) 116(10):474-84. https://10.1016/j.acvd.2023.07.007
- Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. (2022) 7(1):391. https://10.1038/s41392-022-01251-0
- Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. J Clin Invest. (2023) 133(19):e170501. https://10.1172/JCI170501
- Kojima Y, Weissman IL, Leeper NJ. The role of efferocytosis in atherosclerosis. Circulation. (2017) 135(5):476-89. https://10.1161/CIRCULATIONAHA.116.025684
- Xie L, Chen J, Wang Y, Jin C, Xie Y, Ma H, et al. Emerging roles of macrophages in heart failure and associated treatment approaches. Ther Adv Chronic Dis. (2023) 14:20406223231168755. https://10.1177/20406223231168755
- Malik JA, Zafar MA, Lamba T, Nanda S, Khan MA, Agrewala JN. The impact of aging-induced gut microbiome dysbiosis on dendritic cells and lung diseases. Gut Microbes. (2023) 15(2):2290643. https://10.1080/19490976.2023.2290643
- Suwa Y, Nagafuchi Y, Yamada S, Fujio K. The role of dendritic cells and their immunometabolism in rheumatoid arthritis. Front Immunol. (2023) 14:1161148. https://10.3389/fimmu.2023.1161148
- Ahmed AS, Sheng MH, Wasnik S, Baylink DJ, Lau KW. Effect of aging on stem cells. World J Exp Med. (2017) 7(1):1—10.https://10.5493/wjem.v7.i1.1
- Wang H, Chen W, Li D, Yin X, Zhang X, Olsen N, et al. vitamin D and chronic diseases. AgingDis. (2017) 8(3):346-53. https://10.14336/AD.2016.1021
- Khammissa RAG, Fourie J, Motswaledi MH, Ballyram R, Lemmer J, Feller L. The biological activities of vitamin D and its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and oral health. Biomed Res Int. (2018) 2018:9276380. https://10.1155/2018/9276380
- Shi H, Duan J, Wang J, Li H, Wu Z, Wang S, et al. 1,25(OH)2D3 promotes macrophage efferocytosis partly by upregulating ASAP2 transcription via the VDR- bound enhancer region and ASAP2 may affect antiviral immunity. Nutrients. (2022) 14(22):4935. https://10.3390/nu14224935
- Oh J, Riek AE, Darwech I, Funai K, Shao J, Chin K, et al. Deletion of macrophage vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice. Cell Rep. (2015) 10 (11):1872-86. https://10.1016/j.celrep.2015.02.043
- Kumar S, Nanduri R, Bhagyaraj E, Kalra R, Ahuja N, Chacko AP, et al. vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation. autophagy. (2021) 17(9):2273-89. https://10.1080/ 15548627.2020.1822088
- Thompson B, Waterhouse M, English DR, McLeod DS, Armstrong BK, Baxter C, et al. vitamin D supplementation and major cardiovascular events: D-Health randomised controlled trial. BMJ. (2023) 381:e075230. https://10.1136/bmj-2023-075230
- Manolis AA, Manolis TA, Melita H, Manolis AS. Role of vitamins in cardiovascular health: know your facts-part 2. Curr Vasc Pharmacol. (2023) 21 (6):399-423. https://10.2174/1570161121666230911115725
- Patriota P, Guessous I, Rezzi S, Marques-Vidal P. vitamin D levels are associated with cardiovascular disease events but not with cardiovascular disease or overall mortality: a prospective population-based study. Nutrients. (2023) 15(18):4046. https://10.3390/nu15184046
- Cassard SD, Fitzgerald KC, Qian P, Emrich SA, Azevedo CJ, Goodman AD, et al. High-dose vitamin D3 supplementation in relapsing-remitting multiple sclerosis: a randomised clinical trial. EClinicalMedicine. (2023) 59:101957. https://10.1016/j.eclinm. 2023.101957
- Tobias DK, Luttmann-Gibson H, Mora S, Danik J, Bubes V, Copeland T, et al. Association of body weight with response to vitamin D supplementation and metabolism. JAMA Netw Open. (2023) 6(1):e2250 doi:10.1001/jamanetworkopen.2022.50681
- Anton FF, Shama K. vitamin D deficiency-associated comorbidities: a protein network dynamics perspective. Med. Res. Archives. (2023) 11(6):2023. https://10.18103/ mra.v11i6.3996
- Fliri AF, Loging WT, Volkmann RA. Analysis of information flows in interaction networks: implication for drug discovery and pharmacological research. Discov Med. (2011) 11(57):133-43. PMID: 21356168
- Fliri AF, Loging WT, Volkmann RA. Drug effects viewed from a signal transduction network perspective. J Med Chem. (2009) 52(24):8038-46. https://10.1021/jm901001p
- Fliri AF, Kajiji S. Functional characterization of nutraceuticals using spectral clustering: centrality of caveolae-mediated endocytosis for management of nitric oxide and vitamin D deficiencies and atherosclerosis. Front Nutr. (2022) 9:885364. https://10.3389/fnut.2022.885364
- Fierro-Monti I, Wright JC, Choudhary JS, Vizcaíno JA. Identifying individuals using proteomics: are we there yet? Front Mol Biosci. (2022 Nov 29) 9:1062031. https://10.3389/fmolb.2022.1062031
- Zhu X, Shen X, Qu J, Straubinger RM, Jusko WJ. Multi-scale network model supported by proteomics for analysis of combined gemcitabine and birinapant effects in pancreatic cancer cells. CPT Pharmacometrics Syst Pharmacol. (2018 Sep) 7(9):549-61. https://10.1002/psp4.12320
- Kustatscher G, Collins T, Gingras AC, Guo T, Hermjakob H, Ideker T, et al. Understudied proteins: opportunities and challenges for functional proteomics. Nat Methods. (2022) 19(7):774-9. https://10.1038/s41592-022-01454-x
- Ivanov PC, Bartsch RP. Network physiology: mapping interactions between networks of physiologic networks. In: D’Angostino G, Scala A, editors. Networks of Networks: The Last Frontier of Complexity. Cham: Springer (2014). p. 203-22.
