Assisted Reproduction – 5 studies concluded vitamin D repletion helps – Review
Vitamin D and assisted reproduction: should vitamin D be routinely screened and repleted prior to ART? A systematic review.
J Assist Reprod Genet. 2015 Mar;32(3):323-35. doi: 10.1007/s10815-014-0407-9. Epub 2014 Dec 30.
Pacis MM1, Fortin CN, Zarek SM, Mumford SL, Segars JH.
1Department of Obstetrics and Gynecology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
📄 Download the PDF from VitaminDWiki
PURPOSE:
To review the current literature regarding the role of vitamin D status in pregnancy outcomes in women undergoing assisted reproductive technology (ART) and to assess cost-effectiveness of routine vitamin D deficiency screening and repletion prior to initiation of ART.
METHODS:
A systematic literature review was conducted using PubMed. Relevant study outcomes were compared among the selected studies. A cost-benefit analysis was performed using a decision tree mathematical model with sensitivity analyses from the perspective of direct societal cost. Published data were used to estimate probabilities and costs in 2014 US dollars.
RESULTS:
Thirty-four articles were retrieved, of which eight met inclusion criteria. One study demonstrated a negative relationship between vitamin D status and ART outcomes, while two studies showed no association. The remaining five studies concluded that ART outcomes improved after vitamin D repletion.
CONCLUSION:
The majority of reviewed studies reported a decrement in ART outcomes in patients with vitamin D deficiency. Cost-benefit analyses suggested that screening and supplementing vitamin D prior to ART might be cost effective , but further evidence is needed. Given the absence of Level I evidence regarding vitamin D status and ART outcomes, full endorsement of routine vitamin D screening and supplementation prior to ART is premature.
PMID: 25547950
References
Bouillon, R, Carmeliet, G, Daci, E, Segaert, S, Verstuyf, A (1998) Vitamin D metabolism and action. Osteoporos Int 8: pp. S13-S19 CrossRef
Norman, AW (2008) From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 88: pp. 491S-499S
Mitchell, DM, Henao, MP, Finkelstein, JS, Burnett-Bowie, SA (2012) Prevalence and predictors of vitamin D deficiency in healthy adults. Endocr Pract 18: pp. 914-923 CrossRef
Looker, AC, Johnson, CL, Lacher, DA, Pfeiffer, CM, Schleicher, RL, Sempos, CT (2011) Vitamin D status: United States, 2001–2006. NCHS Data Brief 59: pp. 1-8
Forrest, KYZ, Stuhldreher, WL (2011) Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res 31: pp. 48-54 CrossRef
Kennel, KA, Drake, MT, Hurley, DL (2010) Vitamin D deficiency in adults: when to test and how to treat. Mayo Clin Proc 85: pp. 752-758 CrossRef
Holick, MF, Binkley, NC, Bischoff-Ferrari, HA, Gordon, CM, Hanley, DA, Heaney, RP (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96: pp. 1911-1930 CrossRef
Dietary reference intakes for calcium and vitamin D. National Academy Press, Washington, DC
Vitamin D: screening and supplementation during pregnancy. Committee opinion no. 495. Obstet Gynecol 118: pp. 197-198 CrossRef
Kwiecinski, GG, Petrie, GI, Deluca, HF (1989) Vitamin D is necessary for reproductive functions of the male rat. J Nutr 119: pp. 741-744
Jensen, MB, Nielsen, JE, Jorgensen, A, Meyts, ER-D, Kristensen, DM, Jorgensen, N (2010) Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum Reprod 25: pp. 1303-1311 CrossRef
