Loading...
 
Toggle Health Problems and D

Vitamins etc, appear to slow down epigenetic aging and reduce inflammation – March 2024


A combination nutritional supplement reduces DNA methylation age only in older adults with a raised epigenetic age

Geroscience. 2024 Mar 26. doi: 10.1007/s11357-024-01138-8 – PDF behind paywall, but can be seen in DeepDyve
Kirsty C McGee 1, Jack Sullivan 1, Jon Hazeldine 1, Lisa J Schmunk 2, Daniel E Martin-Herranz 2, Thomas Jackson 1 3, Janet M Lord 4 5

An increase in systemic inflammation (inflammaging) is one of the hallmarks of aging. Epigenetic (DNA methylation) clocks can quantify the degree of biological aging and this can be reversed by lifestyle and pharmacological intervention. We aimed to investigate whether a multi-component nutritional supplement could reduce systemic inflammation and epigenetic age in healthy older adults. We recruited 80 healthy older participants (mean age ± SD: 71.85 ± 6.23; males = 31, females = 49). Blood and saliva were obtained pre and post a 12-week course of a multi-component supplement, containing:

  • Vitamin B3,
  • Vitamin C,
  • Vitamin D,
  • Omega 3 fish oils,
  • Resveratrol,
  • Olive fruit phenols and
  • Astaxanthin.

Plasma GDF-15 and C-reactive protein (CRP) concentrations were quantified as markers of biological aging and inflammation respectively. DNA methylation was assessed in whole blood and saliva and used to derive epigenetic age using various clock algorithms.No difference between the epigenetic and chronological ages of participants was observed pre- and post-treatment by the blood-based Horvath or Hannum clocks, or the saliva-based InflammAge clock. However, in those with epigenetic age acceleration of ≥ 2 years at baseline, a significant reduction in epigenetic age (p = 0.015) and epigenetic age acceleration (p = 0.0058) was observed post-treatment using the saliva-based InflammAge clock. No differences were observed pre- and post-treatment in plasma GDF-15 and CRP, though participants with CRP indicative of an elevated cardiovascular disease risk (hsCRP ≥ 3µg/ml), had a reduction in CRP post-supplementation (p = 0.0195).Our data suggest a possible benefit of combined nutritional supplementation in individuals with an accelerated epigenetic age and inflammaging.