- Broido AD, Clauset A. Scale-free networks are rare. Nat Commun. (2019) 10:1017. https://10.1038/s41467-019-08746-5
- Woessmann J, Kotol D, Hober A, Uhlen M, Edfors F. Addressing the protease bias in quantitative proteomics. J Proteome Res. (2022 Oct 7) 21(10):2526-34. https://10.1021/acs.jproteome.2c00491
- Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. (2007) 389 (4):1017-31. https://10.1007/s00216-007-1486-6
- Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. (2021) 49(D1):D605-12. https://10.1093/nar/gkaa1074
- Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. proteomics. Tissue-based map of the human proteome. Science. (2015) 347 (6220):1260419. https://10.1126/science.1260419
- National Center for Biotechnology Information (NCBI). Bethesda, MD: National Library of Medicine (US), National Center for Biotechnology Information (1988). Available online at: https://www.ncbi.nlm.nih.gov/ (cited April 06, 2017).
- TIBCO Statistica, v. 13.3.0, TIBCO Software Inc, Palo Alto, CA, USA (2017). https://www.tibco.com/products/tibco-statistica (Accessed December 20, 2023).
- Fliri AF, Loging WT, Volkmann RA. Cause-effect relationships in medicine: a protein network perspective. Trends Pharmacol Sci. (2010) 31(11):547-55. https://10.1016/j.tips.2010.07.005
- Dunn K, Marshall JG, Wells AL, Backus JEB. Examining the role of MEDLINE as a patient care information resource: an analysis of data from the Value of Libraries study. J Med Libr Assoc. (2017 Oct) 105(4):336-46. https://10.5195/jmla.2017.87
- Finlayson SG, LePendu P, Shah NH. Building the graph of medicine from millions of clinical narratives. Sci Data. (2014 Sep 16) 1:140032. https://10.1038/sdata.2014.32
- Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. (2011) 39(Database issue):D561-8. https://10.1093/nar/gkq973
- Kaushal D, Naeve CW. An overview of spotfire for gene-expression studies. Curr Protoc Hum Genet. (2005) 45(1):11.9.1-21. https://10.1002/0471142905.hg1109s45
- Della Nera G, Sabatino L, Gaggini M, Gorini F, Vassalle C. vitamin D determinants, status, and antioxidant/anti-inflammatory-related effects in cardiovascular risk and disease: not the last word in the controversy. Antioxidants (Basel). (2023) 12(4):948. https://10.3390/antiox12040948
- Daryabor G, Gholijani N, Kahmini FR. A review of the critical role of vitamin D axis on the immune system. Exp Mol Pathol. (2023) 132-133:104866. https://10.1016/j. yexmp.2023.104866
- Gaucci E, Raimondo D, Grillo C, Cervoni L, Altieri F, Nittari G, et al. Analysis of the interaction of calcitriol with the disulfide isomerase ERp57. Sci Rep. (2016) 6:37957. https://10.1038/srep37957
- Zmijewski MA. Nongenomic activities of vitamin D. Nutrients. (2022) 14 (23):5104. https://10.3390/nu14235104
- Nowak JI, Olszewska AM, Piotrowska A, Myszczynski K, Domzalski P, Zmijewski MA. PDIA3 modulates genomic response to 1,25-dihydroxyvitamin D3 in squamous cell carcinoma of the skin. Steroids. (2023) 199:109288. https://10.1016/j. steroids.2023.109288
- Tu Z, Ouyang Q, Long X, Wu L, Li J, Zhu X, et al. protein disulfide-isomerase A3 is a robust prognostic biomarker for cancers and predicts the immunotherapy response effectively. Front. Immunol. (2022) 2022(13):837512. https://10.3389/fimmu.2022.837512
- Zhao G, Lu H, Li C. Proapoptotic activities of protein disulfide isomerase (PDI) and PDIA3 protein, a role of the bcl-2 protein bak. J Biol Chem. (2015) 290 (14):8949-63. https://10.1074/jbc.M114.619353
- Cockram TOJ, Dundee JM, Popescu AS, Brown GC. The phagocytic code regulating phagocytosis of mammalian cells. Front Immunol. (2021) 12:629979. https://10.3389/fimmu.2021.629979
- Keasey MP, Razskazovskiy V, Jia C, Peterknecht ED, Bradshaw PC, Hagg T. PDIA3 Inhibits mitochondrial respiratory function in brain endothelial cells and C. elegans through STAT3 signaling and decreases survival after OGD. Cell Commun Signal. (2021) 19(1):119. https://10.1186/s12964-021-00794-z
- Xiao Y, Li C, Gu M, Wang H, Chen W, Luo G, et al. protein disulfide isomerase silence inhibits inflammatory functions of macrophages by suppressing reactive oxygen species and NF-kB pathway. Inflammation. (2018) 41(2):614-25. https://10.1007/ s10753-017-0717-z
- Pol JG, Plantureux C, Pérez-Lanzón M, Kroemer G. PDIA3 as a potential bridge between immunogenic cell death and autoreactivity. Oncoimmunology. (2022) 11:2130558. https://10.1080/2162402X.2022.2130558