Johnson, JA, Grande, JP, Roche, PC, Kumar, R (1996) Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D-3 receptor in rat reproductive tissues. Histochem Cell Biol 105: pp. 7-15 CrossRef
Schleicher, G, Privette, TH, Stumpf, WE (1989) Distribuition of soltriol [1,25(OH)2-vitamin-D3] binding sites in male sex organs of the mouse: an autoradiographic study. J Histochem Cytochem 37: pp. 1083-1086 CrossRef
Corbett, ST, Hill, O, Nangia, AK (2006) Vitamin D receptor found in human sperm. Urology 68: pp. 1345-1349 CrossRef
Aquila, S, Guido, C, Perrotta, I, Tripepi, S, Nastro, A, Ando, S (2008) Human sperm anatomy: ultrastructural localization of 1 alpha,25-dihydroxyvitamin D(3) receptor and its possible role in the human male gamete. J Anat 213: pp. 555-564 CrossRef
Jensen, MB, Bjerrum, PJ, Jessen, TE, Nielsen, JE, Joensen, UN, Olesen, IA (2011) Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa. Obstet Gynecol Surv 66: pp. 556-558 CrossRef
Blomberg Jensen, M, Jorgensen, A, Nielsen, JE, Bjerrum, PJ, Skalkam, M, Petersen, JH (2012) Expression of the vitamin D metabolizing enzyme CYP24A1 at the annulus of human spermatozoa may serve as a novel marker of semen quality. Int J Androl 35: pp. 499-510 CrossRef
Ramlau-Hansen, CH, Moeller, UK, Bonde, JP, Olsen, J, Thulstrup, AM (2011) Are serum levels of vitamin D associated with semen quality? Results from a cross-sectional study in young healthy men. Fertil Steril 95: pp. 1000-1004 CrossRef
Hammoud, AO, Meikle, AW, Peterson, CM, Stanford, J, Gibson, M, Carrell, DT (2012) Association of 25-hydroxy-vitamin D levels with semen and hormonal parameters. Asian J Androl 14: pp. 855-859 CrossRef
Adams, JS, Hewison, M (2008) Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat Clin Pract Endocrinol Metab 4: pp. 80-90 CrossRef
Ota, K, Dambaeva, S, Han, AR, Beaman, K, Gilman-Sachs, A, Kwak-Kim, J (2014) Vitamin D deficiency may be a risk factor for recurrent pregnancy losses by increasing cellular immunity and autoimmunity. Hum Reprod 29: pp. 208-219 CrossRef
Andreoli, L, Piantoni, S, Dall’Ara, F, Allegri, F, Meroni, PL, Tincani, A (2012) Vitamin D and antiphospholipid syndrome. Lupus 21: pp. 736-740 CrossRef
Tavakoli, M, Jeddi-Tehrani, M, Salek-Moghaddam, A, Rajaei, S, Mohammadzadeh, A, Sheikhhasani, S (2011) Effects of 1,25(OH)2 vitamin D3 on cytokine production by endometrial cells of women with recurrent spontaneous abortion. Fertil Steril 96: pp. 751-757 CrossRef
Gysler SM, Mulla MJ, Stuhlman M, Sfakianaki AK, Paidas MJ, Stanwood NL, et al. Vitamin D reverses aPL-induced inflammation and LMWH-induced sFlt-1 release by human trophoblast. Am J Reprod Immunol. 2014.
Bodnar, LM, Catov, JM, Simhan, HN, Holick, MF, Powers, RW, Roberts, JM (2007) Maternal vitamin D deficiency increases the risk of preeclampsia. J Clin Endocrinol Metab 92: pp. 3517-3522 CrossRef
Bodnar, LM, Catov, JM, Zmuda, JM, Cooper, ME, Parrott, MS, Roberts, JM (2010) Maternal serum 25-hydroxyvitamin D concentrations are associated with small-for-gestational age births in white women. J Nutr 140: pp. 999-1006 CrossRef
Mannion, CA, Gray-Donald, K, Koski, KG (2006) Association of low intake of milk and vitamin D during pregnancy with decreased birth weight. CMAJ 174: pp. 1273-1277 CrossRef
Brooke, OG, Brown, IRF, Bone, CDM, Carter, ND, Cleeve, HJW, Maxwell, JD (1980) Vitamin-D supplements in pregnant Asian women: effects on calcium status and fetal growth. BMJ 280: pp. 751-754 CrossRef
Morley, R, Carlin, JB, Pasco, JA, Wark, JD (2006) Maternal 25-hydroxyvitamin D and parathyroid hormone concentrations and offspring birth size. J Clin Endocrinol Metab 91: pp. 906-912 CrossRef