45 References
  1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186:243–78. https://doi.org/10.1016/j.cell.2022.11.001 . - DOI - PubMed
  2. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69:S4-9. https://doi.org/10.1093/gerona/glu057 . - DOI - PubMed
  3. Wilson D, Drew W, Jasper A, Crisford H, Nightingale P, Newby P, Jackson T, Lord JM, Sapey E. Frailty is associated with neutrophil dysfunction which is correctable with phosphoinositol-3-kinase inhibitors. J Gerontol A Biol Sci Med Sci. 2020;75:2320–5. https://doi.org/10.1093/gerona/glaa216 . - DOI - PubMed - PMC
  4. Bartlett DB, Firth CM, Phillips AC, Moss P, Baylis D, Syddall H, Sayer AA, Cooper C, Lord JM. The age-related increase in low-grade systemic inflammation (Inflammaging) is not driven by cytomegalovirus infection. Aging Cell. 2012;11:912–5. https://doi.org/10.1111/j.1474-9726.2012.00849.x . - DOI - PubMed
  5. Frasca D, Blomberg BB, Paganelli R. Aging, obesity, and inflammatory age-related diseases. Front Immunol. 2017;8:1745. https://doi.org/10.3389/fimmu.2017.01745 . - DOI - PubMed - PMC
  6. Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16:238–46. https://doi.org/10.1016/j.molmed.2010.03.003 . - DOI - PubMed - PMC
  7. Sommer F, Bäckhed F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–38. https://doi.org/10.1038/nrmicro2974 . - DOI - PubMed
  8. Frasca D, Diaz A, Romero M, Blomberg BB. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways. Exp Gerontol. 2017;87:113–20. https://doi.org/10.1016/j.exger.2016.12.001 . - DOI - PubMed
  9. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15:505–22. https://doi.org/10.1038/s41569-018-0064-2 . - DOI - PubMed - PMC
  10. Sayed N, Huang Y, Nguyen K, Krejciova-Rajaniemi Z, Grawe AP, Gao T, Tibshirani R, Hastie T, Alpert A, Cui L, Kuznetsova T, Rosenberg-Hasson Y, Ostan R, Monti D, Lehallier B, Shen-Orr SS, Maecker HT, Dekker CL, Wyss-Coray T, Franceschi C, Jojic V, Haddad F, Montoya JG, Wu JC, Davis MM, Furman D. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging. 2021;1:598–615. https://doi.org/10.1038/s43587-021-00082-y . - DOI - PubMed - PMC
  11. Martínez de Toda I, Maté I, Vida C, Cruces J, De la Fuente M. Immune function parameters as markers of biological age and predictors of longevity. Aging (Albany NY). 2016; 8:3110–3119. https://doi.org/10.18632/aging.101116 .
  12. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. https://doi.org/10.1186/gb-2013-14-10-r115 . - DOI - PubMed - PMC
  13. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67. https://doi.org/10.1016/j.molcel.2012.10.016 . - DOI - PubMed
  14. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, Whitsel EA, Wilson JG, Reiner AP, Aviv A, Lohman K, Liu Y, Ferrucci L, Horvath S. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10: pp. 573–591. https://doi.org/10.18632/aging.101414 .
  15. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Assimes TL, Ferrucci L, Horvath S. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11:303–327. https://doi.org/10.18632/aging.101684 .
  16. Schmunk LJ, Call TP, McCartney DL, Javaid H, Hastings WJ, Jovicevic V, Kojadinovic D, Tomkinson N, Ziamalova E, McGee K, Sullivan J, Campbell A, McIntosh AM, Ovari V, Wishart K, Behrens CE, Stone E, Gavrilov M, Thompson R, Hurdle bioinformatics team, Jackson T, Lord JM, Stubbs TM, Marioni RE, Martin-Herranz DE. A novel framework to build saliva based DNA methylation biomarkers: quantifying systemic chronic inflamamtion as a case study. Biorxv, https://doi.org/10.1101/2023.12.21.572866 .
  17. Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, Ritz B, Bandinelli S, Neuhouser ML, Beasley JM, Snetselaar L, Wallace RB, Tsao PS, Absher D, Assimes TL, Stewart JD, Li Y, Hou L, Baccarelli AA, Whitsel EA, Horvath S. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY), 2017;9:419–446. https://doi.org/10.18632/aging.101168 .
  18. Hu Y, Wang X, Huan J, Zhang L, Lin L, Li Y, Li Y. Effect of dietary inflammatory potential on the aging acceleration for cardiometabolic disease: A population-based study. Front Nutr. 2022;9:1048448. https://doi.org/10.3389/fnut.2022.1048448 . - DOI - PubMed - PMC
  19. Scott AJ, Ellison M, Sinclair DA. The economic value of targeting aging. Nat Aging. 2021;7:616–23. https://doi.org/10.1038/s43587-021-00080-0 . - DOI
  20. Espersen GT, Ngrunnet N, Lervang HH, Nielsen GL, Thomsen BS, Faarvang KL, Dyerberg J, Ernst E. Decreased interleukin-1 beta levels in plasma from rheumatoid arthritis patients after dietary supplementation with n-3 polyunsaturated fatty acids. Clinical Rheumatol. 1992;11:393–5. - DOI
  21. Mousa A, Naderpoor N, Teede H, Scragg R, de Courten B. Vitamin D supplementation for improvement of chronic low-grade inflammation in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2018;76:380–94. https://doi.org/10.1093/nutrit/nux077 . - DOI - PubMed
  22. Truong VL, Jun M, Jeong WS. Role of resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors. 2018;44:36–49. https://doi.org/10.1002/biof.1399 . - DOI - PubMed
  23. Surjana D, Halliday GM, Damian DL. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J Nucleic Acids. 2010;2010:157591. https://doi.org/10.4061/2010/157591 . - DOI - PubMed - PMC
