Vitamin D and male reproduction
Nature Reviews Endocrinology 10, 175–186 (2014) doi:10.1038/nrendo.2013.262
Martin Blomberg Jensen, University Department of Growth and Reproduction, Rigshospitalet, Section 5064, Blegdamsvej 9, 2100 Copenhagen, Denmark.
Vitamin D greatly improves Fertility
- Vitamin D is needed for human fertility – goal is 50 ng – Sept 2018
- In-vitro Fertilization costs at least 10,000 dollars, Vitamin D costs 5 dollars
- Women were 50X more likely to be fertile if just 1 ng higher level of vitamin D – Nov 2024
- Infertile patients 1.7X more-likely to become pregnant if take Vitamin D – meta-analysis Feb 2023
- Live birth 1.7 X more likely after IVF if good level of vitamin D – meta-analysis Aug 2020
- If diagnosed infertile, more likely to have live birth if Vitamin D fortification – Feb 2020
- Preconception vitamin D is great - every extra 10 ng associated with 10 percent more likely to have live birth – Aug 2018
- Women with more than minimum vitamin D were 3.4 X more likely to achieve pregnancy and 1.6 X more likely to have live births – June 2017
- Assisted Reproduction – 5 studies concluded vitamin D repletion helps – Review March 2015
- Pregnancy success increased 30 percent if sunny (or vitamin D) one month earlier – June 2015
- IVF 4X more successful for white women with lots of vitamin D – many studies
Increased male Vitamin D increases fertility
- Birth rates doubled with Vitamin D - 300,000 for infertile men – RCT Nov 2017
- Higher vitamin D results in 22% fewer abnormal sperm (Mendelian analysis) – May 2024
- Conception was 3.7X more likely if the male had a good level of Vitamin D – July 2022
- Far better sperm in fertility clinic if more than 30 ng of Vitamin D - June 2022
- Fertility (sperm) associated with vitamin D – meta-analysis Sept 2019
- Infertility - 71 percent of the time of BOTH partners had less than 20 ng of Vitamin D – Aug 2017
- Male fertility 4 X higher if high Vitamin D – Nov 2015
- Vitamin D somewhat assists reproduction – both the mother and the father – May 2014
Decreased Fertility if decreased Vitamin D Receptor
Vitamin D is a versatile signalling molecule with a well-established role in the regulation of calcium homeostasis and bone health. The spectrum of vitamin D target organs has expanded and the reproductive role of vitamin D is highlighted by expression of the vitamin D receptor (VDR) and enzymes that metabolize vitamin D in
- testis,
- male reproductive tract and
- human spermatozoa.
The expression levels of VDR and CYP24A1 in human spermatozoa serve as positive predictive markers of semen quality, and VDR mediates a nongenomic increase in intracellular calcium concentration that induces sperm motility. Interestingly, functional animal models show that vitamin D is important for estrogen signalling and sperm motility, while cross-sectional studies support the positive association between serum 25-hydroxyvitamin D level and sperm motility in both fertile and infertile men. Expression of VDR and enzymes that metabolize vitamin D in fetal testis indicates a yet unknown role during development, which may be extrapolated from invasive testicular germ cell tumours where 1α,25-dihydroxyvitamin D induces a mesodermal differentiation of the pluripotent testicular cancer cells.
Taken together, vitamin D signalling has a positive effect on
- semen quality,
- increases estrogen responsiveness and
- differentiates germ cell tumours.
Future studies are needed to determine when 1α,25-dihydroxyvitamin D acts in a paracrine manner and whether systemic changes, which are subject to pharmacological modulation, could influence male reproductive function.
Publisher wants $5 to rent the PDF
 Download the uncorrected PDF via Researchgate from VitaminDWiki
References
- Sharpe, R. M., McKinnell, C., Kivlin, C. & Fisher, J. S. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769–784 (2003). CASISIPubMedArticle
- Mortimer, D. et al. What should it take to describe a substance or product as 'sperm-safe'. Hum. Reprod. Update 19 (Suppl. 1), i1–i45 (2013).
