Vitamin D Insufficiency in Overweight and Obese Children and Adolescents
Front. Endocrinol., 01 March 2019 | https://doi.org/10.3389/fendo.2019.00103
Irina Zakharova1, Leonid Klimov2, Victoria Kuryaninova2*, Irina Nikitina3, Svetlana Malyavskaya4, Svetlana Dolbnya2, Anna Kasyanova1, Roza Atanesyan2, Marina Stoyan2, Anastasiya Todieva3, Galina Kostrova4 and Andrey Lebedev4
Items in both categories Obesity and Infant-Child are listed here:
- Omega-3 added to father’s diet reduced offspring’s obesity (mice) – June 2024
- Obesity is associated with 1 to 5 poor vitamin D genes (childhood obesity in the case) – July 2024
- Obese children have poor vitamin D genes (CYP27A1, CYP2R1, CYP27B1) – March 2024
- Obese children had less gene methylation (gene not work as well) – March 2024
- Obese asthmatic children Vitamin D - 50,000 IU then 8,000 IU daily - RCT Jan 2024
- High-dose Vitamin D reduced inflammation and insulin resistance (obese children) - Dec 2023
- Vitamin D half life is shorter in asthmatic children who are more obese – Nov 2023
- Childhood BMI decreased when add a little Vitamin D – meta-analysis March 2023
- Child Obesity and Vitamin D - many studies
- Recent increases in pediatric endocrine problems may be decreased by Vitamin D – Aug 2022
- Obese during childhood usually results in obese adult (M.R., not a surprise) - Aug 2022
- Less obese child if supplemented with Vitamin D as an infant– meta-analysis Feb 2021
- Obese children had 2.2 X less response to a single dose of Vitamin D – Oct 2020
- Little weight loss in obese children from very small amount of vitamin D (1200 IU) – RCT April 2020
- Increased weight in children 8X more likely for each unit increase in adenovirus (if ignore Vitamin D) – Nov 2019
- Obesity 3X more likely in US children having low vitamin D – July 2019
- Overweight children are 3.4 X more likely to have low Vitamin D – March 2019
- Indoor pollution is a problem with obese black asthmatic children – May 2018
- Severe Non-Alcoholic fatty liver disease treated by Omega-3 – RCT April 2018
- The Convergence of Two Epidemics: Vitamin D Deficiency in Obese School-aged Children – Jan 2018
- NAFLD in children nicely treated by combination of Vitamin D and Omega-3 – RCT Dec 2016
- Omega-3 in infancy reduces Obesity following antibiotic (confirmed in rats, suspected in humans) – Feb 2016
- Vitamin D deficiency and childhood obesity: interactions, implications, and recommendations (5,000 IU) – Feb 2016
- Obese children – 71 percent had low vitamin D– Jan 2016
- Infant risk of obesity increased by 50 percent if low vitamin D during pregnancy – Sept 2015
- Obese children and youths need more vitamin D – Review Feb 2015
- Overweight children associated with low vitamin D during pregnancy – 2015, 2018
- Higher vitamin D at birth associated with less diabetes and obesity 35 years later – Jan 2014
- More Hypertension in obese children with low vitamin D, especially at night – Dec 2013
- Very poor follow-thu with vitamin D testing and supplementation of obese children – June 2013
- Obese children gain weight more quickly when have low vitamin D – Oct 2013
- Obese mothers with adequate vitamin D gave birth to low D and fat infants – Jan 2013
- Heavier kids more vitamin D deficient, especially if dark skinned – Pediatrics Dec 2012
- Obese children with celiac disease had lower levels of vitamin D – April 2012
- The more vitamin D the lower the infant BMI – March 2011
- Obama task force told that childhood Obesity linked to Vitamin D Deficiency – Aug 2010
Items in both categories Obesity and Youth are listed here:
- Insulin resistance in overweight youths treated Vitamin D (such as 50K IU weekly) – meta-analysis April 2024
- Child Obesity and Vitamin D - many studies
- Based on PTH response, obese adolescents may not need and much vitamin D as non-obese (12 ng vs 16.5 ng) – June 2021
- Overweight children are 3.4 X more likely to have low Vitamin D – March 2019
- Half of obese black teens achieved at least 30 ng of Vitamin D with 5,000 IU daily – June 2018
- The Convergence of Two Epidemics: Vitamin D Deficiency in Obese School-aged Children – Jan 2018
- Obese children – 71 percent had low vitamin D– Jan 2016
- 5,000 IU daily or 50,000 IU Vitamin D weekly repleted many dark skinned adolescents – RCT Dec 2015
- Obese children and youths need more vitamin D – Review Feb 2015
