Table of contents
- Identification of tumor-autonomous and indirect effects of vitamin D action that inhibit breast cancer growth and tumor progression- 2017
- Breast Cancer: VDR, CYP27B1 and CYP24A - 2010
- 24 Breast Cancer and Vitamin D Receptor studies in VitaminDwiki
- VitaminDWiki - Vitamin D Receptor deactivated by some health problems - many studies
Identification of tumor-autonomous and indirect effects of vitamin D action that inhibit breast cancer growth and tumor progression- 2017
The Journal of Steroid Biochemistry and Molecular Biology. online 11 July 2017. https://doi.org/10.1016/j.jsbmb.201.7.07.003
Abhishek Aggarwala, David Feldmanb, c, Brian J. Feldmana, c, ,
this study was cited 17 times as of July 2023
Download the PDF from VitaminDWiki
Highlights
• Epidemiological data suggests an inverse correlation between vitamin D deficiency and breast cancer risk.
• Tumor-autonomous effects of vitamin D signaling suppress breast cancer metastases.
• Tumor-autonomous dysregulation of Id1 expression with vitamin D deficiency is sufficient to promote metastatic spread.
Several epidemiological studies have found that low vitamin D levels are associated with worse prognosis and poorer outcomes in patients with breast cancer (BCa), although some studies have failed to find this association. In addition, prior research has found that BCa patients with vitamin D deficiency have a more aggressive molecular phenotype and worse prognostic biomarkers.
As vitamin D deficiency is common in patients diagnosed with BCa, elucidating the cause of the association between poor outcomes and vitamin D deficiency promises to have a significant impact on improving care for patients with BCa including enabling the development of novel therapeutic approaches.
Here we review our recent findings in this area, including our data revealing that reduction of the expression of the vitamin D receptor (Vdr) within BCa cells accelerates primary tumor growth and enables the development of metastases, demonstrating a tumor autonomous effect of vitamin D signaling to suppress BCa metastases. We believe that these findings are likely relevant to humans as we discovered evidence that a mechanism of VDR regulation identified in our mouse models is conserved in human BCa. In particular, we identified a negative correlation between serum 25(OH)D concentration and the level of expression of the tumor progression factor ID1 in primary tumors from patients with breast cancer.
Breast Cancer: VDR, CYP27B1 and CYP24A - 2010
Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions Vitamin D pathways unbalanced in breast lesions
BMC Cancer volume 10, Article number: 483 (2010)
Nair Lopes, Bárbara Sousa, Diana Martins, Madalena Gomes, Daniella Vieira, Luiz A Veronese, Fernanda Milanezi, Joana Paredes, José L Costa & Fernando Schmitt
.
Background
Breast cancer is a heterogeneous disease associated with different patient prognosis and responses to therapy. Vitamin D has been emerging as a potential treatment for cancer, as it has been demonstrated that it modulates proliferation, apoptosis, invasion and metastasis, among others. It acts mostly through the Vitamin D receptor (VDR) and the synthesis and degradation of this hormone are regulated by the enzymes CYP27B1 and CYP24A1, respectively. We aimed to study the expression of these three proteins by immunohistochemistry in a series of breast lesions.
Methods
We have used a cohort comprising normal breast, benign mammary lesions, carcinomas in situ and invasive carcinomas and assessed the expression of the VDR, CYP27B1 and CYP24A1 by immunohistochemistry.
Results
The results that we have obtained show that all proteins are expressed in the various breast tissues, although at different amounts. The VDR was frequently expressed in benign lesions (93.5%) and its levels of expression were diminished in invasive tumours (56.2%). Additionally, the VDR was strongly associated with the oestrogen receptor positivity in breast carcinomas. CYP27B1 expression is slightly lower in invasive carcinomas (44.6%) than in benign lesions (55.8%). In contrast, CYP24A1 expression was augmented in carcinomas (56.0% in in situ and 53.7% in invasive carcinomas) when compared with that in benign lesions (19.0%).
Conclusions
From this study, we conclude that there is a deregulation of the Vitamin D signalling and metabolic pathways in breast cancer, favouring tumour progression. Thus, during mammary malignant transformation, tumour cells lose their ability to synthesize the active form of Vitamin D and respond to VDR-mediated Vitamin D effects, while increasing their ability to degrade this hormone.
Download the PDF from VitaminDWiki
260 citations of this study as of Sept 2024
24 Breast Cancer and Vitamin D Receptor studies in VitaminDwiki
- Breast Cancer prevented in 5 ways via the Vitamin D Receptor – Oct 2024
- Poor Vitamin D Receptor does not increase the risk of Breast Cancer (but the opposite is true) – umbrella meta-analysis Sept 2024
- An activated Vitamin D Receptor fights Autoimmune Diseases, Infections, Cancers, etc. – Dec 2023
- Breast Cancer risk reduced if consume butyrate - Dec 2023
- Breast cancer spreads to bone if poor vitamin D Receptor (no surprise) – Oct 2022
- Some breast cancers may be treated RNA changes caused by Vitamin D – March 2022
- Breast Cancer, Vitamin D, and genes – Welsh Nov 2021
- After lactation Vitamin D levels are low, increased risk of Breast Cancer, vitamin D should decrease risk – Aug 2021
- Breasts process Vitamin D and change gene activation, might prevent breast cancer if given more Vit. D – July 2021
- Breast cancer associated with Vitamin D Receptor (14th study) – Oct 2019
- After breast cancer treatment 4,000 IU of Vitamin D was not enough to help if have poor Vitamin D receptor – June 2019
- Breast Cancer death 1.8 X more likely if poor Vitamin D Receptor – April 2019
- Breast Cancer and Vitamin D review – March 2018
- Women with Breast Cancer were 16.9 times more likely to have a poor Vitamin D Receptor – Jan 2019
- Cancer treatment by Vitamin D sometimes is restricted by genes – Oct 2018
- Two chemicals increase the Vitamin D receptor and decrease the growth of breast cancer cells in the lab - March 2018
- Breast Cancer reduces receptor and thus blocks Vitamin D to the cells – several studies
- Vitamin D receptor as a target for breast cancer therapy (abstract only) – Feb 2017
- Breast Cancer was 4.6 times more likely if have a poor Vitamin D Receptor – Dec 2016
- Increased Breast Cancer metastasis if low vitamin D or poor VDR – Feb 2016
- Increased risk of some female cancers if low vitamin D (due to genes) – meta-analysis June 2015
- Vitamin D receptor in breasts and breast cancer vary with race – March 2013
- Breast Cancer incidence change by 40 percent with vitamin D receptor genes – Oct 2012
- Genes breast cancer and vitamin D receptor - Sept 2010
VitaminDWiki - Vitamin D Receptor deactivated by some health problems - many studies
There have been 181227 visits to this page