Loading...
 
Toggle Health Problems and D

Nonmelanoma Skin Cancer 2X more likely if poor Vitamin D Receptor – Oct 2017

Association of Vitamin D Receptor Polymorphisms With the Risk of Nonmelanoma Skin Cancer in Adults

JAMA Dermatol. 2017;153(10):983-989. doi:10.1001/jamadermatol.2017.1976
Erin M. Burns, MS, PhD, MSPH1; Purushotham Guroji, MS, PhD1; Israr Ahmad, MS, PhD1; et al Hana M. Nasr, MPH1; Yingxue Wang, MPH2; Iman A. Tamimi, MD1; Elijah Stiefel, MD1; Mohammad S. Abdelgawwad, MD1; Abdullah Shaheen, BS1; Anum F. Muzaffar, BS1; Lisa M. Bush, MS, GCC3; Christina B. Hurst, MS, GCC3; Russell L. Griffin, MPH, PhD2; Craig A. Elmets, MD1; Nabiha Yusuf, MS, PhD1

VitaminDWiki

The articles in Skin Cancer and Vitamin D Receptor:

Vitamin D Receptor category has the following

530 studies in Vitamin D Receptor category

Vitamin D tests cannot detect Vitamin D Receptor (VDR) problems
A poor VDR restricts Vitamin D from getting in the cells

See also: 48 studies in the Resveratrol category

It appears that 30% of the population have a poor VDR (40% of the Obese )
Several diseases protect themselves by deactivating the Vitamin D receptor. Example: Breast Cancer
- - - - - - - -
The Vitamin D Receptor is associated with many health problems

Health problems include: Autoimmune (19 studies), Breast Cancer (24 studies), Colon Cancer (13 studies), Cardiovascular (23 studies), Cognition (16 studies), Diabetes (24 studies), Hypertension (9 studies), Infant (22 studies), Lupus (6 studies), Metabolic Syndrome (4 studies), Mortality (4 studies), Multiple Sclerosis (14 studies), Obesity (17 studies), Pregnancy (24 studies), Rheumatoid Arthritis (10 studies), TB (8 studies), VIRUS (37 studies),   Click here for details
Some health problems, such as Breast Cancer, Diabetes, and COVID protect themselves by reducing VDR activation

55 health problems associated with poor VDR


A poor VDR is associated with the risk of 55 health problems  click here for details
The risk of 48 diseases at least double with poor VDR as of Jan 2023  click here for details
Some health problem, such as Breast Cancer reduce the VDR

VDR at-home test $29 - results not easily understood in 2016
There are hints that you may have inherited a poor VDR


How to increase VDR activation


Compensate for poor VDR by increasing one or more:

IncreasingIncreases
1) Vitamin D supplement  Sun
Ultraviolet -B
Vitamin D in the blood
and thus in the cells
2) MagnesiumVitamin D in the blood
 AND in the cells
3) Omega-3 Vitamin D in the cells
4) Resveratrol Vitamin D Receptor
5) Intense exercise Vitamin D Receptor
6) Get prescription for VDR activator
   paricalcitol, maxacalcitol?
Vitamin D Receptor
7) Quercetin (flavonoid) Vitamin D Receptor
8) Zinc is in the VDRVitamin D Receptor
9) BoronVitamin D Receptor ?,
etc
10) Essential oils e.g. ginger, curcuminVitamin D Receptor
11) ProgesteroneVitamin D Receptor
12) Infrequent high concentration Vitamin D
Increases the concentration gradient
Vitamin D Receptor
13) Sulfroaphane and perhaps sulfurVitamin D Receptor
14) Butyrate especially gutVitamin D Receptor
15) BerberineVitamin D Receptor

Note: If you are not feeling enough benefit from Vitamin D, you might try increasing VDR activation. You might feel the benefit within days of adding one or more of the above

Far healthier and stronger at age 72 due to supplements Includes 6 supplements that help the VDR


Increased risk of diseases if poor VDR

Increased risk associated with a poor Vitamin D Receptor
   Note: Some diseases reduce VDR activation
those with a * are known to decrease activation