- Bouillon, R. et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 29, 726–776 (2008). CASISIPubMedArticle
- Blomberg Jensen, M. et al. Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum. Reprod. 25, 1303–1311 (2010). CASPubMedArticle
- van Schoor, N. M. & Lips, P. Worldwide vitamin D status. Best Pract. Res. Clin. Endocrinol. Metab. 25, 671–680 (2011). CASPubMedArticle
- Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007). CASISIPubMedArticle
- Prosser, D. E. & Jones, G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem. Sci. 29, 664–673 (2004). CASPubMedArticle
- Haussler, M. R., Jurutka, P. W., Mizwicki, M. & Norman, A. W. Vitamin D receptor (VDR)-mediated actions of 1α, 25(OH)2 vitamin D3: genomic and non-genomic mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 25, 543–559 (2011). CASPubMedArticle
- Verstuyf, A., Carmeliet, G., Bouillon, R. & Mathieu, C. Vitamin D: a pleiotropic hormone. Kidney Int. 78, 140–145 (2010). CASISIPubMedArticle
- Blomberg Jensen, M. & Dissing, S. Non-genomic effects of vitamin D in human spermatozoa. Steroids 77, 903–909 (2012). CASPubMedArticle
- Merke, J., Kreusser, W., Bier, B. & Ritz, E. Demonstration and characterisation of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat. Eur. J. Biochem. 130, 303–308 (1983). CASPubMedArticle
- Johnson, J. A., Grande, J. P., Roche, P. C. & Kumar, R. Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues. Histochem. Cell Biol. 105, 7–15 (1996). CASISIPubMedArticle
- Mahmoudi, A. R. et al. Distribution of vitamin D receptor and 1α-hydroxylase in male mouse reproductive tract. Reprod. Sci. 20, 426–436 (2013). PUBMEDArticle
- Oliveira, A. G. et al. Vitamin D3 and androgen receptors in testis and epididymal region of roosters (Gallus domesticus) as affected by epididymal lithiasis. Anim. Reprod. Sci. 109, 343–355 (2008). CASPubMedArticle
- Schleicher, G., Privette, T. H. & Stumpf, W. E. Distribution of soltriol 1,25(OH)2-vitamin D3 binding sites in male sex organs of the mouse: an autoradiographic study. J. Histochem. Cytochem. 37, 1083–1086 (1989). CASPubMedArticle
- Corbett, S. T., Hill, O. & Nangia, A. K. Vitamin D receptor found in human sperm. Urology 68, 1345–1349 (2006). PUBMEDArticle
- Aquila, S. et al. Human sperm anatomy: ultrastructural localization of 1α, 25-dihydroxyvitamin D receptor and its possible role in the human male gamete. J. Anat. 213, 555–564 (2008). CASPubMedArticle
- Kidroni, G. et al. Vitamin D3 metabolites in rat epididymis: high 24,25-dihydroxy vitamin D3 levels in the cauda region. Biochem. Biophys. Res. Commun. 113, 982–989 (1983). CASPubMedArticle
- Erben, R. G. et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol. Endocrinol. 16, 1524–1537 (2002). CASISIPubMedArticle
- Gensure, R. C., Riggle, P. C., Antrobus, S. D. & Walters, M. R. Evidence for two classes of 1,25-dihydroxyvitamin D3 binding sites in classical vs. nonclassical target tissues. Biochem. Biophys. Res. Commun. 180, 867–873 (1991). CASPubMedArticle
- Aquila, S. et al. Human male gamete endocrinology: 1α, 25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates different aspects of human sperm biology and metabolism. Reprod. Biol. Endocrinol. 7, 140 (2009). CASPubMedArticle
- Blomberg Jensen, M. et al. Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa. Hum. Reprod. 26, 1307–1317 (2011). CASPubMedArticle
- Blomberg Jensen, M. et al. Vitamin D metabolism and effects on pluripotency genes and cell differentiation in testicular germ cell tumors in vitro and in vivo. Neoplasia 14, 952–963 (2012). PUBMED