Merewood, A, Mehta, SD, Chen, TC, Bauchner, H, Holick, MF (2009) Association between vitamin D deficiency and primary cesarean section. J Clin Endocrinol Metab 94: pp. 940-945 CrossRef
Poel, YHM, Hummel, P, Lips, P, Stam, F, Ploeg, T, Simsek, S (2012) Vitamin D and gestational diabetes: a systematic review and meta-analysis. Eur J Intern Med 23: pp. 465-469 CrossRef
Lebovic, DI, Mueller, MD, Taylor, RN (2001) Immunobiology of endometriosis. Fertil Steril 75: pp. 1-10 CrossRef
Agic, A, Xu, H, Altgassen, C, Noack, F, Wolfler, MM, Diedrich, K (2007) Relative expression of 1,25-dihydroxyvitamin D3 receptor, vitamin D 1 alpha-hydroxylase, vitamin D 24-hydroxylase, and vitamin D 25-hydroxylase in endometriosis and gynecologic cancers. Reprod Sci 14: pp. 486-497 CrossRef
Wortsman, J, Matsuoka, LY, Chen, TC, Lu, Z, Holick, MF (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72: pp. 690-693
Goodarzi, MO, Dumesic, DA, Chazenbalk, G, Azziz, R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7: pp. 219-231 CrossRef
Girgis, CM, Clifton-Bligh, RJ, Hamrick, MW, Holick, MF, Gunton, JE (2013) The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 34: pp. 33-83 CrossRef
Mitri, J, Muraru, MD, Pittas, AG (2011) Vitamin D and type 2 diabetes: a systematic review. Eur J Clin Nutr 65: pp. 1005-1015 CrossRef
Chiu, KC, Chu, A, Go, VL, Saad, MF (2004) Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 79: pp. 820-825
Tai, K, Need, AG, Horowitz, M, Chapman, IM (2008) Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition 24: pp. 279-285 CrossRef
Chiu, KC, Chuang, LM, Lee, NP, Ryu, JM, McGullam, JL, Tsai, GP (2000) Insulin sensitivity is inversely correlated with plasma intact parathyroid hormone level. Metabolism 49: pp. 1501-1505 CrossRef
McCarty, MF, Thomas, CA (2003) PTH excess may promote weight gain by impeding catecholamine-induced lipolysis-implications for the impact of calcium, vitamin D, and alcohol on body weight. Med Hypotheses 61: pp. 535-542 CrossRef
Reis, JP, Muhlen, D, Kritz-Silverstein, D, Wingard, DL, Barrett-Connor, E (2007) Vitamin D, parathyroid hormone levels, and the prevalence of metabolic syndrome in community-dwelling older adults. Diabetes Care 30: pp. 1549-1555 CrossRef
Maestro, B, Campion, J, Davila, N, Calle, C (2000) Stimulation by 1,25-dihydroxyvitamin D3 of insulin receptor expression and insulin responsiveness for glucose transport in U-937 human promonocytic cells. Endocr J 47: pp. 383-391 CrossRef
Maestro, B, Davila, N, Carranza, MC, Calle, C (2003) Identification of a Vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol 84: pp. 223-230 CrossRef
Kim, JJ, Choi, YM, Chae, SJ, Hwang, KR, Yoon, SH, Kim, MJ (2014) Vitamin D deficiency in women with polycystic ovary syndrome. Clin Exp Reprod Med 41: pp. 80-85 CrossRef
Wehr, E, Trummer, O, Giuliani, A, Gruber, HJ, Pieber, TR, Obermayer-Pietsch, B (2011) Vitamin D-associated polymorphisms are related to insulin resistance and vitamin D deficiency in polycystic ovary syndrome. Eur J Endocrinol 164: pp. 741-749 CrossRef
Mazloomi, S, Sharifi, F, Hajihosseini, R, Kalantari, S, Mazloomzadeh, S (2012) Association between hypoadiponectinemia and low serum concentrations of calcium and vitamin D in women with polycystic ovary syndrome. ISRN Endocrinol 2012: pp. 949427
Li, HW, Brereton, RE, Anderson, RA, Wallace, AM, Ho, CK (2011) Vitamin D deficiency is common and associated with metabolic risk factors in patients with polycystic ovary syndrome. Metabolism 60: pp. 1475-1481 CrossRef