- Barragan M, Good M, Kolls JK. Regulation of dendritic cell function by vitamin D. Nutrients. (2015) 7(9):8127-51. https://10.3390/nu7095383
- Huang T, You Q, Huang D, Zhang Y, He Z, Shen X, et al. A positive feedback between PDIA3P1 and OCT4 promotes the cancer stem cell properties of esophageal squamous cell carcinoma. Cell Commun Signal. (2024) 22(1):60. https://10.1186/s12964- 024-01475-3
- Liu Y, Zhao X, Jian J, Hasan S, Liu C. Interaction with ERp57 is required for progranulin protection against type 2 Gaucher disease. Biosci Trends. (2023) 17(1) :126-35. https://10.5582/bst.2023.01022
- Zmijewski MA, Carlberg C. vitamin D receptor(s): in the nucleus but also at membranes? Exp Dermatol. (2020) 29(9):876-84. https://10.1111/exd.14147
- Fliri AF, Loging WT, Thadeio PF, Volkmann RA. Biospectra analysis: model proteome characterizations for linking molecular structure and biological response. J Med Chem. (2005) 48(22):6918-25. https://10.1021/jm050494g
- Ivashkiv LB, Park SH. Epigenetic regulation of myeloid cells. Microbiol Spectr. (2016) 4(3):1-29. https://10.1128/microbiolspec.MCHD-0010-2015
- Català-Moll F, Ferreté-Bonastre AG, Godoy-Tena G, Morante-Palacios O, Ciudad L, Barberà L, et al. vitamin D receptor, STAT3, and TET2 cooperate to establish tolerogenesis. Cell Rep. (2022) 38(3):110244. https://10.1016/j.celrep.2021. 110244
- Vasudevan D, Bovee RC, Thomas DD. Nitric oxide, the new architect of epigenetic landscapes. Nitric Oxide. (2016) 59:54-62. https://10.1016/j.niox.2016.08.002
- Berridge MJ. vitamin D, reactive oxygen species and calcium signalling in ageing and disease. Philos Trans R Soc Lond B Biol Sci. (2016) 371(1700):20150434. https://10.1098/rstb.2015.0434
- Fetahu IS, Hobaus J, Kállay E. vitamin D and the epigenome. Front Physiol. (2014) 5:164. https://10.3389/fphys.2014.00164
- Hossain S, Liu Z, Wood RJ. Histone deacetylase activity and vitamin D- dependent gene expressions in relation to sulforaphane in human breast cancer cells. J Food Biochem. (2020) 44(2):e13114. https://10.1111/jfbc.13114
- Fliri AF, Loging WT, Thadeio PF, Volkmann RA. Biological spectra analysis: linking biological activity profiles to molecular structure. Proc Natl Acad Sci USA. (2005) 102(2):261-6. https://10.1073/pnas.0407790101
- Baraniecki L, Tokarz-Deptula B, Syrenicz A, Deptula W. Macrophage efferocytosis in atherosclerosis. Scand J Immunol. (2023) 97(5):e13251. https://10.1111/ sji.13251
- Sergin I, Razani B. Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends Endocrinol Metab. (2014) 25(5):225-34. https://10.1016/j. tem.2014.03.010
- Ni D, Mo Z, Yi G. Recent insights into atherosclerotic plaque cell autophagy. Exp Biol Med (Maywood). (2021) 246(24):2553-8. https://10.1177/15353702211038894
- Shao BZ, Han BZ, Zeng YX, Su DF, Liu C. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin. (2016) 37(2):150-6. https://10.1038/aps.2015.87
- Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, et al. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. (2023) 14(10):691. https://10.1038/s41419-023-06206-z
- Yang S, Yuan HQ, Hao YM, Ren Z, Qu SL, Liu LS, et al. Macrophage polarization in atherosclerosis. Clin Chim Acta. (2020) 501:142-6. https://10.1016/j.cca. 2019.10.034
- Molnár AÁ, Pásztor DT, Tarcza Z, Merkely B. Cells in atherosclerosis: focus on cellular senescence from basic science to clinical practice. Int J Mol Sci. (2023) 24 (24):17129. https://10.3390/ijms242417129
- Yang S, Wu M, Li X, Zhao R, Zhao Y, Liu L, et al. Role of endoplasmic reticulum stress in atherosclerosis and its potential as a therapeutic target. Oxid Med Cell Longev. (2020) 2020:9270107. https://10.1155/2020/9270107
- Immanuel J, Yun S. Vascular inflammatory diseases and endothelial phenotypes. Cells. (2023) 12(12):1640. https://10.3390/cells12121640
- Aronova A, Tosato F, Naser N, Asare Y. Innate immune pathways in atherosclerosis-from signaling to long-term epigenetic reprogramming. Cells. (2023) 12(19):2359. https://10.3390/cells12192359
- Shu Y, Jin S. Caveolin-1 in endothelial cells: a potential therapeutic target for atherosclerosis. Heliyon. (2023) 9(8):e18653. https://10.1016/j.heliyon.2023.e18653
- Kockx MM, Herman AG. Apoptosis in atherosclerosis: beneficial or detrimental? CardiovascRes. (2000) 45(3):736-46. https://10.1016/s0008-6363(99)00235-7
