Table of contents
- Overcoming Infections Including COVID-19, by Maintaining Circulating 25(OH)D Concentrations Above 50 ng/mL
- VitaminDWiki - Is 50 ng of vitamin D too high, just right, or not enough
- VitaminDWiki - Diseases treated by high-dose Vitamin D - many studies
- 116,000 fewer IS COVID Death if everyone had been taking 50,000 IU Vitamin D - VA Nov 2022
- VitaminDWiki - COVID-19 treated by Vitamin D - studies, reports, videos
- 82+ pages have 50 ng in VitaminDWiki title
- References
- See also: Is 50 ng of Vitamin D enough to fight COVID - TrialSiteNews - Jan 2024
- There have been
7219 visits to this page
Overcoming Infections Including COVID-19, by Maintaining Circulating 25(OH)D Concentrations Above 50 ng/mL
Pathology and Laboratory Medicine Int. Vol 14 Pages 37—60, DOI https://doi.org/10.2147/PLMI.S373617
Sunil J Wimalawansa suniljw at hotmail.com
Department of Medicine, CardioMetabolic and Endocrine Institute, North Brunswick, NJ, USAHalf of the people get to 50 ng with 5,000 IU daily
Note: Virtually all get to 40 ng with 7,000 IU daily (50,000 IU weekly)The elderly and those with underlying chronic diseases (i.e., comorbidities) such as pulmonary, cardiovascular, metabolic, and renal diseases, increase their susceptibility to sepsis, including COVID-19. The SARS-CoV-2 virus damages pulmonary cells, causing acute respiratory distress syndrome (ARDS) and hypoxia. It further damages endothelial cells, altering clotting mechanisums causing intravascular hemolysis, microvascular thrombosis, and micro-embolization, contributing to the risk of death.
Approximately 75% of the immune system functions of humans depend on vitamin D and the availability of sufficient amounts of vitamin D metabolites [vitamin D and 25(OH)D] concentrations to enter immune cells from the bloodstream. Such concentrations are achievable through sun exposure, targeted food fortification programs, and adequate daily or weekly vitamin D supplements. That would allow for generating 1,25(OH)2D (non-hormonal form of calcitriol) intracellularly in peripheral target cells like immune cells. This enables immune cells’ physiological functions, including intracrine/autocrine and paracrine signaling processes. This initiates and maintains robust immune functions, such as forming antibodies and antimicrobial peptides, suppressing inflammation, and increasing the expression of anti-inflammatory and antioxidant genes, thus, strengthening immune functions. The opposite occurs in hypovitaminosis D, increasing vulnerability to infections and dying from it. Therefore, governments should make the population sufficient with immunoceuticals—micronutrients, especially vitamin D, and other micronutrients: the most cost-effective intervention to keep the population healthy. The cost of such interventions are minuscule compared to the expenses related to increased hospitalizations and premature deaths. Supposed such a program was implemented in mid-2020 as the author proposed, we estimated that 50% of hospitalizations (and the associated healthcare costs) and a third of deaths from COVID could have been prevented. Described herein are cost-effective strategies using vitamin D to achieve and sustain serum D3 and 25(OH)D concentrations crucial for maintaining a robust immune system, improving general health, minimizing disease severities and deaths, and reducing healthcare costs.Why is It Necessary to Target Serum 25(OH)D Concentration Above 50 ng/mL?
Good public health policies aim to minimize diseases, their complications, and the spread, cost-effectively. However, during the COVID pandemic, some of these principles were ignored by leading health authorities and governments, which led to chaos. Those who develop symptomatic disease and complications and die from infections have feeble immune systems. Therefore, maintaining a robust immune system is not only essential to protect the population during infectious pandemics like SARS-CoV-2 but also the most cost-effective way to control it.
Convincing evidence has been published that rapidly raising and maintaining vitamin D and/or serum 25(OH)D concentrations above the minimum required level of 50 ng/mL (125 nmol/L) would minimize infections-related adverse clinical outcomes.46-48 Therefore, in such situations, in addition to preventing disease spread (eg, wearing effective face masks and social distancing), a broader goal should be to maintain mentioned circulatory 25(OH)D concentration in the population that would significantly improve clinical outcomes, including fewer hospitalizations and deaths, while mimizing healthcare costs.50
If the goal is to achieve a population minimum serum 25(OH)D concentration of “40” ng/mL, 60% of people will be below the required serum 25(OH)D concentration of 50 ng/mL. Whereas, if the targeted minimum concentration is set for 30 ng/mL, more than 80% of the population will have serum 25(OH)D concentration below 50 ng/mL, due to the scatter of representation in the community. Consequently, such approaches are ineffective and unwise especially during infectious epidemics and pandemics. It would fail to maintain a robust immunity in the population that needs to overcome infections. This is a crucial reason for the community spread of SARS-CoV-2, its, severe complications and deaths from the current COVID pandemic.
