Oral vitamin D supplementation induces transcriptomic changes in rectal mucosa that are linked to anti-tumour effects
BMC Med. 2021 Aug 3;19(1):174. doi: 10.1186/s12916-021-02044-y
P G Vaughan-Shaw 1 2, G Grimes 1 2, J P Blackmur 1 2, M Timofeeva 3 4, M Walker 1 2, L Y Ooi 1 5, Victoria Svinti 1 2, Kevin Donnelly 1 2, F V N Din 1 2, S M Farrington 1 2, M G Dunlop 6 7
Note: 12 weeks is not long enough for everyone to plateau at the new vitamin D level
If the study had done one or more of the following, far more people would have benefitted
- Had the trial last 20 weeks, not just 12
- Used large daily dosing - say 6,000 IU
- Started with a loading dose – say 50,000 IU daily for the first week
- Added a daily Vitamin D receptor (such as Resveratrol or Questetin) to increase the vitamin D getting to cells
Cancer - Colon category starts with the following
- Cancer - Colon category listing has
145 items - 16 factors increase the risk of early-onset colorectal cancer, only vitamin D decreases the risk – meta-analysis May 2023
- 25+ Colon Cancer meta-analyses
- Colon cancer risk increases 30X if you have the worst vitamin D receptor mutation – Jan 2021
- Cancer - After diagnosis category listing has
113 items along with related searches - see also:
Overview Cancer-Colon and vitamin D. Overview Cancer and vitamin D Overview Gut and vitamin D Cancer and Vitamin D - many studiesVitaminDWike pages in BOTH Colon Cancer and Genetics categories
- Colon Cancer protects itself by changing the VDR and CYP3A4 genes – Dec 2022
- Colorectal Cancer risk increases when genes reduce the vitamin D levels – Aug 2019
- Many Ashkenazi Jewish diseases associated with low vitamin D or poor Vit D genes
- Colon cancer 30 percent more likely if problems with Vitamin D genes CYP24A1 or CYP27B1 – Nov 2015
- Colorectal cancer – need more vitamin D if you have certain genes – Aug 2013
- Colon cancer more likely in blacks due to differences in Vitamin D genes (wonder if more Vitamin D would help) – May 2014
- Gene variations were not associated with risk of colorectal cancer in Czech – June 2010
VitaminDWike pages in BOTH Colon Cancer and Vitamin D Receptor categories
- Colon Cancer protects itself by changing the VDR and CYP3A4 genes – Dec 2022
- 14th activator of the Vitamin D Receptor – Butyrate (from gut bacteria, or supplement)
- Colon cancer risk increases 30X if you have the worst vitamin D receptor mutation – Jan 2021
- Book: Sunlight, UV, Vitamin D and Receptor, Skin and other Cancers - Dec 2020
- Colorectal Cancer Patients 2.4 X more likely to have poor Vitamin D receptors (less D to cells) – April 2020
- Colorectal cancer linked to poor Vitamin D Receptor (yet again) – Jan 2020
- Colorectal Cancer risk increases when genes reduce the vitamin D levels – Aug 2019
- Risks of Colorectal Cancer, IBD, etc slightly increased if poor Vitamin D Receptor – Aug 2018
- Cancer and the Vitamin D Receptor, a primer – Sept 2017
- Advanced Colon Cancer risk is doubled or halved with 1000 IU of Vitamin D, depends on Vitamin D Receptors – RCT May 2017
- Colon Cancer survival 3.1 X less likely if poor Vitamin D Receptor – Aug 2017
- Risk of Cancer increased if poor Vitamin D Receptor – meta-analysis of 73 studies Jan 2016
- 10 percent of colon cancer linked to Vitamin D Receptor – meta-analysis April 2012
 Download the PDF from VitaminDWiki
Background: The risk for several common cancers is influenced by the transcriptomic landscape of the respective tissue-of-origin. Vitamin D influences in vitro gene expression and cancer cell growth. We sought to determine whether oral vitamin D induces beneficial gene expression effects in human rectal epithelium and identify biomarkers of response.
Methods: Blood and rectal mucosa was sampled from 191 human subjects and mucosa gene expression (HT12) correlated with plasma vitamin D (25-OHD) to identify differentially expressed genes. Fifty subjects were then administered 3200IU/day oral vitamin D3 and matched blood/mucosa resampled after 12 weeks. Transcriptomic changes (HT12/RNAseq) after supplementation were tested against the prioritised genes for gene-set and GO-process enrichment. To identify blood biomarkers of mucosal response, we derived receiver-operator curves and C-statistic (AUC) and tested biomarker reproducibility in an independent Supplementation Trial (BEST-D).