- Shafi O. Switching of vascular cells towards atherogenesis, and other factors contributing to atherosclerosis: a systematic review. Thromb J. (2020) 18:28. https://10.1186/s12959-020-00240-z
- Ferreira-Martins AJ, Castaldoni R, Alencar BM, Ferreira MV, Nogueira T, Rios RA, et al. Full-scale network analysis reveals properties of the FV protein structure organization. Sci Rep. (2023) 13(1):9546. https://10.1038/s41598-023-36528-z
- Wojtasinska A, Frçk W, Lisinska W, Sapeda N, Mlynarska E, Rysz J, et al. Novel insights into the molecular mechanisms of atherosclerosis. Int J Mol Sci. (2023) 24 (17):13434. https://10.3390/ijms241713434
- Weber C, Habenicht AJR, von Hundelshausen P. Novel mechanisms and therapeutic targets in atherosclerosis: inflammation and beyond. Eur Heart J. (2023) 44(29):2672-81. https://10.1093/eurheartj/ehad304
- Böger RH, Bode-Böger SM, Frölich JC. The L-arginine-nitric oxide pathway: role in atherosclerosis and therapeutic implications. atherosclerosis. (1996) 127 (1):1—11. https://10.1016/s0021-9150(96)05953-9
- Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med. (2013) 61:473-501. https://10.1016/j.freeradbiomed.2013. 04.001
- Saccone D, Asani F, Bornman L. Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene. (2015) 561(2):171-80. https://10.1016/j. gene.2015.02.024
- Ho SM, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung YK. Environmental epigenetics and its implication on disease risk and health outcomes published correction appears in ILAR J. 2017 Dec 15;58(3):413. ILAR J. (2012) 53 (3-4):289-305. https://10.1093/ilar.53.3-4.289
- Lee HT, Oh S, Ro DH, Yoo H, Kwon YW. The key role of DNA methylation and histone acetylation in epigenetics of atherosclerosis. J Lipid Atheroscler. (2020) 9 (1) :419-34. https://10.12997/jla.2020.9.3.419
- Bruunsgaard H, Skinhoj P, Pedersen AN, Schroll M, Pedersen BK. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol. (2000) 121(2):255-60. https://10.1046/j.1365-2249.2000.01281.x
- Gomez-Bernal F, Quevedo-Abeledo JC, Garcia-Gonzalez M, Fernandez- Cladera Y, Gonzalez-Rivero AF, Martin-Gonzalez C, et al. Transforming growth factor beta 1 is associated with subclinical carotid atherosclerosis in patients with systemic lupus erythematosus. Arthritis Res Ther. (2023) 25(1):64. https://10.1186/ s13075-023-03046-2
- Proctor BM, Ren J, Chen Z, Schneider JG, Coleman T, Lupu TS, et al. Grb2 is required for atherosclerotic lesion formation. Arterioscler Thromb Vasc Biol. (2007) 27 (6):1361-7. https://10.1161/ATVBAHA.106.134007
- Gaddis DE, Padgett LE, Wu R, Hedrick CC. Neuropilin-1 expression on CD4T cells is atherogenic and facilitates T cell migration to the aorta in atherosclerosis. J Immunol. (2019) 203(12):3237-46. https://10.4049/jimmunol.1900245
- Suarez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Âlvarez-Cordoba
- M, Villalon-Garcia I, Talaveron-Rey M, et al. From mitochondria to atherosclerosis: the inflammation path. Biomedicines. (2021) 9(3):258. doi: 10.3390/biomedicines9030258
- Poznyak AV, Sukhorukov VN, Zhuravlev A, Orekhov NA, Kalmykov V, Orekhov AN. Modulating mTOR signaling as a promising therapeutic strategy for atherosclerosis. Int J Mol Sci. (2022) 23(3):1153. https://10.3390/ijms23031153
- Zhang Q, Wen XH, Tang SL, Zhao ZW, Tang CK. Role and therapeutic potential of gelsolin in atherosclerosis. J Mol Cell Cardiol. (2023) 178:59-67. https://10.1016/j.yjmcc.2023.03.012
- Gunasekar P, Swier VJ, Fleegel JP, Boosani CS, Radwan MM, Agrawal DK. vitamin D and macrophage polarization in epicardial adipose tissue of atherosclerotic swine. PLoS One. (2018) 13(10):e0199411. https://10.1371/journal.pone. 019941
- Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. (2009) 1(4):a000034. https://10.1101/ cshperspect.a000034
- Wang EJ, Wu MY, Ren ZY, Zheng Y, Ye RD, Tan CSH, et al. Targeting macrophage autophagy for inflammation resolution and tissue repair in inflammatory bowel disease. Burns Trauma. (2023) 11:tkad004. https://10.1093/burnst/tkad004
- Mallat Z, Corbaz A, Scoazec A, Besnard S, Lesèche G, Chvatchko Y, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation. (2001) 104(14):1598-603. https://10.1161/hc3901.096721
- Chu T, Xu X, Ruan Z, Wu L, Zhou M, Zhu G. miR-146a contributes to atherosclerotic plaque stability by regulating the expression of TRAF6 and IRAK-1. Mol Biol Rep. (2022) 49(6):4205-16. https://10.1007/s11033-022-07253-z
