Diabetes and Zinc - several studies

Zinc and Diabetes: A Connection between Micronutrient and Metabolism - Aug 2024

Cells 2024, 13(16), 1359; https://doi.org/10.3390/cells13161359

by Rahnuma Ahmad 1ORCID,Ronald Shaju 2ORCID, Azeddine Atfi 3 and Mohammed S. Razzaque 2,*ORCID

  • 1 Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh

  • 2 Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA

  • 3 Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA

Diabetes mellitus is a global health problem and a major contributor to mortality and morbidity. The management of this condition typically involves using oral antidiabetic medication, insulin, and appropriate dietary modifications, with a focus on macronutrient intake. However, several human studies have indicated that a deficiency in micronutrients, such as zinc, can be associated with insulin resistance as well as greater glucose intolerance. Zinc serves as a chemical messenger, acts as a cofactor to increase enzyme activity, and is involved in insulin formation, release, and storage. These diverse functions make zinc an important trace element for the regulation of blood glucose levels. Adequate zinc levels have also been shown to reduce the risk of developing diabetic complications. This review article explains the role of zinc in glucose metabolism and the effects of its inadequacy on the development, progression, and complications of diabetes mellitus. Furthermore, it describes the impact of zinc supplementation on preventing diabetes mellitus. The available information suggests that zinc has beneficial effects on the management of diabetic patients. Although additional large-scale randomized clinical trials are needed to establish zinc’s clinical utility further, efforts should be made to increase awareness of its potential benefits on human health and disease.

📄 Download the PDF from VitaminDWiki


129 References
  1. Holt, R.I.; DeVries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Norgaard, K.; Pettus, J.; Renard, E.; et al. The management of type 1 diabetes in adults. A consensus report by the American diabetes association (ADA) and the European association for the Study of Diabetes (EASD). Diabetes Care 2021, 44, 2589-2625. [CrossRef]

  2. ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. Classification and diagnosis of diabetes: Standards of Care in Diabetes. Diabetes Care 2022, 46, S19-S40. [CrossRef]

  3. Hasanato, R.M. Trace elements in type 2 diabetes mellitus and their association with glycemic control. Afr. Health Sci. 2020, 20, 287-293. [CrossRef]

  4. Farooq, M. Zinc deficiency is associated with poor glycemic control. J. Coll. Physicians Surg. Pak. 2019,29, 253-257. [CrossRef]

  5. Tamura, Y. The role of Zinc homeostasis in the prevention of diabetes mellitus and cardiovascular diseases. J. Atheroscler. Thromb 28,1109-1122. [CrossRef] [PubMed]

  6. Maret, W. Zinc in pancreatic islet biology, insulin sensitivity, and diabetes. Prev. Nutr. Food Sci. 2017, 22,1-8. [CrossRef]

  7. Blakemore, L.J.; Trombley, P.Q. Zinc as a neuromodulator in the central nervous system with a focus on the olfactory bulb. Front. Cell. Neurosci. 2017, H, 297. [CrossRef]

  8. Lim, K.H.C.; Riddell, L.J.; Nowson, C.A.; Booth, A.O.; Szymlek-Gay, E.A. Iron and Zinc nutrition in the economically-developed world: A review. Nutrients 2013, 5, 3184-3211. [CrossRef] [PubMed]

  9. Saper, R.B.; Rash, R. Zinc : An essential micronutrient. Am. Fam. Physician 2009, 79, 768-772. [PubMed]

  10. Santos, H.O.; Teixeira, F.J.; Schoenfeld, B.J. Dietary vs. pharmacological doses of Zinc : A clinical review. Clin. Nutr. 2020, 39, 1345-1353. [CrossRef]

  11. DRI Dietary Reference Intakes. Applications in Dietary Assessment: Washington, DC, USA, 2000. [CrossRef]

  12. Szewczyk, B. Zinc homeostasis and neurodegenerative disorders. Front. Aging Neurosci. 2013, 5, 54272. [CrossRef] [PubMed]