  24. Park JS, Chyun JH, Kim YK, Line LL, Chew BP. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab. 2010;7:18. https://doi.org/10.1186/1743-7075-7-18 . - DOI
  25. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85-94. https://doi.org/10.1093/geronj/49.2.m85 . - DOI - PubMed
  26. Lins L, Carvalho FM. SF-36 total score as a single measure of health-related quality of life: Scoping review. SAGE Open Med. 2016;4:2050312116671725. https://doi.org/10.1177/2050312116671725 . - DOI - PubMed - PMC
  27. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9. https://doi.org/10.1093/bioinformatics/btu049 . - DOI - PubMed - PMC
  28. Xu X, Niu L, Taylor JA. The ENmix DNA methylation analysis pipeline for Illumina BeadChip and comparisons with seven other preprocessing pipelines. Clin Epigenetics. 2021;13:216. https://doi.org/10.1186/s13148-021-01207-1 . - DOI - PubMed - PMC
  29. Wang Y, Grant OA, Zhai X, McDonald-Maier KD, Schalkwyk LC. Insights into ageing rates comparison across tissues from recalibrating cerebellum DNA methylation clock. Geroscience. 2023. https://doi.org/10.1007/s11357-023-00871-w . - DOI - PubMed - PMC
  30. Fahy GM, Brooke RT, Watson JP, Good Z, Vasanawala SS, Maecker H, Leipold MD, Lin DTS, Kobor MS, Horvath S. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell. 2019;18: e13028. https://doi.org/10.1111/acel.13028 . - DOI - PubMed - PMC
  31. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9. https://doi.org/10.1056/nejm199704033361401 . - DOI - PubMed
  32. Cox AJ, Agarwal S, Herrington DM, Carr JJ, Freedman BI, Bowden DW. C-reactive protein concentration predicts mortality in type 2 diabetes: the Diabetes Heart Study. Diabet Med. 2012;29:767–70. https://doi.org/10.1111/j.1464-5491.2011.03560.x . - DOI - PubMed - PMC
  33. Liu H, Huang Y, Lyu Y, Dai W, Tong Y, Li Y. GDF15 as a biomarker of ageing. Exp Gerontol. 2021;146: 111228. https://doi.org/10.1016/j.exger.2021.111228 . - DOI - PubMed
  34. Perna L, Zhang Y, Mons U, Holleczek B, Saum KU, Brenner H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics. 2016;8:64. https://doi.org/10.1186/s13148-016-0228-z . - DOI - PubMed - PMC
  35. Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, Ritz BR, Chen B, Lu AT, Rickabaugh TM, Jamieson BD, Sun D, Li S, Chen W, Quintana-Murci L, Fagny M, Kobor MS, Tsao PS, Reiner AP, Edlefsen KL, Absher D, Assimes TL. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17:171. https://doi.org/10.1186/s13059-016-1030-0 . - DOI - PubMed - PMC
  36. Stromsnes K, Correas AG, Lehmann J, Gambini J, Olaso-Gonzalez G. Anti-Inflammatory Properties of Diet: Role in Healthy Aging. Biomedicines. 2021;9(8):922. https://doi.org/10.3390/biomedicines9080922 . - DOI - PubMed - PMC
  37. Szarc vel Szic K, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics. 2015;7:33. https://doi.org/10.1186/s13148-015-0068-2 . - DOI - PubMed
  38. Pirro M, Mannarino MR, Ministrini S, Fallarino F, Lupattelli G, Bianconi V, Bagaglia F, Mannarino E. Effects of a nutraceutical combination on lipids, inflammation and endothelial integrity in patients with subclinical inflammation: a randomized clinical trial. Sci Rep. 2016;6:23587. https://doi.org/10.1038/srep23587 . - DOI - PubMed - PMC
  39. Maselli Del Giudice A, La Mantia I, Barbara F, Ciccarone S, Ragno MS, de Robertis V, Cariti F, Barbara M, D’Ascanio L, Di Stadio A. Use of nutraceuticals in elderly to fight inflammation and immuno-senescence: a randomized case-control study. Nutrients. 2022;14:3476. https://doi.org/10.3390/nu14173476 . - DOI - PubMed - PMC
  40. Hore TA. Modulating epigenetic memory through vitamins and TET: implications for regenerative medicine and cancer treatment. Epigenomics. 2017;9:863–71. https://doi.org/10.2217/epi-2017-0021 . - DOI - PubMed
  41. Arora I, Sharma M, Tollefsbol TO. Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. Int J Mol Sci. 2019;20:4567. https://doi.org/10.3390/ijms20184567 . - DOI - PubMed - PMC
  42. Fitzgerald KN, Hodges R, Hanes D, Stack E, Cheishvili D, Szyf M, Henkel J, Twedt MW, Giannopoulou D, Herdell J, Logan S, Bradley R. Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging (Albany NY), 2021;13: 9419–9432. https://doi.org/10.18632/aging.202913 .
  43. Sandalova E, Goh J, Lim ZX, Lim ZM, Barardo D, Dorajoo R, Kennedy BK, Maier AB. Alpha-ketoglutarate supplementation and BiologicaL agE in middle-aged adults (ABLE)-intervention study protocol. Geroscience. 2023;45:2897–907. https://doi.org/10.1007/s11357-023-00813-6 . - DOI - PubMed - PMC
  44. Demidenko O, Barardo D, Budovskii V, Finnemore R, Palmer FR, Kennedy BK, Budovskaya YV. Rejuvant®, a potential life-extending compound formulation with alpha-ketoglutarate and vitamins, conferred an average 8 year reduction in biological aging, after an average of 7 months of use, in the TruAge DNA methylation test. Aging (Albany NY), 2021;13:24485–24499. https://doi.org/10.18632/aging.203736 .
  45. Chen L, Dong Y, Bhagatwala J, Raed A, Huang Y, Zhu H. Effects of vitamin D3 supplementation on epigenetic aging in overweight and obese African Americans with suboptimal vitamin D status: a randomized clinical trial. J Gerontol A Biol Sci Med Sci. 2019;74:91–8. https://doi.org/10.1093/gerona/gly223 . - DOI - PubMed