- Obese teens need more than 2,000 IU of vitamin D for 3 months– RCT Feb 2015
- Vitamin D deficiency 4X more likely in Italian teens if: dark skin, winter, obese, little sun, or use sunscreen – June 2014
- Increasing time with indoor media, prescribe time outdoors - Sept 2013
- Italian youth vitamin D deficiency increased likelihood: 27X if winter, 5X if obese, etc. – Aug 2013
- 3X more abdominal obesity among Korean children having low vitamin D – July 2012
- Korean teens more likely to be obese if have less than 18 ng of vitamin D – June 2012
- Bariatric surgery less than 30 ng of vitamin D – 82 pcnt teens, 100 pcnt of black teens – June 2012
- Teen obesity strongly associated with vitamin D deficiency – April 2012
- Obesity lowers vitamin D which increases probability of diabetes in children – Nov 2011
- Obese teens needed 4000 IU of vitamin D - Nov 2011
- Black obese children had low vitamin D and more fat under skin than whites – Mar 2011
- Increased forearm fractures in obese children - Nov 2010
- Perhaps low vitamin D increases child obesity - Sept 2010
- Obesity in American-Indians and African-American teens
- Low vitamin D in teens: especially black or overweight – June 2010
- Calcium deficiency is a risk factor for overweight female teenagers April 2010
Items in 3 categories: Obesity + Intervention + Infant-Child are listed here:
Items in 3 categories: Obesity + Intervention + Youth are listed here:
Overview Obesity and Vitamin D contains the following summary
- FACT: People who are obese have less vitamin D in their blood
- FACT: Obese need a higher dose of vitamin D to get to the same level of vit D
- FACT: When obese people lose weight the vitamin D level in their blood increases
- FACT: Adding Calcium, perhaps in the form of fortified milk, often reduces weight
- FACT: 168 trials for vitamin D intervention of obesity as of Dec 2021
- FACT: Less weight gain by senior women with > 30 ng of vitamin D
- FACT: Dieters lost additional 5 lbs if vitamin D supplementation got them above 32 ng - RCT
- FACT: Obese lost 3X more weight by adding $10 of Vitamin D
- FACT: Those with darker skins were more likely to be obese Sept 2014
- OBSERVATION: Low Vitamin D while pregnancy ==> more obese child and adult
- OBSERVATION: Many mammals had evolved to add fat and vitamin D in the autumn
- and lose both in the Spring - unfortunately humans have forgotten to lose the fat in the Spring
- SPECULATION: Low vitamin D might be one of the causes of obesity – several studies
- SUGGESTION: Probably need more than 4,000 IU to lose weight if very low on vitamin D due to
risk factors such as overweight, age, dark skin, live far from equator,shut-in, etc. - Obesity category has
442 items See also: Weight loss and Vitamin D - many studies Child Obesity and Vitamin D - many studies Obesity, Virus, and Vitamin D - many studies
Obese need more Vitamin D
- Normal weight Obese (50 ng = 125 nanomole)
- Normal weight Obese (50 ng = 125 nanomole)
Russia and low Vitamin D in VitaminDWiki
- Russian children need 2,000-4,000 IU of Vitamin D to get most above 40 ng - Dec 2017
- Rickets – 1 in 10,000 in Canada and UK, 1 in 2 in Russia and Mongolia
- Perhaps half of Russian children have rickets, 500 IU vitamin D was not enough – June 2013
 Download the PDF from VitaminDWiki
Excessive body weight and obesity in childhood and adolescence are becoming more and more important unfavorable factors that entail extremely adverse consequences and require close attention of physicians of any specialty. Along with the high prevalence of obesity and metabolic syndrome in pediatric patients, children and adolescents in the majority of countries are diagnosed with vitamin D deficiency. Among the non-calcaemic effects of vitamin D, a significant role is played by its impact on the hormonal regulation of glucose metabolism and the synthesis of adipokines by fat tissue. The review presents literature data indicative of a close pathogenic relationship between vitamin D insufficiency and impaired tissue insulin sensitivity. It demonstrates the role of vitamin D insufficiency in immune reactions resulting in development of subclinical inflammation in fat tissue infiltrated with macrophages and lymphocytes. It also shows the role of adipokines, immune system cells and pro-inflammatory cytokines produced by them in the pathogenesis of obesity, as well as