  13. Wang, L.J.; Wang, M.Q.; Hu, R.; Yang, Y.; Huang, Y.S.; Xian, S.X.; Lu, L. Effect of Zinc supplementation on maintenance Hemodialysis Patients: A systematic review and meta-analysis of 15 randomized controlled trials. BioMed Res. Int. 2017, 2017,1024769. [CrossRef] [PubMed]

  14. Ranasinghe, P.; Wathurapatha, W.; Ishara, M.; Jayawardana, R.; Galappatthy, P.; Katulanda, P.; Constantine, G. Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr. Metab. 2015,12,1-16. [CrossRef] [PubMed]

  15. Wegmuller, R.; Tay, F.; Zeder, C.; Brnic, M.; Hurrell, R.F. Zinc absorption by young adults from supplemental Zinc citrate is comparable with that from Zinc gluconate and higher than from Zinc oxide. J. Nutr. 2014,144,132-136. [CrossRef] [PubMed]

  16. Shkembi, B.; Huppertz, T. Influence of dairy products on bioavailability of Zinc from other food products: A Review of complementarity at a meal level. Nutrients 2021,13, 4253. [CrossRef] [PubMed]

  17. Fairweather-Tait, S.; Hurrell, R.F. Bioavailability of minerals and trace elements. Nutr. Res. Rev. 1996, 9, 295-324. [CrossRef] [PubMed]

  18. Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013,18,144-157. [PubMed]

  19. Johnson, P.E.; Hunt, C.D.; Milne, D.B.; Mullen, L.K. Homeostatic control of Zinc metabolism in men: Zinc excretion and balance in men fed diets low in Zinc . Am. J. Clin. Nutr. 1993, 57, 557-565. [CrossRef]

  20. King, J.C.; Shames, D.M.; Woodhouse, L.R. Zinc homeostasis in humans. J. Nutr. 2000,130,1360S-1366S. [CrossRef]

  21. Wan, Y.; Zhang, B. The impact of Zinc and Zinc homeostasis on the intestinal mucosal barrier and intestinal diseases. Biomolecules

  22. 12, 900. [CrossRef]

  23. Nutrition and Food Safety (NFS). Vitamin and Mineral Requirements in Human Nutrition; World Health Organization and Food and Agricultural Organization of the United Nations: Geneva, Switzerland, 2004; ISBN 9241546123.

  24. Turnlund, J.R.; King, J.C.; Keyes, W.R.; Gong, B.; Michel, M.C. A stable isotope study of Zinc absorption in young men: Effects of phytate and a-cellulose. Am. J. Clin. Nutr. 1984, 40,1071-1077. [CrossRef] [PubMed]

  25. Krebs, N.F. Overview of Zinc absorption and excretion in the human gastrointestinal Tract. J. Nutr. 2000, 130, 1374S-1377S. [CrossRef] [PubMed]

  26. Tubek, S. Selected Zinc metabolism parameters in premenopausal and postmenopausal women with moderate and severe primary arterial hypertension. Biol. Trace Elem. Res. 2007,116,249-255. [CrossRef]

  27. Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lonnerdal, B.; Ruel, M.T.; Sandtrom, B.; Wasantwisut, E.; Hotz, C. International Zinc Nutrition Consultative Group (IZiNCG) technical document #Assessment of the risk of Zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99-S203. [PubMed]

  28. Devergnas, S.; Chimienti, F.; Naud, N.; Pennequin, A.; Coquerel, Y.; Chantegrel, J.; Favier, A.; Seve, M. Differential regulation of Zinc efflux transporters ZnT-1, ZnT-5 and ZnT-7 gene expression by Zinc levels: A real-time RT-PCR study. Biochem. Pharmacol. 2004, 68, 699-709. [CrossRef]

  29. Sekler, I.; Sensi, S.L.; Hershfinkel, M.; Silverman, W.F. Mechanism and regulation of cellular Zinc transport. Mol. Med. 2007,13, 337-343. [CrossRef]