Results: Six hundred twenty-nine genes were associated with 25-OHD level (P < 0.01), highlighting 453 GO-term processes (FDR<0.05). In the whole intervention cohort, vitamin D supplementation enriched the prioritised mucosal gene-set (upregulated gene-set P < 1.0E-07; downregulated gene-set P < 2.6E-05) and corresponding GO terms (P = 2.90E-02), highlighting gene expression patterns consistent with anti-tumour effects.
However, only 9 individual participants (18%) showed a significant response (NM gene-set enrichment P < 0.001) to supplementation. Expression changes in HIPK2 and PPP1CC expression served as blood biomarkers of mucosal transcriptomic response (AUC=0.84 95%CI 0.66-1.00) and replicated in BEST-D trial subjects (HIPK2 AUC=0.83 [95%CI 0.77-0.89]; PPP1CC AUC=0.91 [95%CI 0.86-0.95]).Conclusions: Higher plasma 25-OHD correlates with rectal mucosa gene expression patterns consistent with anti-tumour effects, and this beneficial signature is induced by short-term vitamin D supplementation. Heterogenous gene expression responses to vitamin D may limit the ability of randomised trials to identify beneficial effects of supplementation on CRC risk. However, in the current study blood expression changes in HIPK2 and PPP1CC identify those participants with significant anti-tumour transcriptomic responses to supplementation in the rectum. These data provide compelling rationale for a trial of vitamin D and CRC prevention using easily assayed blood gene expression signatures as intermediate biomarkers of response.
References
- Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. 2014;348(apr01 2):g2035. https://doi.org/10.1136/bmj.g2035 . - DOI - PubMed - PMC
- Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol. 2014;2(1):76–89. https://doi.org/10.1016/S2213-8587(13)70165-7 . - DOI - PubMed - PMC
- Barry EL, Peacock JL, Rees JR, Bostick RM, Robertson DJ, Bresalier RS, et al. Vitamin D receptor genotype, vitamin D3 supplementation, and risk of colorectal adenomas: a randomized clinical trial. JAMA Oncol. 2017;3(5):628-35.
- Hermann J, Eder P, Banasiewicz T, Matysiak K, Lykowska-Szuber L. Current management of anal fistulas in Crohn's disease. Prz Gastroenterol. 2015;10(2):83–8. https://doi.org/10.5114/pg.2015.49684 . - DOI - PubMed - PMC
- Vaughan-Shaw PG, O'Sullivan F, Farrington SM, Theodoratou E, Campbell H, Dunlop MG, et al. The impact of vitamin D pathway genetic variation and circulating 25-hydroxyvitamin D on cancer outcome: systematic review and meta-analysis. Br J Cancer. 2017;116(8):1092–110. https://doi.org/10.1038/bjc.2017.44 . - DOI - PubMed - PMC
- Vaughan-Shaw PG, Zgaga L, Ooi LY, Theodoratou E, Timofeeva M, Svinti V, et al. Low plasma vitamin D is associated with adverse colorectal cancer survival after surgical resection, independent of systemic inflammatory response. Gut. 2020;69(1):103–11. https://doi.org/10.1136/gutjnl-2018-317922 . - DOI - PubMed
- Keum N, Lee DH, Greenwood DC, Manson JE, Giovannucci E. Vitamin D supplementation and total cancer incidence and mortality: a meta-analysis of randomized controlled trials. Ann Oncol. 2019;30(5):733–43. https://doi.org/10.1093/annonc/mdz059 . - DOI - PubMed - PMC
- Vaughan-Shaw PG, Buijs LF, Blackmur JP, Theodoratou E, Zgaga L, Din FVN, et al. The effect of vitamin D supplementation on survival in patients with colorectal cancer: systematic review and meta-analysis of randomised controlled trials. Br J Cancer. 2020;123(11):1705–12. https://doi.org/10.1038/s41416-020-01060-8 . - DOI - PubMed - PMC
- Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28. https://doi.org/10.1038/nrg816 . - DOI - PubMed
- Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, et al. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene. 2004;23(7):1377–91. https://doi.org/10.1038/sj.onc.1207262 . - DOI - PubMed
- Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A. 1999;96(12):6745–50. https://doi.org/10.1073/pnas.96.12.6745 . - DOI - PubMed - PMC
- Chan SK, Griffith OL, Tai IT, Jones SJM. Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiol Biomark Prev. 2008;17(3):543–52. https://doi.org/10.1158/1055-9965.EPI-07-2615 . - DOI
- Birkenkamp-Demtroder K, Christensen LL, Olesen SH, Frederiksen CM, Laiho P, Aaltonen LA, et al. Gene expression in colorectal cancer. Cancer Res. 2002;62(15):4352–63. - PubMed
- Dong X, Su YR, Barfield R, Bien SA, He Q, Harrison TA, et al. A general framework for functionally informed set-based analysis: application to a large-scale colorectal cancer study. PLoS Genet. 2020;16(8):e1008947. https://doi.org/10.1371/journal.pgen.1008947 . - DOI - PubMed - PMC
- Bosse Y, Li Z, Xia J, Manem V, Carreras-Torres R, Gabriel A, et al. Transcriptome-wide association study reveals candidate causal genes for lung cancer. Int J Cancer. 2020;146(7):1862–78. https://doi.org/10.1002/ijc.32771 . - DOI - PubMed
- Fleet JC, DeSmet M, Johnson R, Li Y. Vitamin D and cancer: a review of molecular mechanisms. Biochem J. 2012;441(1):61–76. https://doi.org/10.1042/BJ20110744 . - DOI - PubMed
- Protiva P, Pendyala S, Nelson C, Augenlicht LH, Lipkin M, Holt PR. Calcium and 1,25-dihydroxyvitamin D3 modulate genes of immune and inflammatory pathways in the human colon: a human crossover trial. Am J Clin Nutr. 2016;103(5):1224–31. https://doi.org/10.3945/ajcn.114.105304 . - DOI - PubMed - PMC
- Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin d from the institute of medicine: what clinicians need to know editorial comment. Obstet Gynecol Surv. 2011;66(6):356–7. https://doi.org/10.1097/OGX.0b013e31822c197a . - DOI
- Seamans KM, Cashman KD. Existing and potentially novel functional markers of vitamin D status: a systematic review. Am J Clin Nutr. 2009;89(6):1997s–2008s. - DOI
- Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. https://doi.org/10.1093/biostatistics/kxj037 . - DOI - PubMed
- Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9. https://doi.org/10.1038/nmeth.4197 . - DOI - PubMed - PMC
- Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521. - DOI
- Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4(8):1184–91. https://doi.org/10.1038/nprot.2009.97 . - DOI - PubMed - PMC
- Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21(16):3439–40. https://doi.org/10.1093/bioinformatics/bti525 . - DOI - PubMed
- Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376(9736):180–8. https://doi.org/10.1016/S0140-6736(10)60588-0 . - DOI - PubMed - PMC
- Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. Gene. 2004;338(2):143–56. https://doi.org/10.1016/j.gene.2004.05.014 . - DOI - PubMed
- Staal A, van Wijnen AJ, Birkenhager JC, Pols HA, Prahl J, DeLuca H, et al. Distinct conformations of vitamin D receptor/retinoid X receptor-alpha heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements of the osteocalcin and osteopontin genes. Mol Endocrinol. 1996;10(11):1444–56. https://doi.org/10.1210/mend.10.11.8923469 . - DOI - PubMed
- Yamamoto H, Miyamoto K, Li B, Taketani Y, Kitano M, Inoue Y, et al. The caudal-related homeodomain protein Cdx-2 regulates vitamin D receptor gene expression in the small intestine. J Bone Miner Res. 1999;14(2):240–7. https://doi.org/10.1359/jbmr.1999.14.2.240 . - DOI - PubMed
- R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
- Knox S, Harris J, Calton L, Wallace AM. A simple automated solid-phase extraction procedure for measurement of 25-hydroxyvitamin D3 and D2 by liquid chromatography-tandem mass spectrometry. Ann Clin Biochem. 2009;46(Pt 3):226–30. https://doi.org/10.1258/acb.2009.008206 . - DOI - PubMed
- Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007 . - DOI - PubMed - PMC
- Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10(1):48. https://doi.org/10.1186/1471-2105-10-48 . - DOI - PubMed - PMC
- Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118 . - DOI - PubMed - PMC
- Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. https://doi.org/10.1073/pnas.0506580102 . - DOI - PubMed - PMC
- Berlanga-Taylor AJ, Plant K, Dahl A, Lau E, Hill M, Sims D, et al. Genomic response to vitamin D supplementation in the setting of a randomized, placebo-controlled trial. EBioMedicine. 2018;31:133–42. https://doi.org/10.1016/j.ebiom.2018.04.010 . - DOI - PubMed - PMC
- Yanagisawa Y, Takeoka M, Ehara T, Itano N, Miyagawa S, Taniguchi S. Reduction of Calponin h1 expression in human colon cancer blood vessels. Eur J Surg Oncol. 2008;34(5):531–7. https://doi.org/10.1016/j.ejso.2007.05.010 . - DOI - PubMed
- Sandberg TP, Oosting J, van Pelt GW, Mesker WE, Tollenaar R, Morreau H. Molecular profiling of colorectal tumors stratified by the histological tumor-stroma ratio - Increased expression of galectin-1 in tumors with high stromal content. Oncotarget. 2018;9(59):31502–15. https://doi.org/10.18632/oncotarget.25845 . - DOI - PubMed - PMC
- Xue J, Ge X, Zhao W, Xue L, Dai C, Lin F, et al. PIPKIgamma regulates CCL2 expression in colorectal cancer by activating AKT-STAT3 signaling. J Immunol Res. 2019;2019:3690561. - DOI
- Lo PK, Lee JS, Liang X, Han L, Mori T, Fackler MJ, et al. Epigenetic inactivation of the potential tumor suppressor gene FOXF1 in breast cancer. Cancer Res. 2010;70(14):6047–58. https://doi.org/10.1158/0008-5472.CAN-10-1576 . - DOI - PubMed - PMC
- Kops GJ, Medema RH, Glassford J, Essers MA, Dijkers PF, Coffer PJ, et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol. 2002;22(7):2025–36. https://doi.org/10.1128/MCB.22.7.2025-2036.2002 . - DOI - PubMed - PMC
- Sung JC, McCarthy S, Turner J, Li CG, Yeatman TJ. The NBL1 tumor suppressor gene is downregulated in colon cancer by promoter methylation. J Am Coll Surg. 2006;199(3):S92. - DOI
- Romano G, Santi L, Bianco MR, Giuffre MR, Pettinato M, Bugarin C, et al. The TGF-beta pathway is activated by 5-fluorouracil treatment in drug resistant colorectal carcinoma cells. Oncotarget. 2016;7(16):22077–91. https://doi.org/10.18632/oncotarget.7895 . - DOI - PubMed - PMC
- Visuttijai K, Pettersson J, Mehrbani Azar Y, van den Bout I, Orndal C, Marcickiewicz J, et al. Lowered expression of tumor suppressor candidate MYO1C stimulates cell proliferation, suppresses cell adhesion and activates AKT. PLoS One. 2016;11(10):e0164063. https://doi.org/10.1371/journal.pone.0164063 . - DOI - PubMed - PMC
- Ha TK, Her NG, Lee MG, Ryu BK, Lee JH, Han J, et al. Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Res. 2012;72(16):4097–109. https://doi.org/10.1158/0008-5472.CAN-12-0448 . - DOI - PubMed
- Badiola I, Olaso E, Crende O, Friedman SL, Vidal-Vanaclocha F. Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. Gut. 2012;61(10):1465–72. https://doi.org/10.1136/gutjnl-2011-300810 . - DOI - PubMed
- Boulagnon-Rombi C, Schneider C, Leandri C, Jeanne A, Grybek V, Bressenot AM, et al. LRP1 expression in colon cancer predicts clinical outcome. Oncotarget. 2018;9(10):8849–69. https://doi.org/10.18632/oncotarget.24225 . - DOI - PubMed - PMC
- Wu JB, Sarmiento AL, Fiset PO, Lazaris A, Metrakos P, Petrillo S, et al. Histologic features and genomic alterations of primary colorectal adenocarcinoma predict growth patterns of liver metastasis. World J Gastroenterol. 2019;25(26):3408–25. https://doi.org/10.3748/wjg.v25.i26.3408 . - DOI - PubMed - PMC
- Dasgupta N, Kumar Thakur B, Chakraborty A, Das S. Butyrate-induced in vitro colonocyte differentiation network model identifies ITGB1, SYK, CDKN2A, CHAF1A, and LRP1 as the prognostic markers for colorectal cancer recurrence. Nutr Cancer. 2019;71(2):257–71. https://doi.org/10.1080/01635581.2018.1540715 . - DOI - PubMed