Mahmoudi, T, Gourabi, H, Ashrafi, M, Yazdi, RS, Ezabadi, Z (2010) Calciotropic hormones, insulin resistance, and the polycystic ovary syndrome. Fertil Steril 93: pp. 1208-1214 CrossRef
Panidis, D, Balaris, C, Farmakiotis, D, Rousso, D, Kourtis, A, Balaris, V (2005) Serum parathyroid hormone concentrations are increased in women with polycystic ovary syndrome. Clin Chem 51: pp. 1691-1697 CrossRef
Hahn, S, Haselhorst, U, Tan, S, Quadbeck, B, Schmidt, M, Roesler, S (2006) Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes 114: pp. 577-583 CrossRef
Yildizhan, R, Kurdoglu, M, Adali, E, Kolusari, A, Yildizhan, B, Sahin, HG (2009) Serum 25-hydroxyvitamin D concentrations in obese and non-obese women with polycystic ovary syndrome. Arch Gynecol Obstet 280: pp. 559-563 CrossRef
Lagunova, Z, Porojnicu, AC, Lindberg, F, Hexeberg, S, Moan, J (2009) The dependency of vitamin D status on body mass index, gender, age and season. Anticancer Res 29: pp. 3713-3720
Merhi, Z (2014) Advanced glycation end products and their relevance in female reproduction. Hum Reprod 29: pp. 135-145 CrossRef
Singh, R, Barden, A, Mori, T, Beilin, L (2001) Advanced glycation end-products: a review. Diabetologia 44: pp. 129-146 CrossRef
Vazzana, N, Guagnano, MT, Cuccurullo, C, Ferrante, E, Lattanzio, S, Liani, R (2012) Endogenous secretory RAGE in obese women: association with platelet activation and oxidative stress. J Clin Endocrinol Metab 97: pp. E1726-E1730 CrossRef
Unoki, H, Yamagishi, S (2008) Advanced glycation end products and insulin resistance. Curr Pharm Des 14: pp. 987-989 CrossRef
Diamanti-Kandarakis, E, Piperi, C, Kalofoutis, A, Creatsas, G (2005) Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 62: pp. 37-43 CrossRef
Diamanti-Kandarakis, E, Piperi, C, Patsouris, E, Korkolopoulou, P, Panidis, D, Pawelczyk, L (2007) Immunohistochemical localization of advanced glycation end-products (AGEs) and their receptor (RAGE) in polycystic and normal ovaries. Histochem Cell Biol 127: pp. 581-589 CrossRef
Jia, X, Chang, T, Wilson, TW, Wu, L (2012) Methylglyoxal mediates adipocyte proliferation by increasing phosphorylation of Akt1. PLoS One 7: pp. e36610 CrossRef
Diamanti-Kandarakis, E, Piperi, C, Livadas, S, Kandaraki, E, Papageorgiou, E, Koutsilieris, M (2013) Interference of AGE-RAGE signaling with steroidogenic enzyme action in human ovarian cells. Endocrine Society, San Francisco
Yoshizawa, T, Handa, Y, Uematsu, Y, Takeda, S, Sekine, K, Yoshihara, Y (1997) Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 16: pp. 391-396 CrossRef
Kinuta, K, Tanaka, H, Moriwake, T, Aya, K, Kato, S, Seino, Y (2000) Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 141: pp. 1317-1324
Halloran, BP, Deluca, HF (1980) Effect of vitamin D deficiency on fertility and reproductive capacity in the female rat. J Nutr 110: pp. 1573-1580
Liberati, A, Altman, DG, Tetzlaff, J, Mulrow, C, Gotzsche, PC, Ioannidis, JPA (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339: pp. b2700 CrossRef
Firouzabadi, RD, Aflatoonian, A, Modarresi, S, Sekhavat, L, MohammadTaheri, S (2012) Therapeutic effects of calcium & vitamin D supplementation in women with PCOS. Complement Ther Clin Pract 18: pp. 85-88 CrossRef
Aleyasin, A, Hosseini, MA, Mahdavi, A, Safdarian, L, Fallahi, P, Mohajeri, MR (2011) Predictive value of the level of vitamin D in follicular fluid on the outcome of assisted reproductive technology. Eur J Obstet Gynecol Reprod Biol 159: pp. 132-137 CrossRef