the function of vitamin D as an endocrine and paracrine regulator of the process of inflammation in adipose tissue. The relationships between the principal adipokines (leptin, adiponectin, resistin) are revealed in the presence of normal vitamin D content and in vitamin D deficiency. The carbohydrate and lipid metabolism parameters in overweight children and adolescents with vitamin D insufficiency are analyzed. A high prevalence of vitamin D insufficiency in overweight and obese children and adolescents (increasing along with the severity of obesity) is demonstrated. The review also presents the current recommendations for the correction of vitamin D insufficiency and underlines the need for higher cholecalciferol doses to achieve serum calcifediol targets in overweight and obese children and adolescents.
Introduction
Prevention of obesity is one of the most important problems of today's medical science, since the rate at which the prevalence of obesity is increasing worldwide indicates a pandemic (1, 2). In 2010, complications related to overweight and obesity resulted in the death of at least 4 million people in the world, in the decrease of the quality of life in 4% of the population every year and 4% of the population become disabled (3). According to WHO data for 2014, 39% of the world's population suffered from excessive weight and 13% from obesity, overweight/obesity afflicted 43 million children under 5 years of age, and this amount is estimated to increase up to 60 million children worldwide by the year 2020 (2). The prevalence of vitamin D deficiency and insufficiency in overweight and obese patients ranges from 5.6% in Canada (4) to 96.0% in Germany (5).
In recent years, there has been a sharp rise in interest in studying the role of vitamin D in the human body. This is due to the fact that there have been accumulated and reappear not only the bone (calcemic) effects of vitamin D, but also completely new effects—non-bone (non-calcemic) (6). According to contemporary views, vitamin D deficiency is associated with an increased risk of diabetes mellitus, arterial hypertension, heart failure, peripheral arterial disease, acute myocardial infarction, various forms of cancer, autoimmune and inflammatory diseases, decreased immune defenses and increased mortality (7). Vitamin D plays an essential role in the regulation of glucose homeostasis, insulin secretion mechanisms, and inflammation associated with obesity (8). Pregnant women, people of color (blacks, Hispanics and anyone with increased skin melanin pigmentation), obese children and adults and children and adults who practice abstinence from direct sun exposure are at especially high risk (9). These studies are the result of understanding that vitamin D is not a vitamin in the classical interpretation. It is a steroidal prehormone with autocrine, paracrine and endocrine action, which through enzymatic processes is consistently transformed into the body into biologically active metabolites that affect various organs and tissues through genomic and non-genomic effects.
Prevalence of Overweight and Obesity in Children and Adolescents
The diagnosis and definition of obesity in children is challenging. Obesity is not defined by a standard threshold as it is for adults. Instead, measurements are compared with a reference population. Obesity diagnoses in children are usually determined by calculation of body mass index (BMI). BMI values are then plotted on age-and sex-specific growth charts (10). The Centers for Disease Control overweight is most commonly defined at BMI 85-95 percentile and greater than or equal to 95th percentile for obesity (11). The World Health Organization overweight definition 85–97 percentile and obesity greater than or equal to 97 percentile (12).Four countries that are leaders in the prevalence of childhood obesity in the world: Greece, USA, Italy and Mexico (13). Most overweight and obese children and adolescents live in economically developed countries, this list is topped by the United States. The prevalence of obesity among American children and adolescents soared dramatically between 1970 and 2000 (from 6.5 to 18.0% in children and from 5.4 to 18.4% in adolescents), and now remains at approximately the same level (4). It is currently estimated that 30% of children in North America are overweight or obese (14).
In economically developed Northern European countries (Denmark, Sweden, Norway), the prevalence of obesity in children remains at approximately the same level among natives and is increasing very significantly among immigrants (15).
A steady rise in obesity prevalence among children is currently seen in countries with medium and low income levels. These countries are following the path trod by economically developed countries 40 years ago, as the prevalence of obesity in their pediatric populations is rapidly growing. The leading country in this list is China where the prevalence rates of obesity among girls and boys increased from 0.45 and 0.16%, respectively, in 1985 to 18.16 and 6.58%, respectively, in 2014 (16). In Eastern European countries (Bulgaria, Croatia, Czech Republic, Hungary, Latvia, Lithuania, etc.), the Russian Federation, and Turkey, the prevalence of obesity (including excessive body weight) is in the range of 14.4–19.2% among boys and 11.8–17.6% among girls (17).
Interrelationship Between Vitamin D and Adipose Tissue
Vitamin D insufficiency and excessive fat accumulation have mutually negative effects as a result of excessive metabolic processes, enzymatic disorders against a background of decreased activity of alpha-hydroxylase, the key enzyme in the biotransformation of calciferol in a fat-infiltrated liver, resulting in accumulation of inactive forms and decreased bioavailability of vitamin D (8, 18).In obesity, vitamin D affects insulin secretion, tissue sensitivity to insulin, and systemic inflammation. The direct and paracrine effects of vitamin D lead to VDR activation in pancreatic beta-cells, CYP27B1 expression, and local synthesis of 1,25(OH)2D (18, 19).
Insulin secretion and tissue insulin sensitivity are Ca2+-dependent mechanisms, while vitamin D regulates intracellular concentrations of Ca2+ and its passage through the membranes. Additionally, vitamin D positively affects the expression of insulin receptors in peripheral cells and counteracts the systemic immune response by modulating the expression and activity of cytokines (20, 21).
Therefore, the influence of adipose tissue on the metabolism of vitamin D, on the one hand, and its pathogenic role in the obesity development mechanisms, on the other hand, are closely interrelated and represent mutually dependent processes.
Numerous studies have analyzed calcifediol concentrations that may be decreased in obesity. One “superfluous” BMI unit is known to induce a 1.15% reduction in the 25(OH)D concentration (22). In particular, an analysis conducted in 58 obese adolescents demonstrated that a 1% increase in fat weight was associated with a 1.15 ± 0.55 nmol/L reduction in serum calcifediol (23).
There is no consensus as to why calcifediol levels are decreased in obese individuals. The first (and most popular) point of view is that adipose tissue absorbs the fat-soluble vitamin D (24). Some available data reveal that serum 25(OH)D concentrations show a strong inverse correlation with fat volume and a weaker inverse correlation with BMI (22).
Another hypothesis explains the low 25(OH)D concentrations by the fact that obese people lead a sedentary lifestyle and are less active physically, which entails a decrease in exposure to sunlight and in endogenous synthesis of vitamin D (25).
Other interrelated hypotheses appear to be justified too, specifically that vitamin D metabolism and 25(OH)D synthesis are impaired as a result of hepatic steatosis developing in obesity (26), and that high levels of leptin and IL-6 impair 25(OH)D synthesis by affecting VDR receptors (27).
See PDF for the remainder of the study
Overweight children are 3.4 X more likely to have low Vitamin D – March 201910724 visitors, last modified 11 Jul, 2019, This page is in the following categories (# of items in each category)Attached files
ID Name Uploaded Size Downloads 11512 Child obesity and Vit D table.jpg admin 04 Mar, 2019 137.84 Kb 514 11511 Obesity Vit D.jpg admin 04 Mar, 2019 49.23 Kb 622 11510 Overweight and Obese Children.pdf admin 04 Mar, 2019 2.48 Mb 670