  30. Liuzzi, J.P.; Cousins, R.J. Mammalian Zinc transporters. Annu. Rev. Nutr. 2004, 24,151-172. [CrossRef]

  31. McMahon, R.J.; Cousins, R.J. Mammalian Zinc transporters. J. Nutr. 1998,128, 667-670. [CrossRef]

  32. McMahon, R.J.; Cousins, R.J. Regulation of the Zinc transporter ZnT-1 by dietary Zinc . Proc. Natl. Acad. Sci. USA 1998, 95, 4841-4846. [CrossRef]

  33. Maret, W. Zinc in cellular regulation: The nature and significance of "zinc signals". Int. J. Mol. Sci. 2017,18, 2285. [CrossRef]

  34. Razzaque, M.S. COVID-19 pandemic: Can Zinc supplementation provide an additional shield against the infection? Comput. Struct. Biotechnol. J. 2021,19,1371-1378. [CrossRef] [PubMed]

  35. Razzaque, M.S. COVID-19 Pandemic: Can maintaining optimal Zinc balance enhance host resistance? Tohoku J. Exp. Med. 2020, 251,175-181. [CrossRef] [PubMed]

  36. Andreini, C.; Banci, L.; Bertini, I.; Rosato, A. counting the Zinc -proteins encoded in the human genome. J. Proteome Res. 2006, 5, 196-201. [CrossRef] [PubMed]

  37. King, J.C. Zinc : An essential but elusive nutrient. Am. J. Clin. Nutr. 2011, 94, 679S-684S. [CrossRef] [PubMed]

  38. Jones, S.; Farr, G.; Nimmanon, T.; Ziliotto, S.; Gee, J.M.W.; Taylor, K.M. The importance of targeting signalling mechanisms of the SLC39A family of Zinc transporters to inhibit endocrine resistant breast cancer. Explor. Target. Antitumor 2022, 3, 224-239. [CrossRef]

  39. Maywald, M.; Rink, L. Zinc in human health and infectious diseases. Biomolecules 2022,12,1748. [CrossRef] [PubMed]

  40. Bitirim, C.V. The role of Zinc transporter proteins as predictive and prognostic biomarkers of hepatocellular cancer. Peer] 2021, 9, e12314. [CrossRef] [PubMed]

  41. Fong, L.Y.; Farber, J.L.; Croce, C.M. Zinc intake, microRNA dysregulation, and esophageal cancer. Aging 2016, 8, 1161-1162. [CrossRef]

  42. MacKenzie, S.; Bergdahl, A. Zinc homeostasis in diabetes mellitus and vascular complications. Biomedicines 2022, 10, 139. [CrossRef]

  43. Wessels, I.; Maywald, M.; Rink, L. Zinc as a gatekeeper of immune function. Nutrients 2017, 9,1286. [CrossRef]

  44. Uwitonze, A.M.; Ojeh, N.; Murererehe, J.; Atfi, A.; Razzaque, M.S. Zinc adequacy is essential for the maintenance of optimal oral health. Nutrients 2020,12, 949. [CrossRef] [PubMed]

  45. Amos, A.; Razzaque, M.S. Zinc and its role in vitamin D function. Curr. Res. Physiol. 2022, 5, 203-207. [CrossRef] [PubMed]

  46. Olechnowicz, J.; Tinkov, A.; Skalny, A.; Suliburska, J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci. 2018, 68,19-31. [CrossRef] [PubMed]

  47. Fukunaka, A.; Fujitani, Y. Role of Zinc homeostasis in the pathogenesis of diabetes and obesity. Int. J. Mol. Sci. 2018,19, 476. [CrossRef] [PubMed]

  48. Coulston, L.; Dandona, P. Insulin-like effect of Zinc on adipocytes. Diabetes 1998,29, 665-667. [CrossRef] [PubMed]

  49. Khorsandi, H.; Nikpayam, O.; Yousefi, R.; Parandoosh, M.; Hosseinzadeh, N.; Saidpour, A.; Ghorbani, A. Zinc supplementation improves body weight management, inflammatory biomarkers and insulin resistance in individuals with obesity: A randomized, placebo-controlled, double-blind trial. Diabetol. Metab. Syndr. 2019,11,1-10. [CrossRef] [PubMed]