Anifandis, GM, Dafopoulos, K, Messini, CI, Chalvatzas, N, Liakos, N, Pournaras, S (2010) Prognostic value of follicular fluid 25-OH vitamin D and glucose levels in the IVF outcome. Reprod Bio Endocrinol 8: pp. 91 CrossRef
Ozkan, S, Jindal, S, Greenseid, K, Shu, J, Zeitlian, G, Hickmon, C (2010) Replete vitamin D stores predict reproductive success following in vitro fertilization. Fertil Steril 94: pp. 1314-1319 CrossRef
Rudick, B, Ingles, S, Chung, K, Stanczyk, F, Paulson, R, Bendikson, K (2012) Characterizing the influence of vitamin D levels on IVF outcomes. Hum Reprod 27: pp. 3321-3327 CrossRef
Rudick, BJIS, Chung, K, Stanczyk, FZ, Paulson, RJ, Bendikson, KA (2014) Influence of vitamin D levels on in vitro fertilization outcomes in donor-recipient cycles. Fertil Steril 101: pp. 447-452 CrossRef
Garbedian, KBM, Moody, J, Liu, K (2013) Effect of vitamin D status on clinical pregnancy rates following in vitro fertilization. CMAJ Open 1: pp. E77-E82 CrossRef
Polyzos NP, Anckaert E, Guzman L, Schiettecatte J, Van Landuyt L, Camus M, et al. Vitamin D deficiency and pregnancy rates in women undergoing single embryo, blastocyst stage, transfer (SET) for IVF/ICSI. Hum Reprod. 2014.
Consumer price index. Bureau of Labor Statistics, Washington, DC
Centers for Medicare and Medicaid Services. 2014 clinical laboratory fee schedule. Baltimore, MD: Centers for Medicare and Medicaid Services, 2014. Available from: http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/ClinicalLabFeeSched/clinlab.html.
Drug Price Search. https://www.rxpricequotes.com. Accessed 11 Aug 2014.
Chambers, GM, Sullivan, EA, Ishihara, O, Chapman, MG, Adamson, GD (2009) The economic impact of assisted reproductive technology: a review of selected developed countries. Fertil Steril 91: pp. 2281-2294 CrossRef
You, JH, Chung, TK (2005) Expectant, medical or surgical treatment for spontaneous abortion in first trimester of pregnancy: a cost analysis. Hum Reprod 20: pp. 2873-2878 CrossRef
Bagot, CN, Troy, PJ, Taylor, HS (2000) Alteration of maternal Hoxa10 expression by in vivo gene transfection affects implantation. Gene Ther 7: pp. 1378-1384 CrossRef
Vanni, VS, Vigano’, P, Somigliana, E, Papaleo, E, Paffoni, A, Pagliardini, L (2014) Vitamin D and assisted reproduction technologies: current concepts. Reprod Biol Endocrinol 12: pp. 47 CrossRef
Purcell, K, Schembri, M, Frazier, LM, Rall, MJ, Shen, SH, Croughan, M (2007) Asian ethnicity is associated with reduced pregnancy outcomes after assisted reproductive technology. Fertil Steril 87: pp. 297-302 CrossRef
Fujimoto, VY, Luke, B, Brown, MB, Jain, T, Armstrong, A, Grainger, DA (2010) Racial and ethnic disparities in assisted reproductive technology outcomes in the United States. Fertil Steril 93: pp. 382-390 CrossRef
Gleicher, N, Weghofer, A, Li, J, Barad, D (2007) Differences in ovarian function parameters between Chinese and Caucasian oocyte donors: do they offer an explanation for lower IVF pregnancy rates in Chinese women?. Hum Reprod 22: pp. 2879-2882 CrossRef
Gleicher, N, Kim, A, Weghofer, A, Barad, DH (2012) Differences in ovarian aging patterns between races are associated with ovarian genotypes and sub-genotypes of the FMR1 gene. Reprod Biol Endocrinol 10: pp. 77 CrossRef
Karolinska University Hospital. Vitamin D during in vitro fertilisation (IVF)—a prospective randomized trial. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2014 Aug 17]. Available from: http://clinicaltrials.gov/show/NCT01019785 NLM Identifier: NCT01019785.