- Jiang H, Dong L, Gong F, Gu Y, Zhang H, Fan D, et al. Inflammatory genes are novel prognostic biomarkers for colorectal cancer. Int J Mol Med. 2018;42(1):368–80. https://doi.org/10.3892/ijmm.2018.3631 . - DOI - PubMed - PMC
- Luque-Garcia JL, Martinez-Torrecuadrada JL, Epifano C, Canamero M, Babel I, Casal JI. Differential protein expression on the cell surface of colorectal cancer cells associated to tumor metastasis. Proteomics. 2010;10(5):940–52. https://doi.org/10.1002/pmic.200900441 . - DOI - PubMed
- Nakajima H, Koizumi K, Tanaka T, Ishigaki Y, Yoshitake Y, Yonekura H, et al. Loss of HITS (FAM107B) expression in cancers of multiple organs: tissue microarray analysis. Int J Oncol. 2012;41(4):1347–57. https://doi.org/10.3892/ijo.2012.1550 . - DOI - PubMed
- Slattery ML, Lundgreen A, Wolff RK. MAP kinase genes and colon and rectal cancer. Carcinogenesis. 2012;33(12):2398–408. https://doi.org/10.1093/carcin/bgs305 . - DOI - PubMed - PMC
- Ghadimi BM, Grade M, Difilippantonio MJ, Varma S, Simon R, Montagna C, et al. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol. 2005;23(9):1826–38. https://doi.org/10.1200/JCO.2005.00.406 . - DOI - PubMed
- Slattery ML, Lundgreen A, Bondurant KL, Wolff RK. Tumor necrosis factor-related genes and colon and rectal cancer. Int J Mol Epidemiol Genet. 2011;2(4):328–38. - PubMed - PMC
- Meulmeester E, Jochemsen AG. p53: a guide to apoptosis. Curr Cancer Drug Targets. 2008;8(2):87–97. https://doi.org/10.2174/156800908783769337 . - DOI - PubMed
- Ju YT, Kwag SJ, Park HJ, Jung EJ, Jeong CY, Jeong SH, et al. Decreased expression of heat shock protein 20 in colorectal cancer and its implication in tumorigenesis. J Cell Biochem. 2015;116(2):277–86. https://doi.org/10.1002/jcb.24966 . - DOI - PubMed
- Kim J, Takeuchi H, Lam ST, Turner RR, Wang HJ, Kuo C, et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol. 2005;23(12):2744–53. https://doi.org/10.1200/JCO.2005.07.078 . - DOI - PubMed
- Zhou J, Liu M, Zhai Y, Xie W. The antiapoptotic role of pregnane X receptor in human colon cancer cells. Mol Endocrinol. 2008;22(4):868–80. https://doi.org/10.1210/me.2007-0197 . - DOI - PubMed
- Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81(5):1084–97. https://doi.org/10.1086/521987 . - DOI - PubMed - PMC
- Puca R, Nardinocchi L, Givol D, D'Orazi G. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene. 2010;29(31):4378–87. https://doi.org/10.1038/onc.2010.183 . - DOI - PubMed
- Kou Y, Zhang S, Chen X, Hu S. Gene expression profile analysis of colorectal cancer to investigate potential mechanisms using bioinformatics. Onco Targets Ther. 2015;8:745–52. https://doi.org/10.2147/OTT.S78974 . - DOI - PubMed - PMC
- Zhou T, Lin W, Zhu Q, Renaud H, Liu X, Li R, et al. The role of PEG3 in the occurrence and prognosis of colon cancer. Onco Targets Ther. 2019;12:6001–12. https://doi.org/10.2147/OTT.S208060 . - DOI - PubMed - PMC
- Zhou HM, Fang YY, Weinberger PM, Ding LL, Cowell JK, Hudson FZ, et al. Transgelin increases metastatic potential of colorectal cancer cells in vivo and alters expression of genes involved in cell motility. BMC Cancer. 2016;16(1):55. https://doi.org/10.1186/s12885-016-2105-8 . - DOI - PubMed - PMC
- Galamb O, Kalmar A, Peterfia B, Csabai I, Bodor A, Ribli D, et al. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer. Epigenetics. 2016;11(8):588–602. https://doi.org/10.1080/15592294.2016.1190894 . - DOI - PubMed - PMC
- Bostick RM. Effects of supplemental vitamin D and calcium on normal colon tissue and circulating biomarkers of risk for colorectal neoplasms. J Steroid Biochem Mol Biol. 2015;148:86–95. https://doi.org/10.1016/j.jsbmb.2015.01.010 . - DOI - PubMed - PMC
- Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2018.