  50. Abdollahi, S.; Toupchian, O.; Jayedi, A.; Meyre, D.; Tam, V.; Soltani, S. Zinc supplementation and body weight: A systematic review and dose-response meta-analysis of randomized controlled trials. Adv. Nutr. Int. Rev. J. 2020,11, 398-411. [CrossRef] [PubMed]

  51. Franco, C.; Canzoniero, L.M.T. Zinc homeostasis and redox alterations in obesity. Front. Endocrinol. 2024,14,1273177. [CrossRef] [PubMed]

  52. Park, J.H.; Grandjean, C.J.; Antonson, D.L.; Vanderhoof, J.A. Effects of short-term isolated Zinc deficiency on intestinal growth and activities of several brush border enzymes in weaning rats. Pediatr. Res. 1985,19,1333-1336. [CrossRef] [PubMed]

  53. Shankar, A.H.; Prasad, A.S. Zinc and immune function: The biological basis of altered resistance to infection. Am. J. Clin. Nutr. 1998, 68, 447S-463S. [CrossRef]

  54. Hassan, A.; Sada, K.K.; Ketheeswaran, S.; Dubey, A.K.; Bhat, M.S. Role of Zinc in mucosal health and disease: A review of physiological, biochemical, and molecular processes. Cureus 2020,12, e8197. [CrossRef] [PubMed]

  55. Prasad, A.S.; Bao, B.; Beck, F.W.; Sarkar, F.H. Zinc -suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-kappaB. Nutrition 2011,27, 816-823. [CrossRef] [PubMed]

  56. Prasad, A.S.; Bao, B.; Beck, F.W.; Kucuk, O.; Sarkar, F.H. Antioxidant effect of Zinc in humans. Free. Radic. Biol. Med. 2004, 37, 1182-1190. [CrossRef] [PubMed]

  57. von Bulow, V.; Dubben, S.; Engelhardt, G.; Hebel, S.; Plumakers, B.; Heine, H.; Rink, L.; Haase, H. Zinc -dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B. J. Immunol. 2007,179, 4180-4186. [CrossRef] [PubMed]

  58. Brieger, A.; Rink, L.; Haase, H. Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free Zinc ions. J. Immunol. 2013,191,1808-1817. [CrossRef] [PubMed]

  59. Ferdowsi, P.V.; Ahuja, K.D.K.; Beckett, J.M.; Myers, S. Capsaicin and Zinc signalling pathways as promising targets for managing insulin resistance and type 2 diabetes. Molecules 2023, 28, 2861. [CrossRef] [PubMed]

  60. Ranasinghe, P.; Pigera, S.; Galappatthy, P.; Katulanda, P.; Constantine, G.R. Zinc and diabetes mellitus: Understanding molecular mechanisms and clinical implications. DARU J. Pharm. Sci. 2015, 23,1-13. [CrossRef] [PubMed]

  61. Kelishadi, R.; Hashemipour, M.; Adeli, K.; Tavakoli, N.; Movahedian-Attar, A.; Shapouri, J.; Poursafa, P.; Rouzbahani, A. Effect of Zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndrome. Metab. Syndr. Relat. Disord. 2010, 8, 505-510. [CrossRef] [PubMed]

  62. Vardatsikos, G.; Pandey, N.R.; Srivastava, A.K. Insulino-mimetic and anti-diabetic effects of Zinc . J. Inorg. Biochem. 2013,120, 8-17. [CrossRef] [PubMed]

  63. Chimienti, F. Zinc , pancreatic islet cell function and diabetes: New insights into an old story. Nutr. Res. Rev. 2013, 26, 1-11. [CrossRef]

  64. Li, Y.V. Zinc and insulin in pancreatic beta-cells. Endocrine 2013, 45,178-189. [CrossRef] [PubMed]

  65. Myers, S.A. Zinc transporters and Zinc signaling: New insights into their role in type 2 diabetes. Int. J. Endocrinol. 2015,1-7. [CrossRef]