- Zanatta, L., Bouraima-Lelong, H., Delalande, C., Silva, F. R. & Carreau, S. Regulation of aromatase expression by 1α, 25(OH)2 vitamin D3 in rat testicular cells. Reprod. Fertil. Dev. 23, 725–735 (2011). CASPubMedArticle
- Blomberg Jensen, M. et al. Characterization of the testicular, epididymal and endocrine phenotypes in the Leuven Vdr-deficient mouse model: targeting estrogen signalling. Mol. Cell Endocrinol. 377, 93–102 (2013). CASPubMedArticle
- Blomberg Jensen, M. et al. Expression of the vitamin D metabolizing enzyme CYP24A1 at the annulus of human spermatozoa may serve as a novel marker of semen quality. Int. J. Androl 35, 499–510 (2012). CASPubMedArticle
- Oliva, R. Protamines and male infertility. Hum. Reprod. Update 12, 417–435 (2006). CASISIPubMedArticle
- Choudhary, D., Jansson, I., Stoilov, I., Sarfarazi, M. & Schenkman, J. B. Expression patterns of mouse and human CYP orthologs (families 1–4) during development and in different adult tissues. Arch. Biochem. Biophys. 436, 50–61 (2005). CASPubMedArticle
- Choudhary, D., Jansson, I., Schenkman, J. B., Sarfarazi, M. & Stoilov, I. Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch. Biochem. Biophys. 414, 91–100 (2003). CASPubMedArticle
- Foresta, C. et al. Bone mineral density and testicular failure: evidence for a role of vitamin D 25-hydroxylase in human testis. J. Clin. Endocrinol. Metab 96, E646–E652 (2011). CASISIPubMedArticle
- Olson, E. B. Jr, Knutson, J. C., Bhattacharyya, M. H. & DeLuca, H. F. The effect of hepatectomy on the synthesis of 25-hydroxyvitamin D3. J. Clin. Invest. 57, 1213–1220 (1976). CASPubMedArticle
- Addya, S., Zheng, Y. M., Shayiq, R. M., Fan, J. Y. & Avadhani, N. G. Characterization of a female-specific hepatic mitochondrial cytochrome P-450 whose steady-state level is modulated by testosterone. Biochemistry 30, 8323–8330 (1991). CASPubMedArticle
- Van, P. O., Argraves, W. S. & Morales, C. R. Co-expression and interaction of cubilin and megalin in the adult male rat reproductive system. Mol. Reprod. Dev. 64, 129–135 (2003). CASPubMedArticle
- Clulow, J., Jones, R. C. & Hansen, L. A. Micropuncture and cannulation studies of fluid composition and transport in the ductuli efferentes testis of the rat: comparisons with the homologous metanephric proximal tubule. Exp. Physiol. 79, 915–928 (1994). CASISIPubMed
- Cornwall, G. A. New insights into epididymal biology and function. Hum. Reprod. Update 15, 213–227 (2009). CASISIPubMedArticle
- Hess, R. A. et al. Estrogen and its receptors in efferent ductules and epididymis. J. Androl. 32, 600–613 (2011). CASPubMedArticle
- Weissgerber, P. et al. Male fertility depends on Ca2+ absorption by TRPV6 in epididymal epithelia. Sci. Signal. 4, ra27 (2011). CASPubMedArticle
- Huhtaniemi, I. & Toppari, J. Endocrine, paracrine and autocrine regulation of testicular steroidogenesis. Adv. Exp. Med. Biol. 377, 33–54 (1995). CASPubMed
- Costa, R. R., Reis, R. I., Aguiar, J. F. & Varanda, W. A. Luteinizing hormone (LH) acts through PKA and PKC to modulate T-type calcium currents and intracellular calcium transients in mice Leydig cells. Cell Calcium 49, 191–199 (2011). CASPubMedArticle
- Hochberg, Z. et al. Does 1,25-dihydroxyvitamin D participate in the regulation of hormone release from endocrine glands? J. Clin. Endocrinol. Metab 60, 57–61 (1985). CASPubMedArticle
- Zofková, I., Scholz, G. & Stárka, L. Effect of calcitonin and 1,25(OH)2-vitamin D3 on the FSH, LH and testosterone secretion at rest and LHRH stimulated secretion. Horm. Metab. Res. 21, 682–685 (1989). PUBMEDArticle