- Fei J, Sun Y, Duan Y, Xia J, Yu S, Ouyang P, et al. Low concentration of rutin treatment might alleviate the cardiotoxicity effect of pirarubicin on cardiomyocytes via activation of PI3 K/AKT/mTOR signaling pathway. Biosci Rep. (2019) 39(6): BSR20190546. https://10.1042/BSR20190546
- Ma C, Lu T, He Y, Guo D, Duan L, Jia R, et al. Comprehensive analysis of autophagy-related gene expression profiles identified five gene biomarkers associated with immune infiltration and advanced plaques in carotid atherosclerosis. Orphanet J Rare Dis. (2023) 18(1):66. https://10.1186/s13023-023-02660-2
- Perrotta I, Aquila S. The role of oxidative stress and autophagy in atherosclerosis. Oxid Med Cell Longev. (2015) 2015:130315. https://10.1155/2015/130315
- Wu CM, Zheng L, Wang Q, Hu YW. The emerging role of cell senescence in atherosclerosis. Clin Chem Lab Med. (2020) 59(1):27—38. https://10.1515/cclm- 2020-0601
- Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res. (2018) 114(4):622-34. https://10.1093/cvr/cvy007
- Xu S, Lyu QR, Ilyas I, Tian XY, Weng J. Vascular homeostasis in atherosclerosis: a holistic overview. Front Immunol. (2022) 13:976722. https://10.3389/ fimmu.2022.976722
- Yamagishi N, Ueda T, Mori A, Saito Y, Hatayama T. Decreased expression of endoplasmic reticulum chaperone GRP78 in liver of diabetic mice. Biochem Biophys Res Commun. (2012) 417(1):364-70. https://10.1016/j.bbrc.2011.11.118
- Liu J, Xu K, Chase M, Ji Y, Logan JK, Buchsbaum RJ. Tiam1-regulated osteopontin in senescent fibroblasts contributes to the migration and invasion of associated epithelial cells. J Cell Sci. (2012) 125(Pt 2):376-86. https://10.1242/jcs.089466
- Wolak T. Osteopontin—a multi-modal marker and mediator in atherosclerotic vascular disease. atherosclerosis. (2014) 236(2):327-37. https://10.1016/j.atherosclerosis. 2014.07.004
- Li M, Jiao Q, Xin W, Niu S, Liu M, Song Y, et al. Corrigendum: the emerging role of rho guanine nucleotide exchange factors in cardiovascular disorders: insights into atherosclerosis: a mini review. Front Cardiovasc Med. (2022) 9:850258. https://10.3389/fcvm.2022.850258. Erratum for: Front Cardiovasc Med. 2022 Jan 03;8:782098.
- Moon SY, Shin SA, Oh YS, Park HH, Lee CS. Understanding the role of the BAI subfamily of adhesion G protein-coupled receptors (GPCRs) in pathological and physiological conditions. Genes (Basel). (2018) 9(12):597. https://10.3390/genes9120597
- Thorp E, Cui D, Schrijvers DM, Kuriakose G, Tabas I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice. Arterioscler Thromb Vasc Biol. (2008) 28(8):1421-8. https://10.1161/ATVBAHA.108.167197
- Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. (2012) 15(4):545-53. https://10.1016/j.cmet.2012.01.022
- Galic M, Tsai FC, Collins SR, Matis M, Bandara S, Meyer T. Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons. Elife. (2014) 3: e03116. https://10.7554/eLife.03116
- Abou-Kheir W, Isaac B, Yamaguchi H, Cox D. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2. J Cell Sci. (2008) 121(Pt 3):379-90. https://10.1242/jcs.010272
- Singh RK, Haka AS, Bhardwaj P, Zha X, Maxfield FR. Dynamic actin reorganization and vav/Cdc42-dependent actin polymerization promote macrophage aggregated LDL (low-density lipoprotein) uptake and catabolism. Arterioscler Thromb Vasc Biol. (2019) 39(2):137-49. https://10.1161/ATVBAHA.118.312087
- Nakagawa H, Miki H, Nozumi M, Takenawa T, Miyamoto S, Wehland J, et al. IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. J Cell Sci. (2003) 116(Pt 12):2577-83. https://10.1242/jcs.00462
- Ding B, Yang S, Schaks M, Liu Y, Brown AJ, Rottner K, et al. Structures reveal a key mechanism of WAVE regulatory complex activation by Rac1 GTPase. Nat Commun. (2022) 13(1):5444. https://10.1038/s41467-022-33174-3
- Kramer DA, Piper HK, Chen B. WASP family proteins: molecular mechanisms and implications in human disease published correction appears in Eur J Cell Biol. 2023 Mar;102(1):151287. Eur J Cell Biol. (2022) 101(3):151244. https://10.1016/j.ejcb. 2022.151244
- Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, et al. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell. (2014) 156 (1-2):195-207. https://10.1016/j.cell.2013.11.048
- Lim KB, Bu W, Goh WI, Koh E, Ong SH, Pawson T, et al. The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics. J Biol Chem. (2008) 283(29):20454-72. https://10.1074/jbc.M710185200