  66. Kambe, T.; Hashimoto, A.; Fujimoto, S. Current understanding of ZIP and ZnT Zinc transporters in human health and diseases. Cell. Mol. Life Sci. 2014, 71, 3281-3295. [CrossRef] [PubMed]

  67. Cai, Y.; Kirschke, C.P.; Huang, L. SLC30A family expression in the pancreatic islets of humans and mice: Cellular localization in the beta-cells. J. Mol. Histol. 2018, 49,133-145. [CrossRef] [PubMed]

  68. Wijesekara, N.; Dai, F.F.; Hardy, A.B.; Giglou, P.R.; Bhattacharjee, A.; Koshkin, V.; Chimienti, F.; Gaisano, H.Y.; Rutter, G.A.; Wheeler, M.B. Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 2010, 53,1656-1668. [CrossRef]

  69. Davidson, H.W.; Wenzlau, J.M.; O'Brien, R.M. Zinc transporter 8 (ZnT8) and beta cell function. Trends Endocrinol Metab. 2014, 25, 415-424. [CrossRef] [PubMed]

  70. Foster, M.; Chu, A.; Petocz, P.; Samman, S. Zinc transporter gene expression and glycemic control in post-menopausal women with type 2 diabetes mellitus. J. Trace Elements Med. Biol. 2014,28, 448-452. [CrossRef]

  71. Lefebvre, B.; Vandewalle, B.; Balavoine, A.-S.; Queniat, G.; Moerman, E.; Vantyghem, M.-C.; Le Bacquer, O.; Gmyr, V.; Pawlowski, V.; Kerr-Conte, J.; et al. Regulation and functional effects of ZNT8 in human pancreatic islets. J. Endocrinol. 2012, 214, 225-232. [CrossRef] [PubMed]

  72. Cruz, K.J.C.; de Oliveira, A.R.S.; Morais, J.B.S.; Severo, J.S.; Mendes, P.M.V.; Melo, S.R.d.S.; de Sousa, G.S.; Marreiro, D.D.N. Zinc and insulin resistance: Biochemical and molecular aspects. Biol. Trace Elem. Res. 2018,186, 407-412. [CrossRef]

  73. Huang, L.; Yan, M.; Kirschke, C.P. Over-expression of ZnT7 increases insulin synthesis and secretion in pancreatic beta-cells by promoting insulin gene transcription. Exp. Cell Res. 2010, 316, 2630-2643. [CrossRef]

  74. Xiang, J.; Li, X.-Y.; Xu, M.; Hong, J.; Huang, Y.; Tan, J.-R.; Lu, X.; Dai, M.; Yu, B.; Ning, G. Zinc transporter-8 gene (SLC30A8) is associated with type 2 diabetes in Chinese. J. Clin. Endocrinol. Metab. 2008, 93, 4107-4112. [CrossRef] [PubMed]

  75. Salem, S.D.; Saif-Ali, R.; Ismail, I.S.; Al-Hamodi, Z.; Muniandy, S. Contribution of SLC30A8 variants to the risk of type 2 diabetes in a multi-ethnic population: A case control study. BMC Endocr. Disord. 2014,14, 2. [CrossRef]

  76. Keller, S.R. Role of the insulin-regulated aminopeptidase IRAP in insulin action and diabetes. Biol. Pharm. Bull. 2004, 27, 761-764. [CrossRef] [PubMed]

  77. Walter, P.L.; Kampkotter, A.; Eckers, A.; Barthel, A.; Schmoll, D.; Sies, H.; Klotz, L.-O. Modulation of FoxO signaling in human hepatoma cells by exposure to copper or Zinc ions. Arch. Biochem. Biophys. 2006, 454,107-113. [CrossRef] [PubMed]

  78. Tripathy, S.; Sumathi, S.; Raj, G. Minerals nutritional status of type 2 diabetic subjects. Int. J. Diabetes Dev. Ctries. 2003,24, 27-28.