- Välimäki, V. V. et al. Serum estradiol, testosterone, and sex hormone-binding globulin as regulators of peak bone mass and bone turnover rate in young Finnish men. J. Clin. Endocrinol. Metab. 89, 3785–3789 (2004). CASISIPubMedArticle
- Ramlau-Hansen, C. H., Moeller, U. K., Bonde, J. P., Olsen, J. & Thulstrup, A. M. Are serum levels of vitamin D associated with semen quality? Results from a cross-sectional study in young healthy men. Fertil. Steril. 95, 1000–1004 (2011). CASPubMedArticle
- Hammoud, A. O. et al. Association of 25-hydroxy-vitamin D levels with semen and hormonal parameters. Asian J. Androl. 14, 855–859 (2012). CASPubMedArticle
- Pilz, S. et al. Effect of vitamin D supplementation on testosterone levels in men. Horm. Metab. Res. 43, 223–225 (2011). CASPubMedArticle
- Wehr, E., Pilz, S., Boehm, B. O., Marz, W. & Obermayer-Pietsch, B. Association of vitamin D status with serum androgen levels in men. Clin. Endocrinol. (Oxf.) 73, 243–248 (2010). CASPubMedArticle
- Lee, D. M. et al. Association of hypogonadism with vitamin D status: the European Male Ageing Study. Eur. J. Endocrinol. 166, 77–85 (2012). CASPubMedArticle
- Nimptsch, K., Platz, E. A., Willett, W. C. & Giovannucci, E. Association between plasma 25-OH vitamin D and testosterone levels in men. Clin. Endocrinol. (Oxf.) 77, 106–112 (2012). CASPubMedArticle
- Andersson, A. M., Carlsen, E., Petersen, J. H. & Skakkebaek, N. E. Variation in levels of serum inhibin B, testosterone, estradiol, luteinizing hormone, follicle-stimulating hormone, and sex hormone-binding globulin in monthly samples from healthy men during a 17-month period: possible effects of seasons. J. Clin. Endocrinol. Metab. 88, 932–937 (2003). CASPubMedArticle
- Chen, R. Y. et al. Relationship between calcium absorption and plasma dehydroepiandrosterone sulphate (DHEAS) in healthy males. Clin. Endocrinol. (Oxf.) 69, 864–869 (2008). CASPubMedArticle
- Sonnenberg, J., Luine, V. N., Krey, L. C. & Christakos, S. 1,25-Dihydroxyvitamin D3 treatment results in increased choline acetyltransferase activity in specific brain nuclei. Endocrinology 118, 1433–1439 (1986). CASPubMedArticle
- Inpanbutr, N., Reiswig, J. D., Bacon, W. L., Slemons, R. D. & Iacopino, A. M. Effect of vitamin D on testicular CaBP28K expression and serum testosterone in chickens. Biol. Reprod. 54, 242–248 (1996). CASPubMedArticle
- Oury, F. et al. Endocrine regulation of male fertility by the skeleton. Cell 144, 796–809 (2011). CASISIPubMedArticle
- Pi, M. et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS ONE 3, e3858 (2008). CASADSPubMedArticle
- Johansen, J. S. et al. Serum bone Gla-protein as a marker of bone growth in children and adolescents: correlation with age, height, serum insulin-like growth factor I, and serum testosterone. J. Clin. Endocrinol. Metab. 67, 273–278 (1988). CASPubMedArticle
- Bolland, M. J., Grey, A., Horne, A. M. & Reid, I. R. Testosterone levels following decreases in serum osteocalcin. Calcif. Tissue Int. 93, 133–136 (2013). CASPubMedArticle
- Krishnan, A. V. et al. Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy. Endocrinology 151, 32–42 (2010). CASISIPubMedArticle
- O'Donnell, L., Robertson, K. M., Jones, M. E. & Simpson, E. R. Estrogen and spermatogenesis. Endocr. Rev. 22, 289–318 (2001). CASISIPubMedArticle
- Hess, R. A. Estrogen in the adult male reproductive tract: a review. Reprod. Biol. Endocrinol. 1, 52 (2003). PUBMEDArticle