Therefore, keeping individuals or the populations’ serum 25(OH)D concentration below 50 ng/mL as recommended by some as the lower limit, is unwise and undesirable.48 During infectious epidemics or pandemics, there is no scientific justification for maintaining minimum serum 25(OH)D concentrations at 20, 30, or even 40 ng/mL, suggested as precautionary (and theoretical) principles by some. It would lead to serum 25(OH)D concentration of over two thirds of the population under the minimum necessary level of 50 ng/mL—disadvantage them by contracting infectious pathogens—both bacteria and viruses—therefore, it is counterproductive. Such a policy would enhance the spread of the viral illness, increase complications, hospitalizations, deaths, and associated costs.
 Download the PDF from VitaminDWiki
VitaminDWiki - Is 50 ng of vitamin D too high, just right, or not enough
which contains
Vitamin D Treats 150 ng Multiple Sclerosis * 80 ng Cluster Headache *
Reduced office visits by 4X *70 ng Sleep * 60 ng Breast Cancer death reduced 60%
Preeclampsia RCT50 ng COVID-19
T1 Diabetes
Fertility
Psoriasis
Infections Review
Infection after surgery40 ng Breast Cancer 65% lower risk
Depression
ACL recovery
Hypertension
Asthma?30 ng Rickets * Evolution of experiments with patients, often also need co-factors
VitaminDWiki - Diseases treated by high-dose Vitamin D - many studies
116,000 fewer IS COVID Death if everyone had been taking 50,000 IU Vitamin D - VA Nov 2022
- COVID US deaths: 116,000 fewer if everyone had been taking Vitamin D – Campbell transcript Nov 2022
- Note: Weekly is Better than Daily: high concentrations get over the Vitamin D Receptor barrier
VitaminDWiki - COVID-19 treated by Vitamin D - studies, reports, videos
As of March 31, 2024, the VitaminDWiki COVID page had: trial results, meta-analyses and reviews, Mortality studies see related: Governments, HealthProblems, Hospitals, Dark Skins, All 26 COVID risk factors are associated with low Vit D, Fight COVID-19 with 50K Vit D weekly Vaccines Take lots of Vitamin D at first signs of COVID 166 COVID Clinical Trials using Vitamin D (Aug 2023) Prevent a COVID death: 9 dollars of Vitamin D or 900,000 dollars of vaccine - Aug 2023
5 most-recently changed Virus entries
82+ pages have 50 ng in VitaminDWiki title
This list is automatically updated
References
- Wimalawansa SJ. Global epidemic of coronavirus—COVID-19: what can we do to minimize risks? European J. Biomed Pharma Sci. 2020;7 (3) :432-438.
- Wang L, Berger NA, Kaelber DC, et al. Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron. medRxiv. 2022. doi:10.1101/2021.12.30.21268495
- Qi ZH, Bei ZF, Teng S, et al. Clinical features of 19 children infected with the Omicron variant of severe acute respiratory syndrome coronavirus 2 in Hangzhou. China Zhongguo Dang Dai Er Ke Za Zhi. 2022;24(10):1092-1097.
- Wang X, Chang H, Tian H, et al. Epidemiological and clinical features of SARS-CoV-2 infection in children during the outbreak of Omicron variant in Shanghai, March 7- 31,2022. Influenza Other Respir Viruses. 2022;16(6):1059-1065. doi:10.1111/irv. 13044
- Suryawanshi RK, Chen IP, Ma T, et al. Limited cross-variant immunity after infection with the SARS-CoV-2 Omicron variant without vaccination. medRxiv. 2022. doi:10.1101/2022.01.13.22269243
- Ledford H. How severe are Omicron infections? Nature. 2021;600(7890):577-578. doi:10.1038/d41586-021-03794-8
- Torjesen I. Covid-19: omicron variant is linked to steep rise in hospital admissions of very young children. BMJ. 2022;376:o110. doi:10.1136/bmj.o110
- Chen KK, Huang DT, Huang LM. SARS-CoV-2 variants - evolution, Spike protein, and vaccines. Biomed J. 2022;45:573-579. doi:10.1016/j. bj.2022.04.006
- Shrestha LB, Foster C, Rawlinson W, et al. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: implications for immune escape and transmission. Rev Med Virol. 2022;32(5):e2381. doi:10.1002/rmv.2381
- Zhou H, Dcosta BM, Landau NR, et al. Resistance of SARS-CoV-2 Omicron BA.1 and BA.2 Variants to vaccine-elicited sera and therapeutic monoclonal antibodies. Viruses. 2022;14(6):1334. doi:10.3390/v14061334
- Armitage R, Nellums LB. COVID-19 and the consequences of isolating the elderly. Lancet Public Health. 2020;5(5):e256. doi:10.1016/S2468- 2667(20)30061-X
- Reyes-Ortiz CA, Williams C, Westphal C. Comparison of early versus late palliative care consultation in end-of-life care for the hospitalized frail elderly patients. Am J Hosp Palliat Care. 2015;32(5):516-520. doi:10.1177/1049909114530183