Risk
increase
Health Problem
50Lyme Disease *
28Leprosy - another says 3X
15Chronic Heart Failure
15Temporary hair loss
14.7Childhood solid cancers
14Hand, Foot, and Mouth disease
13Sepsis
12COVID Death
11Metabolic Syndrome
9.6Chronic Periodontitis
   and smoke
8Juvenile Rheumatoid Arthritis
8.0Preterm birth
7.6Crohn's disease
7.5Respiratory Tract Infections
7.0Lung Cancer
5.8Low back pain in athletes
5 Respiratory Distress in preemies
5Ulcerative Colitis
5Coronary Artery Disease
5Asthma Child see also 1.3, 2.0 and 3.7
4.6Breast Cancer * 16.9 X another study
4.3Severe COVID in kids
4.1Vitiligo
4Liver Cirhosis
4Polycystic ovary syndrome
3.8Lupus
3.6 Pneumonia - children
3.3 Pre-term birth
3.1 Colon Cancer survival
3 Multiple Sclerosis
3Dengue
3 Waist size
3 Ischemic Stroke
3Alzheimer’s
9X in women
3Parkinson’s
3Gestational Diabetes
2.9Hand, Foot, Mouth Disease
2.8Osteoporosis & COPD
2.7Gastric Cancer
2.6Lupus in children
2.5 Lumbar Disc Degeneration
2.4Lung Cancer
2.3Cardio
2.3Autism
2.2Juvenile idiopathic arthritis
2.1Adolescent idiopathic scoliosis in Asians
2Obesity
2Diabetic Retinopathy
2Parkinson's
2 Wheezing/Asthma see also 5X
2 Melanoma   Non-melanoma Skin Cancers
2Myopia
2Preeclampsia
1.9Uterine Fibroids
1.9Early tooth decay
1.8Diabetic nephropathy
1.8Sleep Apnea
1.6Diabetes - Type I
1.6Prostate Cancer while black
1.5 Diabetes -Type II
1.5Gout
1.5Pertussis
1.5Obesity
1.4Graves Disease
1.4 Rheumatoid arthritis
1.3Hypertension
1.3Childhood asthma see also 5X
1.3Psoriasis in Caucasians
1.3Tuberculosis


Key Points

  • Question Is there an association between vitamin D receptor single-nucleotide polymorphisms and the risk of nonmelanoma skin cancer?
  • Findings This case-control study involving 100 case patients and 100 control patients proposed a model for predicting the incidence of skin cancer and found that individuals with the BsmI single-nucleotide polymorphism were twice as likely to develop nonmelanoma skin cancer than those with no mutation.
  • Meaning A screening for the BsmI single-nucleotide polymorphism may emphasize the need for skin cancer prevention for individuals with this polymorphism.


Abstract
Importance Protective effects of UV-B radiation against nonmelanoma skin cancer (NMSC) are exerted via signaling mechanisms involving the vitamin D receptor (VDR). Recent studies have examined single-nucleotide polymorphisms (SNPs) in the VDR, resulting in contradictory findings as to whether these polymorphisms increase a person’s risk for NMSC.

Objective To examine whether the polymorphisms in the VDR gene are associated with the development of NMSC and the demographic characteristics of the participants.

Design, Setting, and Participants This case-control study recruited 100 individuals who received a diagnosis of and were being treated for basal cell carcinoma or squamous cell carcinoma (cases) and 100 individuals who were receiving treatment of a condition other than skin cancer (controls) at the dermatology clinics at the Kirklin Clinic of the University of Alabama at Birmingham Hospital between January 1, 2012, and December 31, 2014. All participants completed a questionnaire that solicited information on skin, hair, and eye color; skin cancer family history; and sun exposure history, such as tanning ability and number of severe sunburns experienced throughout life. Blood samples for DNA genotyping were collected from all participants.

Main Outcomes and Measures Polymorphisms in the VDR gene (ApaI, BsmI, and TaqI) were assessed to determine the association of polymorphisms with NMSC development and demographic characteristics. χ2 Analysis was used to determine whether genotype frequencies deviated significantly from Hardy-Weinberg equilibrium. Logistic regression was used to calculate odds ratios (ORs) and associated 95% CIs for the identification of factors associated with NMSC diagnosis. A model was created to predict NMSC diagnoses using known risk factors and, potentially, VDR SNPs.

Results A total of 97 cases and 100 controls were included. Of the 97 cases, 68 (70%) were men and 29 (30%) were women, with a mean (SD) age of 70 (11) years. Of the 100 controls, 46 (46%) were men and 54 (54%) were women, with a mean (SD) age of 63 (9) years. All participants self-identified as non-Hispanic white. A model including age, sex, and skin color was created to most effectively predict the incidence of skin cancer.
Risk factors that significantly increased the odds of an NMSC diagnosis were

  • light skin color (OR, 5.79 [95% CI, 2.79-11.99]),
  • greater number of severe sunburns (OR, 2.59 [95% CI, 1.31-5.10]),
  • light eye color (OR, 2.47 [95% CI, 1.30-4.67]), and
  • less of an ability to tan (OR, 2.35 [95% CI, 1.23-4.48]).

The risk factors of family history of NMSC (OR, 1.66 [95% CI, 0.90-3.07]) and light hair color (OR, 1.17 [95% CI, 0.51-2.71]) did not reach statistical significance.
Participants with the BsmI SNP were twice as likely to develop NMSC than participants with no mutation (OR, 2.04 [95% CI, 1.02-4.08]; P = .045).

Conclusions and Relevance The results of this study are especially useful in the early treatment and prevention of NMSC with chemopreventive agents (for those with the BsmI SNP). A screening for the BsmI SNP may emphasize the importance of sun protection and facilitate skin cancer prevention and, therefore, decrease the skin cancer burden.

Publisher Rents PDF for $9


Created by admin. Last Modification: Wednesday August 11, 2021 21:10:00 GMT-0000 by admin. (Version 4)