- Kinuta, K. et al. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 141, 1317–1324 (2000). CASPubMedArticle
- Bulun, S. E. et al. Use of tissue-specific promoters in the regulation of aromatase cytochrome P450 gene expression in human testicular and ovarian sex cord tumors, as well as in normal fetal and adult gonads. J. Clin. Endocrinol. Metab. 78, 1616–1621 (1994). CASPubMed
- Lanzino, M. et al. Aromatase messenger RNA is derived from the proximal promoter of the aromatase gene in Leydig, Sertoli, and germ cells of the rat testis. Biol. Reprod. 64, 1439–1443 (2001). CASPubMedArticle
- Carreau, S., Bourguiba, S., Lambard, S., Silandre, D. & Delalande, C. The promoter(s) of the aromatase gene in male testicular cells. Reprod. Biol. 4, 23–34 (2004). PUBMED
- Kato, S. et al. A calcium-deficient diet caused decreased bone mineral density and secondary elevation of estrogen in aged male rats—effect of menatetrenone and elcatonin. Metabolism 51, 1230–1234 (2002). CASPubMedArticle
- Hess, R. A. et al. A role for oestrogens in the male reproductive system. Nature 390, 509–512 (1997). CASADSISIPubMedArticle
- Joseph, A. et al. Absence of estrogen receptor alpha leads to physiological alterations in the mouse epididymis and consequent defects in sperm function. Biol. Reprod. 82, 948–957 (2010). CASPubMedArticle
- Andersson, A. M., Petersen, J. H., Jorgensen, N., Jensen, T. K. & Skakkebaek, N. E. Serum inhibin B and follicle-stimulating hormone levels as tools in the evaluation of infertile men: significance of adequate reference values from proven fertile men. J. Clin. Endocrinol. Metab. 89, 2873–2879 (2004). CASPubMedArticle
- Dennis, N. A. et al. The level of serum anti-Müllerian hormone correlates with vitamin D status in men and women but not in boys. J. Clin. Endocrinol. Metab 97, 2450–2455 (2012). CASPubMedArticle
- Malloy, P. J., Peng, L., Wang, J. & Feldman, D. Interaction of the vitamin D receptor with a vitamin D response element in the Mullerian-inhibiting substance (MIS) promoter: regulation of MIS expression by calcitriol in prostate cancer cells. Endocrinology 150, 1580–1587 (2009). CASPubMedArticle
- Nef, S. & Parada, L. F. Cryptorchidism in mice mutant for Insl3. Nat. Genet. 22, 295–299 (1999). CASISIPubMedArticle
- Parikh, G. et al. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Horm. Metab. Res. 42, 754–757 (2010). CASADSPubMedArticle
- Skakkebaek, N. E., Giwercman, A. & de Kretser, D. Pathogenesis and management of male infertility. Lancet 343, 1473–1479 (1994). CASISIPubMedArticle
- Kwiecinski, G. G., Petrie, G. I. & DeLuca, H. F. Vitamin D is necessary for reproductive functions of the male rat. J. Nutr. 119, 741–744 (1989). CASPubMed
- Uhland, A. M., Kwiecinski, G. G. & DeLuca, H. F. Normalization of serum calcium restores fertility in vitamin D-deficient male rats. J. Nutr. 122, 1338–1344 (1992). CASPubMed
- Blomberg Jensen, M. Vitamin D metabolism, sex hormones, and male reproductive function. Reproduction 144, 135–152 (2012). CASPubMedArticle
- Audet, I., Laforest, J. P., Martineau, G. P. & Matte, J. J. Effect of vitamin supplements on some aspects of performance, vitamin status, and semen quality in boars. J. Anim. Sci. 82, 626–633 (2004). CASPubMed
- Sood, S., Reghunandanan, R., Reghunandanan, V., Marya, R. K. & Singh, P. I. Effect of vitamin D repletion on testicular function in vitamin D-deficient rats. Ann. Nutr. Metab. 39, 95–98 (1995). CASPubMedArticle