  79. Hussein, M.; Fathy, W.; Hassan, A.; Elkareem, R.A.; Marzouk, S.; Kamal, Y.S. Zinc deficiency correlates with severity of diabetic polyneuropathy. Brain Behav. 2021,11, e32349. [CrossRef]

  80. Beloucif, A.; Kechrid, Z.; Bekada, A.M.A. Effect of Zinc deficiency on blood glucose, lipid profile, and antioxidant status in streptozotocin diabetic rats and the potential role of sesame oil. Biol. Trace Elem. Res. 2021, 200, 3236-3247. [CrossRef]

  81. Maremanda, K.P.; Srivalliputturu, S.B.; Jena, G. Zinc deficient diet exacerbates the testicular and epididymal damage in type 2 diabetic rat: Studies on oxidative stress-related mechanisms. Reprod. Biol. 2020, 20,191-201. [CrossRef]

  82. Sahu, C.; Jena, G. Dietary Zinc deficient condition increases the bisphenol a toxicity in diabetic rat testes. Mutat. Res. Toxicol. Environ. Mutagen. 2022, 882, 503547. [CrossRef]

  83. Elsaed, W.M.; Mohamed, H.A. Dietary Zinc modifies diabetic-induced renal pathology in rats. Ren. Fail. 2016, 39, 246-257. [CrossRef]

  84. Fushimi, H.; Inoue, T.; Yamada, Y.; Horie, H.; Kameyama, M.; Inoue, K.; Minami, T.; Okazaki, Y. Zinc deficiency exaggerates diabetic osteoporosis. Diabetes Res. Clin. Pr. 1993, 20,191-196. [CrossRef] [PubMed]

  85. Kim, H.J.; Vaziri, N.D. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am. J. Physiol. Physiol. 2010,298, F662-F671. [CrossRef] [PubMed]

  86. Suzuki, M.; Betsuyaku, T.; Ito, Y.; Nagai, K.; Nasuhara, Y.; Kaga, K.; Kondo, S.; Nishimura, M. Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2008, 39, 673-682. [CrossRef] [PubMed]

  87. Zhang, C.; Lu, X.; Tan, Y.; Li, B.; Miao, X.; Jin, L.; Shi, X.; Zhang, X.; Miao, L.; Li, X.; et al. Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in Zinc deficient mouse model. PLoS ONE 2012, 7, e49257. [CrossRef] [PubMed]

  88. Zhao, Y.; Tan, Y.; Dai, J.; Li, B.; Guo, L.; Cui, J.; Wang, G.; Shi, X.; Zhang, X.; Mellen, N.; et al. Exacerbation of diabetes-induced testicular apoptosis by Zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicol. Lett. 2011, 200,100-106. [CrossRef] [PubMed]

  89. Li, B.; Cui, W.; Tan, Y.; Luo, P.; Chen, Q.; Zhang, C.; Qu, W.; Miao, L.; Cai, L. Zinc is essential for the transcription function of Nrf2 in human renal tubule cells in vitro and mouse kidney in vivo under the diabetic condition. J. Cell. Mol. Med. 2014,18, 895-906. [CrossRef] [PubMed]

  90. Rashid, S.; Qamar, K.; Tassaduq, I. Role of vitamin E in preventing arteriohyalinization in kidneys of streptozotocin induced diabetic mice. J. Pak. Med. Assoc. 2015, 65,1085-1088.

  91. Miao, X.; Sun, W.; Miao, L.; Fu, Y.; Wang, Y.; Su, G.; Liu, Q. Zinc and diabetic retinopathy. J. Diabetes Res. 2013, 425854. [CrossRef]

  92. Milnerowicz, H.; Jablonowska, M.; Bizon, A. Change of Zinc , copper, and metallothionein concentrations and the copper-zinc superoxide dismutase activity in patients with pancreatitis. Pancreas 2009, 38, 681-688. [CrossRef]

  93. Santa, S.R.; Santasmita, P.; Swati, B.; Kanika, C.; Aruna, B.; Gargi, S.; Soma, G. Status of serum magnesium, Zinc and copper in patients suffering from type 2 diabetes mellitus. J. Drug Deliv. Ther. 2014, 4, 70-72. [CrossRef]