- Cai GQ, Chou CF, Hu M, Zheng A, Reichardt LF, Guan JL, et al. Neuronal Wiskott-Aldrich syndrome protein (N-WASP) is critical for formation of a-smooth muscle actin filaments during myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol. (2012) 303(8):L692-702. https://10.1152/ajplung.00390.2011
- Chen H, Reed G, Guardia J, Lakhan S, Couture O, Hays E, et al. vitamin D directly regulates Mdm2 gene expression in osteoblasts. Biochem Biophys Res Commun. (2013) 430(1):370-4. https://10.1016/j.bbrc.2012.11.003
- Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. (1993) 7(7A):1126-32. https://10.1101/gad.7.7a.1126
- Moon SH, Huang CH, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP 4th, et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell. (2019) 176(3):564-580.e19. https://10.1016/j.cell.2018.11.011
- Dong B, Wu M, Li H, Kraemer FB, Adeli K, Seidah NG, et al. Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res. (2010) 51(6):1486-95. https://10.1194/jlr.M003566
- Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA. (1996) 93 (6):2442-7. https://10.1073/pnas.93.6.2442
- Ambs S, Ogunfusika MO, Merriam WG, Bennett WP, Billiar TR, Harris CC. Up- regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice. Proc Natl Acad Sci USA. (1998) 95(15):8823-8. https://10.1073/pnas.95.15.882
- Chan GH, Chan E, Kwok CT, Leung GP, Lee SM, Seto SW. The role of p53 in the alternation of vascular functions. Front Pharmacol. (2022) 13:981152. https://10.3389/fphar.2022.981152
- Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, et al. Arginine methylation regulates the p53 response. Nat Cell Biol. (2008) 10 (12):1431-9. https://10.1038/ncb1802
- Heyne K, Heil TC, Bette B, Reichrath J, Roemer K. MDM2 binds and inhibits vitamin D receptor__. Cell Cycle. (2015) 14(13):2003-10.https://10.1080/15384101.2015. 104417
- Zhao Y, Yu H, Hu W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin (Shanghai). (2014) 46(3):180-9. https://10.1093/abbs/gmt147
- Rohe B, Safford SE, Nemere I, Farach-Carson MC. Regulation of expression of 1,25D3-MARRS/ERp57/PDIA3 in rat IEC-6 cells by TGF beta and 1,25(OH)2D3. Steroids. (2007) 72(2):144-50. https://10.1016/j.steroids.2006.11.013
- Srikuea R, Hirunsai M. TGF-p1 stimulation and VDR-dependent activation modulate calcitriol action on skeletal muscle fibroblasts and Smad signalling- associated fibrogenesis. Sci Rep. (2023) 13(1):13811. https://10.1038/s41598-023- 40978-w
- Meek DW, Anderson CW. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol. (2009) 1(6):a000950. https://10.1101/cshperspect.a000950
- Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M, et al. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev. (2004) 18(3):261-77. https://10.1101/gad.1165804
- Zittermann A. vitamin D and cardiovascular disease. Anticancer Res. (2014) 34 (9):4641-8. PMID: 25202039
- Levita J, Wilar G, Wahyuni I, Bawono LC, Ramadaini T, Rohani R, et al. Clinical toxicology of vitamin D in pediatrics: a review and case reports. Toxics. (2023) 11(7):642. https://10.3390/toxics11070642
- Zittermann A, Trummer C, Theiler-Schwetz V, Pilz S. Long-term supplementation with 3200 to 4000 IU of vitamin D daily and adverse events: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr. (2023) 62(4):1833-44. https://10.1007/s00394-023-03124-w
- Leblond F, Poirier S, Yu C, Duquette N, Mayer G, Thorin E. The anti- hypercholesterolemic effect of low p53 expression protects vascular endothelial function in mice. PLoS One. (2014) 9(3):e92394. https://10.1371/journal.pone.0092394
- Tuohimaa P. vitamin D and aging. J Steroid Biochem Mol Biol. (2009) 114(1- 2):78-84. https://10.1016/j.jsbmb.2008.12.020
- Silverbush D, Sharan R. A systematic approach to orient the human proteinprotein interaction network. Nat Commun. (2019) 10(1):3015. https://10.1038/s41467- 019-10887-6
- Tang H, Zeng Z, Shang C, Li Q, Liu J. Epigenetic regulation in pathology of atherosclerosis: a novel perspective. Front Genet. (2021) 12:810689. https://10.3389/ fgene.2021.810689
- Chen YC, Smith M, Ying YL, Makridakis M, Noonan J, Kanellakis P, et al. Quantitative proteomic landscape of unstable atherosclerosis identifies molecular signatures and therapeutic targets for plaque stabilization. Commun Biol. (2023) 6 (1):265. https://10.1038/s42003-023-04641-4