- Hamden, K. et al. Inhibitory effects of 1α, 25dihydroxyvitamin D3 and Ajuga iva extract on oxidative stress, toxicity and hypo-fertility in diabetic rat testes. J. Physiol. Biochem. 64, 231–239 (2008). CASPubMedArticle
- Yang, B. et al. Associations between testosterone, bone mineral density, vitamin D and semen quality in fertile and infertile Chinese men. Int. J. Androl. 35, 783–792 (2012). CASPubMedArticle
- Naaby-Hansen, S. et al. Co-localization of the inositol 1,4,5-trisphosphate receptor and calreticulin in the equatorial segment and in membrane bounded vesicles in the cytoplasmic droplet of human spermatozoa. Mol. Hum. Reprod. 7, 923–933 (2001). CASPubMedArticle
- Norman, A. W. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 88, 491S–499S (2008). CASISIPubMedArticle
- Blomberg Jensen, M. Active vitamin D or analogs thereof for use in in vivo or in vitro fertilization. Patent application (WO/2012/116699).
- Rojansky, N., Brzezinski, A. & Schenker, J. G. Seasonality in human reproduction: an update. Hum. Reprod. 7, 735–745 (1992). CASPubMed
- Chaganti, R. S. & Houldsworth, J. Genetics and biology of adult human male germ cell tumors. Cancer Res. 60, 1475–1482 (2000). CASISIPubMed
- Skakkebaek, N. E. Possible carcinoma-in-situ of the testis. Lancet 2, 516–517 (1972). CASISIPubMedArticle
- Sonne, S. B. et al. Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte. Cancer Res. 69, 5241–5250 (2009). CASPubMedArticle
- Kraggerud, S. M. et al. Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts: implications for pathogenesis. Endocr. Rev. 34, 339–376 (2013). CASPubMedArticle
- Matusiak, D. & Benya, R. V. CYP27A1 and CYP24 expression as a function of malignant transformation in the colon. J. Histochem. Cytochem. 55, 1257–1264 (2007). CASPubMedArticle
- Blomberg Jensen M. et al. Expression of the vitamin D receptor, 25-hydroxylases, 1α-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer. J. Steroid Biochem. Mol. Biol. 121, 376–382 (2010). CASPubMedArticle
- Fleet, J. C. Molecular actions of vitamin D contributing to cancer prevention. Mol. Aspects Med. 29, 388–396 (2008). CASPubMedArticle
- De Jong, B. W. et al. Raman spectroscopic analysis identifies testicular microlithiasis as intratubular hydroxyapatite. J. Urol. 171, 92–96 (2004). CASISIPubMedArticle
- Holm, M., Lenz, S., De Meyts, E. R. & Skakkebaek, N. E. Microcalcifications and carcinoma in situ of the testis. BJU Int. 87, 144–149 (2001). CASPubMedArticle
- Jorgensen, A., Blomberg, J. M., Nielsen, J. E., Juul, A. & Rajpert-de, M. E. Influence of vitamin D on cisplatin sensitivity in testicular germ cell cancer-derived cell lines and in a NTera2 xenograft model. J. Steroid Biochem. Mol. Biol. 136, 238–246 (2013). CASPubMedArticle
- Koster, R. et al. Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J. Clin. Invest. 120, 3594–3605 (2010). CASPubMedArticle
- Feldman, D. R., Bosl, G. J., Sheinfeld, J. & Motzer, R. J. Medical treatment of advanced testicular cancer. JAMA 299, 672–684 (2008). CASISIPubMedArticle
- Nyomba, B. L., Bouillon, R. & De Moor, P. Evidence for an interaction of insulin and sex steroids in the regulation of vitamin D metabolism in the rat. J. Endocrinol. 115, 295–301 (1987). CASPubMedArticle
- Henry, H. L. Regulation of vitamin D metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 25, 531–541 (2011). CASPubMedArticle
- Chanakul, A. et al. FGF-23 regulates CYP27B1 transcription in the kidney and in extra-renal tissues. PLoS ONE 8, e72816 (2013). CASPubMedArticle
- Li, S. A. et al. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct. Funct. 29, 91–99 (2004). CASPubMedArticle