- SeyedAlinaghi S, Mehrtak M, MohsseniPour M, et al. Genetic susceptibility of COVID-19: a systematic review of current evidence. Eur J Med Res. 2021;26(1):46. doi:10.1186/s40001-021-00516-8
- Barrea LV, Grant L, Frias-Toral WB, et al. Vitamin D: a role also in long COVID-19? Nutrients. 2022;14:1625. doi:10.3390/nu14081625
- Pretorius E, Venter C, Laubscher GJ, et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc Diabetol. 2022;21(1):148. doi:10.1186/s12933-022-01579-5
- Thapa Magar S, Lokhandwala HI, Batool S, et al. A Systematic Review of neurological manifestations of COVID-19. Cureus. 2022;14(8): e28309. doi:10.7759/cureus.28309
- Sanabria-Diaz G, Etter MM, Melie-Garcia L, et al. Brain cortical alterations in COVID-19 patients with neurological symptoms. Front Neurosci. 2022;16:992165. doi:10.3389/fnins.2022.992165
- Boucher BJ. Vitamin D deficiency in British South Asians, a persistent but avoidable problem associated with many health risks (including rickets, T2DM, CVD, COVID-19 and pregnancy complications): the case for correcting this deficiency. Endocr Connect. 2022;11(12). doi:10.1530/EC-22-0234
- GAO-21-319. Operation warp speed: accelerated COVID-19 vaccine development status and efforts to address manufacturing challenges. Accelerated COVID-19 Vaccine Development Status and Efforts to Address Manufacturing Challenges. U.S. GAO; 2020. Available from: www.gao.gov/products/gao-21-319. Accessed November 29, 2022.
- Wolfl-Duchek M, Bergmann F, Jorda A, et al. Sensitivity and specificity of SARS-CoV-2 rapid antigen detection tests using oral, anterior nasal, and nasopharyngeal swabs: a diagnostic accuracy study. Microbiol Spectr. 2022;10(1):e0202921. doi:10.1128/spectrum.02029-21
- Zhan Z, Li J, Cheng ZJ. Rapid antigen test combine with nucleic acid detection: a better strategy for COVID-19 screening at points of entry. J Epidemiol Glob Health. 2022;12(1):13-15. doi:10.1007/s44197-021-00030-4
- Islamoska S, Petersen JH, Benfield T, et al. Socioeconomic and demographic risk factors in COVID-19 hospitalization among immigrants and ethnic minorities. Eur J Public Health. 2022;32(2):302-310. doi:10.1093/eurpub/ckab186
- Aldridge RW, Lewer D, Katikireddi SV, et al. Black, Asian and Minority Ethnic groups in England are at increased risk of death from COVID-19: indirect standardisation of NHS mortality data. Wellcome Open Res. 2020;5:88. doi:10.12688/wellcomeopenres.15922.2
- Holmes L, Enwere M, Williams J, et al. Black-white risk differentials in COVID-19 (SARS-COV2) transmission, mortality and case fatality in the United States: translational epidemiologic perspective and Challenges. Int J Environ Res Public Health. 2020;17(12):4322. doi:10.3390/ ijerph17124322
- Roizen JD, Long C, Casella A, et al. Obesity decreases hepatic 25-hydroxylase activity causing low serum 25-hydroxyvitamin D. J Bone Miner Res. 2019;34(6):1068-1073. doi:10.1002/jbmr.3686
- Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690-693. doi:10.1093/ ajcn/72.3.690
- Walsh JB, McCartney DM, Laird É, et al. Understanding a low vitamin D state in the context of COVID-19. Front Pharmacol. 2022;13:835480. doi:10.3389/fphar.2022.835480
- Phommasone K, Xaiyaphet X, Garcia-Rivera JA, et al. A case-control study of the causes of acute respiratory infection among hospitalized patients in Northeastern Laos. Sci Rep. 2022;12(1):939. doi:10.1038/s41598-022-04816-9
- Ekwaru JP, Zwicker JD, Holick MF, et al. The importance of body weight for the dose response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLoS One. 2014;9(11):e111265. doi:10.1371/journal.pone.0111265
- Wimalawansa SJ. Biology of Vitamin D. J Steroids Horm Sci. 2019;198(1):1-8.
- Vieth R. Vitamin D supplementation: cholecalciferol, calcifediol, and calcitriol. Eur J Clin Nutr. 2020;74(11):1493-1497. doi:10.1038/s41430- 020-0697-1
- Tieu S, Charchoglyan A, Lauri Wagter-Lesperance LW, et al. Immunoceuticals: harnessing their immunomodulatory potential to promote health and wellness. Nutrients. 2022;14:4075. doi:10.3390/nu14194075
- Pludowski P, Holick MF, Grant WB, et al. Vitamin D supplementation guidelines. J SteroidBiochem Mol Biol. 2018;175:125-135. doi:10.1016/ j.jsbmb.2017.01.021
- McCartney DM, Byrne DG. Optimisation of vitamin D status for enhanced immuno-protection against COVID-19. Ir Med J. 2020;113(4):58.