- Das LM, Binko AM, Traylor ZP, Peng H, Lu KQ. vitamin D improves sunburns by increasing autophagy in M2 macrophages. autophagy. (2019) 15 (5):813-26. https://10.1080/15548627.2019.1569298
- Lee SG, Oh J, Bong SK, Kim JS, Park S, Kim S, et al. Macrophage polarization and acceleration of atherosclerotic plaques in a swine model. PLoS One. (2018) 13(3): e0193005. https://10.1371/journal.pone.0193005
- Chen W, Xiao W, Liu X, Yuan P, Zhang S, Wang Y, et al. Pharmacological manipulation of macrophage autophagy effectively rejuvenates the regenerative potential of biodegrading vascular graft in aging body. Bioact Mater. (2021) 11:283-299. https://10.1016/j.bioactmat.2021.09.027
- Stoffels K, Overbergh L, Giulietti A, Verlinden L, Bouillon R, Mathieu C. Immune regulation of 25-hydroxyvitamin-D3-1alpha-hydroxylase in human monocytes. J Bone Miner Res. (2006) 21(1):37-47. https://10.1359/JBMR.050908
- Fang M, Zhong C. vitamin D receptor mediates liver ischemia and reperfusion injury by autophagy__-regulated M2 macrophage polarization. Turk J Biol. (2023) 47 (1) :120-9. https://10.55730/1300-0152.2647
- Jantsch J, Binger KJ, Muller DN, Titze J. macrophages in homeostatic immune function. Front Physiol. (2014) 5:146. https://10.3389/fphys.2014.00146
- Wu J, He S, Song Z, Chen S, Lin X, Sun H, et al. Macrophage polarization states in atherosclerosis. Front Immunol. (2023) 14:1185587. https://10.3389/fimmu.2023. 1185587
- Khanolkar S, Hirani S, Mishra A, Vardhan S, Hirani S, Prasad R, et al. Exploring the role of vitamin D in atherosclerosis and its impact on cardiovascular events: a comprehensive review. Cureus. (2023) 15(7):e42470. https://10.7759/cureus. 42470
- Bi Y, Chen J, Hu F, Liu J, Li M, Zhao L. M2 macrophages as a potential target for antiatherosclerosis treatment. Neural Plast. (2019) 2019:6724903. https://10.1155/ 2019/6724903
- Becker L, Nguyen L, Gill J, Kulkarni S, Pasricha PJ, Habtezion A. Age- dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system. Gut. (2018) 67(5):827-36. https://10.1136/ gutjnl-2016-312940
- Behmoaras J, Gil J. Similarities and interplay between senescent cells and macrophages. J Cell Biol. (2021) 220(2):e202010162. https://10.1083/jcb.202010162
- Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, et al. Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept. Aging Dis. (2019) 10(2):367-82. https://10.14336/AD.2018. 0324
- Linehan E, Fitzgerald DC. Ageing and the immune system: focus on macrophages. Eur J Microbiol Immunol (Bp). (2015) 5(1):14-24. https://10.1556/ EUJMI-D-14-00035
- Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. macrophages and their role in atherosclerosis: pathophysiology and transcriptome analysis. Biomed Res Int. (2016) 2016:9582430. https://10.1155/2016/958243
- Subramanian M, Tabas I. Dendritic cells in atherosclerosis. Semin Immunopathol. (2014) 36(1):93-102. https://10.1007/s00281-013-0400-x
- Moore KJ, Sheedy FJ, Fisher EA. macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. (2013) 13(10):709-21. https://10.1038/nri3520
- Mosser DM, Hamidzadeh K, Goncalves R. macrophages and the maintenance of homeostasis. Cell Mol Immunol. (2021) 18(3):579-87. https://10.1038/s41423-020- 00541-3
- Boyle JJ. Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol. (2005) 3(1):63-8. https://10.2174/1570161052773861
- Barrett TJ. macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol. (2020) 40(1):20-33. https://10.1161/ATVBAHA.119.312802
- Zhao Y, Zhang J, Zhang W, Xu Y. A myriad of roles of dendritic cells in atherosclerosis. Clin Exp Immunol. (2021) 206(1):12-27. https://10.1111/cei.13634
- Feig JE, Feig JL. macrophages, dendritic cells, and regression of atherosclerosis. Front Physiol. (2012) 3:286. https://10.3389/fphys.2012.00286
- Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. (2018) 9:419. https://10.3389/fphys.2018.00419
- Guo FX, Hu YW, Zheng L, Wang Q. Shear stress in autophagy and its possible mechanisms in the process of atherosclerosis. DNA Cell Biol. (2017) 36(5):335-46. https://10.1089/dna.2017.3649
- Seneviratne AN, Cole JE, Goddard ME, Park I, Mohri Z, Sansom S, et al. Low shear stress induces M1 macrophage polarization in murine thin-cap atherosclerotic plaques. J Mol Cell Cardiol. (2015) 89(Pt :168-72. https://10.1016/j.yjmcc.2015.10.034. Erratum in: J Mol Cell Cardiol. 2016;91:10.
- Yang F, Liu Y, Ren H, Zhou G, Yuan X, Shi X. ER-stress regulates macrophage polarization through pancreatic EIF-2alpha kinase. Cell Immunol. (2019) 336:40-7. https://10.1016/j.cellimm.2018.12.008
- Chipurupalli S, Samavedam U, Robinson N. Crosstalk between ER stress, autophagy and inflammation. Front Med (Lausanne). (2021) 8:758311. https://10.3389/ fmed.2021.758311
- Wen JH, Li DY, Liang S, Yang C, Tang JX, Liu HF. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front Immunol. (2022) 13:946832. https://10.3389/fimmu.2022.946832
- McGillis L, Bronte-Tinkew DM, Dang F, Capurro M, Prashar A, Ricciuto A, et al. vitamin D deficiency enhances expression of autophagy-regulating miR-142- 3p in mouse and “involved” IBD patient intestinal tissues. Am J Physiol Gastrointest LiverPhysiol. (2021) 321(2):G171-G184. https://10.1152/ajpgi.00398.2020
- Krishna SM. vitamin D as a protector of arterial health: potential role in peripheral arterial disease formation. Int J Mol Sci. (2019) 20(19):4907. https://10.3390/ijms20194907
- Liang S, Cai J, Li Y, Yang R. 1,25-dihydroxy-vitamin D3 induces macrophage polarization to M2 by upregulating T-cell Ig-mucin-3 expression. Mol Med Rep. (2019) 19(5):3707-13. https://10.3892/mmr.2019.10047
- Yin K, You Y, Swier V, Tang L, Radwan MM, Pandya AN, et al. vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in hypercholesterolemic swine. Arterioscler Thromb Vasc Biol. (2015) 35(11):2432-42. https://10.1161/ATVBAHA.115.306132
- Szeto FL, Reardon CA, Yoon D, Wang Y, Wong KE, Chen Y, et al. vitamin D receptor signaling inhibits atherosclerosis in mice. Mol Endocrinol. (2012) 26 (7):1091—101. https://10.1210/me.2011-1329
- Singh S, Torzewski M. Fibroblasts and their pathological functions in the fibrosis of aortic valve sclerosis and atherosclerosis. Biomolecules. (2019) 9(9):472. https://10.3390/biom9090472
- Ahn J, Peters U, Albanes D, Purdue MP, Abnet CC, Chatterjee N, et al. Serum vitamin D concentration and prostate cancer risk: a nested case-control study. J Natl Cancer Inst. (2008) 100(11):796-804.
- Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, et al. vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. (2009) 6(3):231-43. https://10.1016/j.chom.2009.08.004
- Nguyen LK, Kholodenko BN, von Kriegsheim A. Rac1 and RhoA: networks, loops and bistability. Small GTPases. (2018) 9(4):316-21. https://10.1080/21541248. 2016.1224399
- Quiroga X, Walani N, Disanza A, Chavero A, Mittens A, Tebar F, et al. A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale. Elife. (2023) 12:e72316. https://10.7554/eLife.72316
- Khundmiri SJ, Murray RD, Lederer E. PTH and vitamin D. Compr Physiol. (2016) 6(2):561-601. https://10.1002/cphy.c140071
- Robens JM, Yeow-Fong L, Ng E, Hall C, Manser E. Regulation of IRSp53- dependent filopodial dynamics by antagonism between 14 and 3-3 binding and SH3-mediated localization. Mol Cell Biol. (2010) 30(3):829-44. https://10.1128/MCB. 01574-08
- Bisi S, Marchesi S, Rizvi A, Carra D, Beznoussenko GV, Ferrara I, et al. IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules. Nat Commun. (2020) 11(1):3516. https://10.1038/s41467-020-17091-x
- Zhang HH, Wang W, Feng L, Yang Y, Zheng J, Huang L, et al. S-nitrosylation of Cofilin-1 serves as a novel pathway for VEGF-stimulated endothelial cell migration. J Cell Physiol. (2015) 230(2):406-17. https://10.1002/jcp.24724
- Acevedo A, Gonzalez-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med. (2018) 116:101-13. https://10.1016/j.freeradbiomed.2018.01.008
- Lâhnemann D, Koster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven grand challenges in single-cell data science. Genome Biol. (2020) 21 (1):31. https://10.1186/s13059-020-1926-6
- Kustatscher G, Hodl M, Rullmann E, Grabowski P, Fiagbedzi E, Groth A, et al. Higher-order modular regulation of the human proteome. Mol Syst Biol. (2023) 19(5): e9503. https://10.15252/msb.20209503
- Singh MS, Pasumarthy R, Vaidya U, Leonhardt S. On quantification and maximization of information transfer in network dynamical systems. Sci Rep. (2023) 13(1):5588. https://10.1038/s41598-023-32762-7
- e la Guia-Galipienso F, Martinez-Ferran M, Vallecillo N, Lavie CJ, Sanchis- Gomar F, Pareja-Galeano H. vitamin D and cardiovascular health. Clin Nutr. (2021) 40(5):2946-57. https://10.1016/j.clnu.2020.12.025
- Molinari C, Morsanuto V, Polli S, Uberti F. Cooperative effects of Q10, vitamin D3, and L-arginine on cardiac and endothelial cells. J Vasc Res. (2018) 55(1):47-60. https://10.1159/000484928
- Tewani GR, Silwal K, Sharma G, Yadav D, Siddiqui A, Kriplani S, et al. Effect of medically supervised prolonged fasting therapy on vitamin D, B12, body weight, body mass index, vitality and quality of life: a randomized control trial. Nutr Metab Insights. (2022) 15:11786388221130560. https://10.1177/11786388221130560
2260 diseases found to be fought by fully-activated Vitamin D (Calcitriol) – July 20241187 visitors, last modified 14 Jul, 2024, This page is in the following categories (# of items in each category)Attached files
ID Name Uploaded Size Downloads 21415 protein clusters.webp admin 10 Jul, 2024 42.02 Kb 126 21414 D, CVD, macrophage polarization_CompressPdf.pdf admin 10 Jul, 2024 594.14 Kb 93 - Vitamin D Binding Protein = GC has