- Imai, M. et al. Klotho protein activates the PKC pathway in the kidney and testis and suppresses 25-hydroxyvitamin D3 1α-hydroxylase gene expression. Endocrine 25, 229–234 (2004). CASPubMedArticle
- Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006). CASADSISIPubMedArticle
- Razzaque, M. S. & Lanske, B. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J. Endocrinol. 194, 1–10 (2007). CASISIPubMedArticle
- Steger, K., Tetens, F., Seitz, J., Grothe, C. & Bergmann, M. Localization of fibroblast growth factor 2 (FGF-2) protein and the receptors FGFR 1–4 in normal human seminiferous epithelium. Histochem. Cell Biol. 110, 57–62 (1998). CASPubMedArticle
- Lanske, B. & Razzaque, M. S. Premature aging in klotho mutant mice: cause or consequence? Ageing Res. Rev. 6, 73–79 (2007). PUBMEDArticle
- Usdin, T. B. et al. Tuberoinfundibular peptide of 39 residues is required for germ cell development. Endocrinology 149, 4292–4300 (2008). CASPubMedArticle
- Czykier, E., Zabel, M. & Surdyk-Zasada, J. Immunolocalization of PTHrP in prepubertal and pubertal testis of European bison. Folia Histochem. Cytobiol. 40, 373–375 (2002). PUBMED
- Pondel, M. Calcitonin and calcitonin receptors: bone and beyond. Int. J. Exp. Pathol. 81, 405–422 (2000). CASISIPubMedArticle
- Saarem, K. & Pedersen, J. I. Effect of age, gonadectomy and hypophysectomy on mitochondrial hydroxylation of vitamin D3 (cholecalciferol) and of 5β-cholestane-3α, 7α, 12α-triol in female and male rat liver. Biochem. J. 251, 475–481 (1988). CASPubMed
- Saarem, K. & Pedersen, J. I. Sex differences in the hydroxylation of cholecalciferol and of 5β-cholestane-3α, 7α, 12α-triol in rat liver. Biochem. J. 247, 73–78 (1987). CASPubMed
- Small, M., Beastall, G. H., Semple, C. G., Cowan, R. A. & Forbes, C. D. Alteration of hormone levels in normal males given the anabolic steroid stanozolol. Clin. Endocrinol. (Oxf.) 21, 49–55 (1984). CASADSPubMedArticle
- Saunders, P. T. et al. Differential expression of oestrogen receptor α and β proteins in the testes and male reproductive system of human and non-human primates. Mol. Hum. Reprod. 7, 227–236 (2001). CASISIPubMedArticle
- Joseph, A., Shur, B. D. & Hess, R. A. Estrogen, efferent ductules, and the epididymis. Biol. Reprod. 84, 207–217 (2011). CASPubMedArticle
- Tanaka, Y., Castillo, L. & DeLuca, H. F. Control of renal vitamin D hydroxylases in birds by sex hormones. Proc. Natl Acad. Sci. USA 73, 2701–2705 (1976). CASADSPubMedArticle
- Nangia, A. K., Hill, O., Waterman, M. D., Schwender, C. E. & Memoli, V. Testicular maturation arrest to testis cancer: spectrum of expression of the vitamin D receptor and vitamin D treatment in vitro. J. Urol. 178, 1092–1096 (2007). CASPubMedArticle
- Kim, M. S. et al. DNA demethylation in hormone-induced transcriptional derepression. Nature 461, 1007–1012 (2009). CASISIPubMedArticle
- Chen, K. S. & DeLuca, H. F. Cloning of the human 1α,25-dihydroxyvitamin D-3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim. Biophys. Acta 1263, 1–9 (1995). PUBMEDArticle
- Gensure, R. C. et al. Homologous up-regulation of vitamin D receptors is tissue specific in the rat. J. Bone Miner. Res. 13, 454–463 (1998). CASPubMedArticle
- Muller, D. et al. Molecular cloning, tissue distribution, and chromosomal mapping of the human epithelial Ca2+ channel (ECAC1). Genomics 67, 48–53 (2000). CASISIPubMedArticle
- Schuh, K. et al. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J. Biol. Chem. 279, 28220–28226 (2004). CASPubMedArticle