VitaminDwiki – Epigenetics and Vitamin D – many studies


VitaminDwiki – Longevity and healthspan increased by Vitamin D, Omega-3, Magnesium - many studies


VitaminDWiki – Inflammation category contains:

173 items total

Example studies

Image


38+ VitaminDWiki pages have AGING in the title

This list is automatically updated

Items found: 39
Title Modified
Life extension by physical activity or more than 34 ng of Vitamin D – together they reduce aging by 1.3 years – July 2024 13 Jun, 2024
Vitamins etc, appear to slow down epigenetic aging and reduce inflammation – March 2024 26 Mar, 2024
Vitamin D and Aging: Central Role of Immunocompetence – Carlberg Jan 2024 21 Mar, 2024
The Science of Magnesium and Its Role in Aging and Disease - Patrick March 2024 20 Mar, 2024
Vitamin K can reduce aging - April 2021 25 Dec, 2023
Vitamin D reduces aging and prevents disease (less oxidative stress) - Dec 2022 07 Dec, 2022
Aging of the Immune system (Immunosenescence): micronutrients and gut microbiota – Oct 2022 03 Oct, 2022
Age of menopause increases if add vitamin D or UVB 25 Aug, 2021
Several advanced-maternal-age problems reduced if given Vitamin D during pregnancy (mice in this case) – July 2021 11 Aug, 2021
Parathyroid Hormone levels increase 63 percent with age (33,000 people) – Sept 2017 17 May, 2021
Poorer sleep as Vitamin D levels drop with age – March 2021 20 Feb, 2021
Increasing Vitamin D in aged care facilities to more than 800 IUs did not reduce falls – Oct 2020 07 Oct, 2020
Boys who were born Small for Gestational age are 1.9X more likely to be infertile – Dec 2019 20 Dec, 2019
Preterm birth increases risk of heart disease by 1.5 X by age 40 – June 2019 06 Aug, 2019
Low Vitamin D is one of the causes of oxidative stress and aging – March 2019 15 May, 2019
Medicaid pays for 70 percent of US pregnancies for women under age 25 – April 2019 25 Apr, 2019
Far healthier and stronger at age 72 due to supplements 27 Jan, 2019
Off Topic: Premature birth results in less schooling and income (age 28, 228,000 Danes) – Dec 2018 15 Dec, 2018
Small for gestational age birth was 6.5X more likely if mother was vitamin D deficient – March 2015 27 Jun, 2018
Half as many Small for Gestational Age infants when take 600 IU of vitamin D while pregnant – June 2018 27 Jun, 2018
Vitamin D reduced so low that Victorian age diseases are returning 05 Apr, 2018
Vitamin D gene expression varies with Epileptic age – March 2018 20 Mar, 2018
Prematurely aging kids (Hutchinson-Gilford Progeria Syndrome) might be helped by Vitamin D– March 2018 20 Mar, 2018
Hypothesis – less vitamin D results in faster aging – Nov 2017 17 Nov, 2017
The Convergence of Two Epidemics: Vitamin D Deficiency in Obese School-aged Children – Jan 2018 21 Oct, 2017
Genes which regulate active vitamin D worsen with age – Oct 2016 31 Oct, 2016
Small for gestational age with low vitamin D – 3.6X higher for blacks than whites – April 2016 21 Apr, 2016
Anti-aging Effect of Magnesium on Telomeres (in rats) - Mar 2014 15 Apr, 2016
Obese of all ages have lower levels of vitamin D – meta-analysis May 2015 10 May, 2015
Vitamin D improved brains in aging rats – Sept 2014 03 Oct, 2014
Understanding vitamin D deficiency - Editorial in Age and Ageing July 2014 02 Aug, 2014
Vitamin D deficiency in Rheumatology clinics in Iran (D increases with age)– May 2013 02 Nov, 2013
Huge variation in taking vitamin D supplements with age of female, less than 1000 IU not help much – July 2013 29 Aug, 2013
Unspecified differences in vitamin D at age 10 failed to predict intelligence at age 15 – April 2012 13 Apr, 2012
Appears that some CNS ageing problems can be avoided with vitamin D – July 2010 06 Oct, 2011
Forum on Aging and Skeletal Health – Sept 2011 17 Sep, 2011
Kidney aging-inevitable or preventable – Aug 2011 25 Aug, 2011
Amylase increases with age, as does weight 10 Aug, 2010
How much calcidiol or calcitriol is needed to slow aging in mice – 2009 02 Jul, 2010