- Zhou YF, Luo BA, Qin LL. The association between vitamin D deficiency and community-acquired pneumonia: a meta-analysis of observational studies. Medicine. 2019;98(38):e17252. doi:10.1097/MD.0000000000017252
- Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J Infect Public Health. 2020;13(10):1373-1380. doi:10.1016/j.jiph.2020.06.021
- Borsche L, Glauner B, von Mendel J. COVID-19 mortality risk correlates inversely with vitamin D3 Status, and a mortality rate close to zero could theoretically be achieved at 50 ng/mL 25(OH)D3: results of a systematic review and meta-analysis. Nutrients. 2021;13(10):3596. doi:10.3390/nu13103596
- Luxwolda MF, et al., Vitamin D status indicators in indigenous populations in East Africa. Eur J Nutr, 2013. 52(3): p. 1115-25.
- Luxwolda MF, Kema KR, IP JDBD, Muskiet FA, Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. Br J Nutr., 2012: p. 1-5
- Gibbons JB, et al., Association between vitamin D supplementation and COVID-19 infection and mortality. Sci Rep, 2022. 12(1): p. 193
- Jayawardena R, Jeyakumar DT, Francis TV, et al. Impact of the vitamin D deficiency on COVID-19 infection and mortality in Asian countries. Diabetes Metab Syndr. 2021;15(3):757-764. doi:10.1016/j.dsx.2021.03.006
- Castillo EM, Entrenas Costa LM, Vaquero Barrios JM, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020;203:105751. doi:10.1016/j.jsbmb.2020.105751
- Wimalawansa SJ, Polonowita A Boosting immunity with vitamin D for preventing complications and deaths from COVID-19. in COVID 19: impact, mitigation, opportunities and building resilience “From adversity to serendipity”, perspectives of global relevance based on research, experience and successes in combating COVID-19 in Sri Lanka. Colombo, Sri Lanka: National Science Foundation, Sri Lanka; 2021.
- Quraishi SA, Litonjua AA, Moromizato T, et al. Association between prehospital vitamin D status and hospital-acquired bloodstream infections. Am J Clin Nutr. 2013;98(4):952-959. doi:10.3945/ajcn.113.058909
- Carter SJ, Baranauskas MN, Fly AD. Considerations for obesity, vitamin D, and physical activity amidst the COVID-19 pandemic. Obesity. 2020;28:1176-1177. doi:10.1002/oby.22838
- DrorI A, MorozovI N, Daoud A, et al. Pre-infection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illness. PLoS One. 2022;17:1-18.
- Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID-19-A systematic review of current evidence. Ecancermedical Sci. 2020;14:1022. doi:10.3332/ecancer.2020.1022
- Bishop E, Ismailova A, Dimeloe S, et al. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory. JBMR Plus. 2020;5:e10405.
- Cao Z, Wu Y, Faucon E, et al. SARS-CoV-2 & Covid-19: key-roles of the ‘renin-angiotensin’ system/ vitamin D impacting drug and vaccine developments. Infect Disord Drug Targets. 2020;20(3):348-349. doi:10.2174/1871526520999200505174704
- Czaja AJ. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis. World J Gastroenterol. 2016;22(42):9257-9278. doi:10.3748/wjg.v22.i42.9257
- Jin D, Wu S, Zhang Y-G, et al. Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin Ther. 2015;37(5):996-1009 e7. doi:10.1016/j.clinthera.2015.04.004
- Laplana M, Royo JL, Fibla J. Vitamin D Receptor polymorphisms and risk of enveloped virus infection: a meta-analysis. Gene. 2018;678:384-394. doi:10.1016/j.gene.2018.08.017
- Platitsyna NG, Bolotnova TV. Vitamin D deficiency as a risk factor for chronic non-infectious diseases. Adv Gerontol. 2017;30(6):873-879.