- Shiba, K. et al. Na+/Ca2+ exchanger modulates the flagellar wave pattern for the regulation of motility activation and chemotaxis in the ascidian spermatozoa. Cell Motil. Cytoskeleton 63, 623–632 (2006). CASPubMedArticle
- Corut, A. et al. Mutations in SLC34A2 cause pulmonary alveolar microlithiasis and are possibly associated with testicular microlithiasis. Am. J. Hum. Genet. 79, 650–656 (2006). CASISIPubMedArticle
- Hinson, T. K. et al. Identification of putative transmembrane receptor sequences homologous to the calcium-sensing G-protein-coupled receptor. Genomics 45, 279–289 (1997). CASISIPubMedArticle
- Saini, R. K. et al. 1,25-dihydroxyvitamin D3 regulation of fibroblast growth factor-23 expression in bone cells: evidence for primary and secondary mechanisms modulated by leptin and interleukin-6. Calcif. Tissue Int. 92, 339–353 (2013). CASPubMedArticle
- Forster, R. E. et al. Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem. Biophys. Res. Commun. 414, 557–562 (2011). CASPubMedArticle
- Shimasaki, S., Koba, A., Mercado, M., Shimonaka, M. & Ling, N. Complementary DNA structure of the high molecular weight rat insulin-like growth factor binding protein (IGF-BP3) and tissue distribution of its mRNA. Biochem. Biophys. Res. Commun. 165, 907–912 (1989). CASPubMedArticle
- Hirai, T. et al. Effect of 1,25-dihydroxyvitamin D on testicular morphology and gene expression in experimental cryptorchid mouse: testis specific cDNA microarray analysis and potential implication in male infertility. J. Urol. 181, 1487–1492 (2009). CASPubMedArticle
- Zanatta, L. et al. Effect of 1α, 25-dihydroxyvitamin D3 in plasma membrane targets in immature rat testis: ionic channels and gamma-glutamyl transpeptidase activity. Arch. Biochem. Biophys. 515, 46–53 (2011). CASPubMedArticle
- Rosso, A. et al. 1α, 25(OH)2-vitamin D3 stimulates rapid plasma membrane calcium influx via MAPK activation in immature rat Sertoli cells. Biochimie 94, 146–154 (2011). CASPubMedArticle
- Panda, D. K. et al. Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc. Natl Acad. Sci. USA 98, 7498–7503 (2001). CASADSPubMedArticle
- Oury F. et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J. Clin. Invest. 123, 2421–2433 (2013). CASPubMedArticle
- Jeong, J. H. et al. Expression of Runx2 transcription factor in non-skeletal tissues, sperm and brain. J. Cell Physiol. 217, 511–517 (2008). CASPubMedArticle
Martin Blomberg Jensen
Competing interests statement
The author declares that he holds two patent applications related to vitamin D and reproduction (patent WO/1016/17116 and WO/2012/116699).
Martin Blomberg Jensen studied medicine at the University of Copenhagen and obtained an MD degree in 2006. His interest in calcium and vitamin D signalling started during two clinical assignments at the department of Nephrology and Endocrinology, Rigshospitalet, Denmark. Since 2008, he has worked as an independent scientist under the supervision of Prof. Anders Juul in Department of Growth and Reproduction at Rigshospitalet, Denmark. His research has focused on the characterization of vitamin D signalling in male reproduction, which in part addresses the important relationship between bone signalling and gonadal function. The relationship between calcium homeostasis and male reproduction has not been characterized completely, and he is currently studying the role of selected vitamin D regulated genes and testicular regulators of vitamin D metabolism for male reproductive function.