- Scragg R, Khaw KT, Toop L, Sluyter J, Lawes CMM, Waayer D, et al. Monthly high-dose vitamin D supplementation and cancer risk: a post hoc analysis of the vitamin D assessment randomized clinical trial. JAMA Oncol. 2018;4(11):e182178. https://doi.org/10.1001/jamaoncol.2018.2178 . - DOI - PubMed - PMC
- Chandler PD, Chen WY, Ajala ON, Hazra A, Cook N, Bubes V, et al. Effect of vitamin D3 supplements on development of advanced cancer: a secondary analysis of the VITAL randomized clinical trial. JAMA Netw Open. 2020;3(11):e2025850. https://doi.org/10.1001/jamanetworkopen.2020.25850 . - DOI - PubMed - PMC
- Baron JA, Barry EL, Mott LA, Rees JR, Sandler RS, Snover DC, et al. A trial of calcium and vitamin D for the prevention of colorectal adenomas. N Engl J Med. 2015;373(16):1519–30. https://doi.org/10.1056/NEJMoa1500409 . - DOI - PubMed - PMC
- Vaughan-Shaw PG, Zgaga L, Theodoratou E, Blackmur JP, Dunlop MG. Whether vitamin D supplementation protects against colorectal cancer risk remains an open question. Eur J Cancer. 2019;115:1–3. https://doi.org/10.1016/j.ejca.2019.03.024 . - DOI - PubMed
- He Y, Timofeeva M, Farrington SM, Vaughan-Shaw P, Svinti V, Walker M, et al. Exploring causality in the association between circulating 25-hydroxyvitamin D and colorectal cancer risk: a large Mendelian randomisation study. BMC Med. 2018;16(1):142. https://doi.org/10.1186/s12916-018-1119-2 . - DOI - PubMed - PMC
- Cornish AJ, Law PJ, Timofeeva M, Palin K, Farrington SM, Palles C, et al. Modifiable pathways for colorectal cancer: a mendelian randomisation analysis. Lancet Gastroenterol Hepatol. 2020;5(1):55–62. https://doi.org/10.1016/S2468-1253(19)30294-8 . - DOI - PubMed
- Wagner D, Dias AG, Schnabl K, Van der Kwast T, Vieth R. Determination of 1,25-dihydroxyvitamin D concentrations in human colon tissues and matched serum samples. Anticancer Res. 2012;32(1):259–63. - PubMed
- Ryynanen J, Neme A, Tuomainen TP, Virtanen JK, Voutilainen S, Nurmi T, et al. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals. Mol Nutr Food Res. 2014;58(10):2036–45. https://doi.org/10.1002/mnfr.201400291 . - DOI - PubMed
- Gerke AK, Pezzulo AA, Tang F, Cavanaugh JE, Bair TB, Phillips E, et al. Effects of vitamin D supplementation on alveolar macrophage gene expression: preliminary results of a randomized, controlled trial. Multidiscip Respir Med. 2014;9(1):18. https://doi.org/10.1186/2049-6958-9-18 . - DOI - PubMed - PMC
- Hossein-nezhad A, Spira A, Holick MF. Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS One. 2013;8(3):e58725. https://doi.org/10.1371/journal.pone.0058725 . - DOI - PubMed - PMC
- Saksa N, Neme A, Ryynanen J, Uusitupa M, de Mello VD, Voutilainen S, et al. Dissecting high from low responders in a vitamin D3 intervention study. J Steroid Biochem Mol Biol. 2015;148:275–82. https://doi.org/10.1016/j.jsbmb.2014.11.012 . - DOI - PubMed
Rectal Cancer genes down-regulated by Vitamin D (3,200 IU only helped some) – RCT Aug 20213831 visitors, last modified 03 Aug, 2021, This page is in the following categories (# of items in each category) - see also: