High blood pressure induced by vitamin D deficiency is associated with renal overexpression and hyperphosphorylation of Na+-K+-2Cl- cotransporter type 2
J Hypertens, . 2020 Dec 15; doi: 10.1097/HJH.0000000000002745.
Weverton M Luchi 1, Renato O Crajoinas, Flavia L Martins, Paulo de C Castro, Gabriela Venturini, Antonio C Seguro, Adriana C C Girardi
Hypertension category listing contains the following
see also
Overview Overview Hypertension and Vitamin D
Overview Cardiovascular and vitamin D
Overview Stroke and vitamin D
Incidence of 22 health problems related to vitamin D have doubled in a decade
Some interesting Hypertension studies
- Hypertension risk decreased 10X by increasing vitamin D levels to more than 40 ng – Nov 2017
- Hypertension risk reduced 4X if adequate level of Vitamin D – July 2024
- COVID-19 deaths 4 to 7 X more likely if Diabetic, Hypertensive, or CVD - meta-analysis March 2020
- Magnesium reduces hypertension - FDA allows claim - Jan 2022
- Drug-resistant hypertension 3.5 X more likely if low vitamin D – March 2020
- High Blood Pressure reduced by Vitamin D supplementation in seniors and obese – meta-analysis May 2019
- Blood pressure in diabetics reduced by 12 weekly doses of 50,000 IU vitamin D – RCT Jan 2014
- Hypertension is associated with low vitamin D in some groups – meta-analysis April 2015
- Off Topic – Hypertension in 42 percent of adults (new definition: 130 mm Hg) – Feb 2018
- Men aged 40-59 59%, age >60 75%: National Health and Nutrition Examination Survey, 2017–2018
Objectives: Clinical and epidemiological studies have suggested a correlation between vitamin D deficiency (VDD) and high blood pressure (BP). This study aimed to test the hypothesis that high BP induced by VDD is associated with altered expression and covalent modification of apical sodium transporters along the nephron. The contributions of the intrarenal renin-angiotensin system (RAS) and oxidative stress were also investigated.
Methods: Male Wistar rats were fed a vitamin D-free (n = 26) or standard diet (n = 25) for 30 days. BP was recorded using noninvasive and invasive procedures. The expression levels of total and phosphorylated apical sodium transporters in rat renal cortex and medulla were evaluated by immunoblotting. Intrarenal RAS components were assessed by immunoblotting and ELISA. Renal oxidative stress was analyzed by measuring the concentrations of thiobarbituric acid reactive substances and reduced glutathione.
Results: Higher BP levels in VDD rats than controls were accompanied by overexpression and hyperphosphorylation of renal cortical and medullary Na+-K+-2Cl- cotransporter type 2, enhanced levels of phosphorylated Na+/H+ exchanger type 3, and reduced expression levels of total and phosphorylated Na+/Cl- cotransporter. Changes in intrarenal RAS induced by VDD vs. controls included the marked elevation of medullary renin expression, higher expression of cortical angiotensinogen, higher urinary angiotensinogen excretion, and higher cortical and medullary angiotensin II content. VDD rats displayed higher thiobarbituric acid reactive substances/glutathione ratios in the renal cortex and medulla than controls.
Conclusion: These results suggest that the molecular mechanisms underlying the effects of VDD on BP may include the upregulation of Na+-K+-2Cl- cotransporter type 2 and activation of intrarenal RAS and oxidative stress.
2394 visitors, last modified 19 Dec, 2020, |