- Pletz MW, Terkamp C, Schumacher U, et al. Vitamin D deficiency in community-acquired pneumonia: low levels of 1,25(OH)2 D are associated with disease severity. Respir Res. 2014;15:53. doi:10.1186/1465-9921-15-53
- Ginde AA, Mansbach JM, Camargo CA. Vitamin D, respiratory infections, and asthma. Curr Allergy Asthma Rep. 2009;9(1):81-87. doi:10.1007/s11882-009-0012-7
- Ianevski A, Zusinaite E, Shtaida N, et al. Low temperature and low UV indexes correlated with peaks of influenza virus activity in Northern Europe during 2010-2018. Viruses. 2019;11(3):207. doi:10.3390/v11030207
- Imai CM, Halldorsson TI, Eiriksdottir G, et al. Depression and serum 25-hydroxyvitamin D in older adults living at northern latitudes - AGES-Reykjavik Study. J Nutr Sci. 2015;4:e37. doi:10.1017/jns.2015.27
- Devaraj S, Jialal G, Cook T, et al. Low vitamin D levels in Northern American adults with the metabolic syndrome. Horm Metab Res. 2011;43 (1):72-74. doi:10.1055/s-0030-1268485
- Eroglu C, Demir F, Erge D, et al. The relation between serum vitamin D levels, viral infections and severity of attacks in children with recurrent wheezing. Allergol Immunopathol. 2019;47(6):591-597. doi:10.1016/j.aller.2019.05.002
- Arihiro S, Nakashima A, Matsuoka M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza and upper respiratory infection in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2019;25(6):1088-1095. doi:10.1093/ibd/izy346
- Jolliffe DA, Greiller CL, Mein CA, et al. Vitamin D receptor genotype influences risk of upper respiratory infection. Br J Nutr. 2018;120 (8):891-900. doi:10.1017/S000711451800209X
- Reichrath J, Saternus R, Vogt T. Challenge and perspective: the relevance of ultraviolet (UV) radiation and the vitamin D endocrine system (VDES) for psoriasis and other inflammatory skin diseases. Photochem Photobiol Sci. 2017;16(3):433-444. doi:10.1039/c6pp00280c
- Saraiva GL, Cendoroglo MS, Ramos LR, et al. Influence of ultraviolet radiation on the production of 25 hydroxyvitamin D in the elderly population in the city of Sao Paulo (23 degrees 34’S), Brazil. Osteoporos Int. 2005;16(12):1649-1654. doi:10.1007/s00198-005-1895-3
- Zdrenghea MT, Makrinioti H, Bagacean C, et al. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017;27(1):e1909. doi:10.1002/rmv.1909
- Morris SK, Pell LG, Rahman MZ, et al. Maternal vitamin D supplementation during pregnancy and lactation to prevent acute respiratory infections in infancy in Dhaka, Bangladesh (MDARI trial): protocol for a prospective cohort study nested within a randomized controlled trial. BMC Pregnancy Childbirth. 2016;16(1):309. doi:10.1186/s12884-016-1103-9
- Sabatier I, Chabrier S, Brun A, et al. Stroke by carotid artery complete occlusion in Kawasaki disease: case report and review of literature. Pediatr Neurol. 2013;49(6):469-473. doi:10.1016/j.pediatmeurol.2013.08.011
- Di Filippo L, Allora A, Doga M, et al. Vitamin D levels are associated with blood glucose and BMI in COVID-19 patients, predicting disease severity. J Clin Endocrinol Metab. 2022;107(1):e348-e360. doi:10.1210/clinem/dgab599
- Di Filippo L, De Lorenzo R, Giustina A, et al. Vitamin D in osteosarcopenic obesity. Nutrients. 2022;14(9):1816. doi:10.3390/nu14091816
- Migliaccio S, Di Nisio A, Mele C, et al. Obesity and hypovitaminosis D: causality or casualty? Int J Obes Suppl. 2019;9(1):20-31. doi:10.1038/ s41367-019-0010-8
- Maddaloni E. Vitamin D and diabetes mellitus. Front Horm Res. 2018;50:161-176.
- Cashman KD, Ritz C, Carlin A, et al. Vitamin D biomarkers for Dietary Reference Intake development in children: a systematic review and meta-analysis. Am J Clin Nutr. 2022;115(2):544-558. doi:10.1093/ajcn/nqab357
- Cashman KD, FitzGerald AP, Viljakainen HT, et al. Estimation of the dietary requirement for vitamin D in healthy adolescent white girls. Am J Clin Nutr. 2011;93(3):549-555. doi:10.3945/ajcn.110.006577
- Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020;287(17):3693-3702. doi:10.1111/febs.15495
- Grant WB, Al Anouti F, Moukayed M. Targeted 25-hydroxyvitamin D concentration measurements and vitamin D3 supplementation can have important patient and public health benefits. Eur J Clin Nutr. 2020;74(3):366-376. doi:10.1038/s41430-020-0564-0
- Kazemi A, Mohammadi V, Aghababaee SA, Golzarand M, Clark CCT, Babajafari S. Association of vitamin D status with SARS-CoV-2 infection or COVID-19 severity: a systematic review and meta-analysis. Adv Nutr. 2021;00(p):1-23.
- Wimalawansa SJ. Controlling COVID-19 pandemic with cholecalciferol. Heathcare Res. 2020;5(1):155-165.
- Wimalawansa SJ. Oral calcifediol repletes blood vitamin D concentration within 4 hours; 2021. Available from: https://www.linkedin.com/ posts/sunilWimalawansa_oral-calcifediol-repletes-blood-vitamin-activity-6803351558714204160-dtnd. Accessed May 25, 2022.
- Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311 (5768):1770-1773. doi:10.1126/science.1123933
- Vieth R. Why “Vitamin D” is not a hormone, and not a synonym for 1,25-dihydroxy-vitamin D, its analogs or deltanoids. J Steroid Biochem Mol Biol. 2004;89(1-5):571-573. doi:10.1016/j.jsbmb.2004.03.037
- Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn Schmiedebergs Arch Pharmacol. 2020;393 (7):1157-1160. doi:10.1007/s00210-020-01911-4
- Kaufman HW, Niles JK, Kroll MH, et al. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One. 2020;15(9):e0239252. doi:10.1371/journal.pone.0239252
- Alexander J, Tinkov A, Strand TA, et al. Early nutritional interventions with zinc, selenium and vitamin D for raising anti-viral resistance against progressive COVID-19. Nutrients. 2020;12(8):2358. doi:10.3390/nu12082358
- Bakaloudi DR, Chourdakis M. A critical update on the role of mild and serious vitamin D deficiency prevalence and the COVID-19 epidemic in Europe. Nutrition. 2022;93:111441. doi:10.1016/j.nut.2021.111441
- Akbari AR, Khan M, Adeboye W, et al. Ethnicity as a risk factor for vitamin D deficiency and undesirable COVID-19 outcomes. Rev Med Virol. 2021;32:e2291. doi:10.1002/rmv.2291
- Vanegas-Cedillo PE, Bello-Chavolla OY, Ramirez-Pedraza N, et al. Serum vitamin D levels are associated with Increased COVID-19 severity and mortality independent of whole-body and visceral adiposity. Front Nutr. 2022;9:813485. doi:10.3389/fnut.2022.813485
- DiNicolantonio JJ, O’Keefe JH. Magnesium and vitamin D deficiency as a potential cause of Immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19 patients. Mo Med. 2021;118(1):68-73. doi:10.1101/2020.04.24.20075838
- Kumar P, Kumar M, Bedi O, et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology. 2021;29 (4):1001-1016. doi:10.1007/s10787-021-00826-7
- Kumar R, Rathi H, Haq A, Wimalawansa SJ, Sharma A. Putative roles of vitamin D in modulating immune response and immunopathology associated with COVID-19. Virus Res. 2021;292:198235. doi:10.1016/j.virusres.2020.198235
- D’Avolio A, Avataneo V, Manca A, et al. 25-hydroxyvitamin D concentrations are Lower in patients with positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. doi:10.3390/nu12051359
- Sims JT, et al. Characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in COVID-19. J Allergy Clin Immunol 2020;147:107-111.
- Hojyo S, Uchida M, Tanaka K, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen. 2020;40:37. doi:10.1186/ s41232-020-00146-3
- Iannaccone G, Gul F, Ram P, et al. Weathering the cytokine storm in COVID-19: therapeutic implications. Cardiorenal Med. 2020;10:1-11. doi:10.1159/000503919
- Amaya-Mejia AS, O’Farrill-Romanillos PM, Galindo-Pacheco LV, et al. Vitamin D deficiency in patients with common variable immunodeficiency, with autoimmune diseases and bronchiectasis. Rev Alerg Mex. 2013;60(3):110-116.
- Broder AR, Tobin JN, Putterman C. Disease-specific definitions of vitamin D deficiency need to be established in autoimmune and non-autoimmune chronic diseases: a retrospective comparison of three chronic diseases. Arthritis Res Ther. 2010;12(5):R191. doi:10.1186/ar3161
- Kurylowicz A, Bednarczuk T, Nauman J. The influence of vitamin D deficiency on cancers and autoimmune diseases development. Endokrynol Pol. 2007;58(2):140-152.
- Wimalawansa SJ. COVID-19: evolution and prevention. Trends Telemed E Health. 2020;2(3):1-5.
- Antal AS, Dombrowski Y, Koglin S, et al. Impact of vitamin D3 on cutaneous immunity and antimicrobial peptide expression. DermatoEndocrinol. 2011;3(1):18-22. doi:10.4161/derm.3.1.14616
- Gibson CC, Davis CT, Zhu W, et al. Dietary vitamin D and its metabolites non-genomically stabilize the endothelium. PLoS One. 2015;10(10): e0140370. doi:10.1371/journal.pone.0140370
- Aloia JF, Li-Ng M. Re: epidemic influenza and vitamin D. Epidemiol Infect. 2007;135(7):1095-1096. doi:10.1017/S0950268807008308
- Fleming DM, Elliot AJ. Epidemic influenza and vitamin D. Epidemiol Infect. 2007;135(7):1091-1092. doi:10.1017/S0950268807008291
- Moromizato T, Litonjua AA, Braun AB, et al. Association of low serum 25-hydroxyvitamin D levels and sepsis in the critically ill. Crit Care Med. 2014;42(1):97-107. doi:10.1097/CCM.0b013e31829eb7af
- Hanff TC, Harhay MO, Brown TS, et al. Is There an association between COVID-19 mortality and the renin-angiotensin system-a call for epidemiologic investigations. Clin Infect Dis. 2020;71:870-874. doi:10.1093/cid/ciaa329
- Zhang P, Zhu L, Cai J, et al. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020;126:1671-1681.
- Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280. doi:10.1016/j.cell.2020.02.052
- Danser AHJ, Epstein M, Batlle D. Renin-angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon renin-angiotensin system blockers. Hypertension. 2020;75:1382-1385. doi:10.1161/HYPERTENSIONAHA.120.15082
- Diaz JH. Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J Travel Med. 2020;27(3). doi:10.1093/jtm/taaa041
- Lim H, Kim SE, Lee YH, et al. Immunogenicity of candidate SARS-CoV-2 DNA vaccines based on the spike protein. Virology. 2022;573:118-123. doi:10.1016/j.virol.2022.06.006
- Almehdi AM, Khoder G, Alchakee AS, et al. SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies. Infection. 2021;49 (4) :855-876. doi:10.1007/s15010-021-01677-8
- Kong J, Zhu X, Shi Y, et al. VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system. Mol Endocrinol. 2013;27(12):2116-2125. doi:10.1210/me.2013-1146
- Liu Z, Xiao X, Wei X, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol 2020;92:595-601.
- Tomaschitz A, Pilz S, Ritz E, et al. Independent association between 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D and the renin-angiotensin system: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Chim Acta. 2010;411(17-18):1354-1360. doi:10.1016/j. cca.2010.05.037
- Xu J, Sriramula S, Xia H, et al. Clinical relevance and role of neuronal AT 1 receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension. Circ Res. 2017;121(1):43-55. doi:10.1161/CIRCRESAHA.116.310509
- Xu J, Yang J, Chen J, et al. Vitamin D alleviates lipopolysaccharide induced acute lung injury via regulation of the renin angiotensin system. Mol Med Rep. 2017;16(5):7432-7438. doi:10.3892/mmr.2017.7546
- Radujkovic A, Hippchen T, Tiwari-Heckler S, et al. Vitamin D deficiency and outcome of COVID-19 patients. Nutrients. 2020;12(9):2757. doi:10.3390/nu12092757
- Wimalawansa SJ. Fighting against COVID-19: boosting the immunity with micronutrients, stress reduction, physical activity, and vitamin D. Nutr Food Sci. 2020;3(126):1-4.
- Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Ann Transl Med. 2016;4(21):421. doi:10.21037/atm.2016.11.03
- Yuan W, Pan W, Kong J, et al. 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem. 2007;282(41):29821-29830. doi:10.1074/jbc.M705495200
- Wimalawansa SJ. ACE inhibitors and angiotensin receptor blockers reduce the complications associated with COVID-19 infection. World J Pharma Res. 2021;10(3):2579-2600.
- Entrenas castillo M, Entrenas Costa LM, Vaquero Barrios JM, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020;203:105751.
- McGregor E, Kazemian M, Afzali B, et al. An autocrine Vitamin D-driven Th1 shutdown program can be exploited for COVID-19; 2020. Available from: https://www.biorxiv.org/content/10.1101/2020.07.18.210161v1. Accessed November 29, 2022.
- McGregor TB, Sener A, Yetzer K, et al. The impact of COVID-19 on the Canadian Kidney Paired Donation program: an opportunity for universal implementation of kidney shipping. Can J Surg. 2020;63(5):E451-E453. doi:10.1503/cjs.012620
- Wallis G, Siracusa F, Blank M, et al. Experience of a novel community testing programme for COVID-19 in London: lessons learnt. Clin Med. 2020;20(5):e165-e169. doi:10.7861/clinmed.2020-0436
- Walter LA, McGregor AJ. Sex- and Gender-specific Observations and Implications for COVID-19. West J Emerg Med. 2020;21(3):507-509. doi:10.5811/westjem.2020.4.47536
- Stagi S. Severe vitamin D deficiency in patients with Kawasaki disease: a potential role in the risk to develop heart vascular abnormalities? Clin Rheumatol. 2016;35(7):1865-1872. doi:10.1007/s10067-015-2970-6
- Kirkham FJ, Zafeiriou D, Howe D, et al. Fetal stroke and cerebrovascular disease: advances in understanding from lenticulostriate and venous imaging, alloimmune thrombocytopaenia and monochorionic twins. Eur J Paediatr Neurol. 2018;22(6):989-1005. doi:10.1016/j.ejpn.2018.08.008
- Kaparianos A, Argyropoulou E. Local renin-angiotensin II systems, angiotensin-converting enzyme and its homologue ACE2: their potential role in the pathogenesis of chronic obstructive pulmonary diseases, pulmonary hypertension and acute respiratory distress syndrome. Curr Med Chem. 2011;18(23):3506-3515. doi:10.2174/092986711796642562
- Hughes DA, Norton R, Aloia JF, Li-ng M. Vitamin D and respiratory health. Clin Exp Immunol 2009;158(1):20-25. doi:10.1111/j.1365- 2249.2009.04001.x
- Singh S, Kaur R, Singh RK. Revisiting the role of vitamin D levels in the prevention of COVID-19 infection and mortality in European countries post infections peak. Aging Clin Exp Res. 2020;32(8):1609-1612. doi:10.1007/s40520-020-01619-8
- Ma W, Nguyen LH, Yue Y, et al. Associations between predicted vitamin D status, vitamin D intake, and risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) severity. Am J Clin Nutr. 2022;115(4):1123-1133. doi:10.1093/ajcn/nqab389
- D’Ecclesiis O, Gavioli C, Martinoli C, et al. Vitamin D and SARS-CoV2 infection, severity and mortality: a systematic review and meta-analysis. PLoS One. 2022;17(7):e0268396. doi:10.1371/journal.pone.0268396
- Chiodini I, Gatti D, Soranna D, et al. Vitamin D status and SARS-CoV-2 infection and COVID-19 clinical outcomes. Front Public Health. 2021;9:736665. doi:10.3389/fpubh.2021.736665
- Akbar MR, Wibowo A, Pranata R, et al. Low serum 25-hydroxyvitamin D (vitamin D) level Is associated with susceptibility to COVID-19, severity, and mortality: a systematic review and meta-analysis. Front Nutr. 2021;8:660420. doi:10.3389/fnut.2021.660420
- Santaolalla A, Beckmann K, Kibaru J, et al. Association between vitamin D and novel SARS-CoV-2 respiratory dysfunction - a scoping review of current evidence and its implication for COVID-19 pandemic. Front Physiol. 2020;11:564387. doi:10.3389/fphys.2020.564387
- Dancer RC, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015;70(7):617-624. doi:10.1136/thoraxjnl-2014-206680
- McCartney DM. Vitamin D and SARS-CoV-2 infection-evolution of evidence supporting clinical practice and policy development: a position statement from the Covit-D Consortium. Ir J Med Sci. 2021;190(3):1253-1265.
- Arabi YM, Fowler R, Hayden FG. Critical care management of adults with community-acquired severe respiratory viral infection. Intensive Care Med. 2020;46(2):315-328. doi:10.1007/s00134-020-05943-5
- Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. doi:10.1136/bmj.i6583
- Biesalski HK, Aggett PJ, Anton R, et al. 26th Hohenheim consensus conference, September 11, 2010 scientific substantiation of health claims: evidence-based nutrition. Nutrition. 2011;27(10 Suppl):S1-S20. doi:10.1016/j.nut.2011.04.002
- Tsai F, Coyle WJ. The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep. 2009;11(4):307-313. doi:10.1007/ s11894-009-0045-z
- Veugelers PJ, Pham TM, Ekwaru JP. Optimal vitamin D supplementation doses that minimize the risk for both low and high serum 25-hydroxyvitamin D concentrations in the general population. Nutrients. 2015;7(12):10189-10208. doi:10.3390/nu7125527
- Huang Z, You T. Personalise vitamin D3 using physiologically based pharmacokinetic modelling. CPT Pharmacometrics Syst Pharmacol. 2021;10(7):723-734. doi:10.1002/psp4.12640
- McKenna MJ, Lyons OC, Flynn MA, et al. COVID-19 pandemic and vitamin D: rising trends in status and in daily amounts of vitamin D provided by supplements. BMJ Open. 2022;12(8):e059477. doi:10.1136/bmjopen-2021-059477
- Hopefl R, Ben-Eltriki M, Deb S. Association between vitamin D levels and inflammatory markers in COVID-19 patients: a meta-analysis of observational studies. JPharm Pharm Sci. 2022;25:124-136. doi:10.18433/jpps32518
- Rhodes JM, Subramanian S, Laird E, et al. Perspective: vitamin D deficiency and COVID-19 severity - plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2, and thrombosis (R1). J Intern Med. 2020;289:97-115. doi:10.1111/joim.13149
- Procter BC, Ross C, Pickard V, et al. Clinical outcomes after early ambulatory multidrug therapy for high-risk SARS-CoV-2 (COVID-19) infection. Rev Cardiovasc Med. 2020;21(4):611-614.
- Gunn J, Hill MM, Cotten BM, et al. An analysis of biomarkers in patients with chronic pain. Pain Physician. 2020;23(1):E41-E49. doi:10.36076/ppj.2020/23/E41
- Chen S, Liu G, Chen J, et al. Ponatinib protects mice from lethal influenza infection by suppressing cytokine storm. Front Immunol 2019;10:1393. doi:10.3389/fimmu.2019.01393
See also: Is 50 ng of Vitamin D enough to fight COVID - TrialSiteNews - Jan 2024
There have been
7219 visits to this page Fight infections such as COVID with 50 ng of Vitamin D – Sunil Dec 20226858 visitors, last modified 31 Jan, 2024, This page is in the following categories (# of items in each category)Attached files
ID Name Uploaded Size Downloads 18991 half get to 50 ng if 5,000 IU.jpg admin 16 Dec, 2022 70.12 Kb 523 18990 Risk ratio.jpg admin 16 Dec, 2022 96.71 Kb 111 18989 D vs D.jpg admin 16 Dec, 2022 70.56 Kb 429 18988 Sunil F1.jpg admin 16 Dec, 2022 77.88 Kb 426 18987 ToC Sunil.jpg admin 16 Dec, 2022 75.41 Kb 453 18986 Sunil 50 ng_CompressPdf.pdf admin 16 Dec, 2022 908.45 Kb 261 - COVID US deaths: 116,000 fewer if everyone had been taking Vitamin D – Campbell transcript Nov 2022
- There have been