  94. Saharia, G.K.; Goswami, R.K. Evaluation of serum Zinc status and glycated hemoglobin of type 2 diabetes mellitus patients in a tertiary care hospital of assam. J. Lab. Physicians 2013, 5, 30-33. [CrossRef] [PubMed]

  95. Al-Maroof, R.; Al-Sharbatti, S.S. Serum Zinc levels in diabetic patients and effect of Zinc supplementation on glycemic control of type 2 diabetics. Saudi Med. J. 2006, 27, 344-350. [PubMed]

  96. Zargar, A.H.; Shah, N.A.; Shah, N.; Masoodi, S.R.; Laway, B.A.; Dar, F.A.; Khan, A.R.; Sofi, F.A.; Wani, A.I. Copper, Zinc , and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad. Med. J. 1998, 74, 665-668. [CrossRef] [PubMed]

  97. Migdalis, I.N.; Triantafilou, P.; Petridou, E.; Varvarigos, N.; Totolos, V.; Rigopoulos, A. Lipid peroxides in type 2 diabetic patients with neuropathy. Res. Commun. Mol. Pathol. Pharmacol. 2005,117-118,5-12.

  98. Jansen, J.; Karges, W.; Rink, L. Zinc and diabetes--clinical links and molecular mechanisms. J. Nutr. Biochem. 2009, 20, 399-417. [CrossRef] [PubMed]

  99. Jenner, A.; Ren, M.; Rajendran, R.; Ning, P.; Huat, B.T.K.; Watt, F.; Halliwell, B. Zinc supplementation inhibits lipid peroxidation and the development of atherosclerosis in rabbits fed a high cholesterol diet. Free. Radic. Biol. Med. 2007, 42, 559-566. [CrossRef] [PubMed]

  100. Meduri, G.U. Clinical review: A paradigm shift: The bidirectional effect of inflammation on bacterial growth. Clinical implications for patients with acute respiratory distress syndrome. Crit. Care 2002, 6, 24-29. [CrossRef]

  101. Jayawardena, R.; Ranasinghe, P.; Galappatthy, P.; Malkanthi, R.; Constantine, G.; Katulanda, P. Effects of Zinc supplementation on diabetes mellitus: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2012, 4,13. [CrossRef] [PubMed]

  102. Afkhami-Ardekani, M.; Karimi, M.; Mohammadi, S.; Forough, N. Effect of Zinc sulfate supplementation on lipid and glucose in type 2 diabetic patients. Pak. J. Nitr. 2008, 7, 550-553. [CrossRef]

  103. Farvid, M.S.; Homayouni, F.; Amiri, Z.; Adelmanesh, F. Improving neuropathy scores in type 2 diabetic patients using micronutri­ents supplementation. Diabetes Res. Clin. Pract. 2011, 93, 86-94. [CrossRef]

  104. Farvid, M.S.; Jalali, M.; Siassi, F.; Hosseini, M. Comparison of the effects of vitamins and/or mineral supplementation on glomerular and tubular dysfunction in type 2 diabetes. Diabetes Care 2005, 28, 2458-2464. [CrossRef] [PubMed]

  105. Hettiarachchi, M.; Gunasekara, P.; Liyanage, C.; Lekamwasam, S. Blood sugar lowering effect of Zinc and multi vitamin/ mineral supplementation is dependent on initial fasting blood glucose. J. Diabetol. 2011, 2. [CrossRef]

  106. Hettiarachchi, M.; Gunasekara, P.; Liyanage, C.; Lekamwasam, S. Effects of Zinc and multimineral vitamin supplementation on glycemic and lipid control in adult diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2011, 4, 53-60. [CrossRef] [PubMed]

  107. Hayee, M.A.; Mohammad, Q.D.; Haque, A. Diabetic neuropathy and Zinc therapy. Bangladesh Med. Res. Counc. Bull. 2005, 31, 62-67. [PubMed]

  108. Gupta, R.; Garg, V.K.; Mathur, D.K.; Goyal, R.K. Oral Zinc therapy in diabetic neuropathy. J. Assoc. Physicians India 1998, 46, 939-942.

  109. Hegazi, S.M.; Ahmed, S.S.; Mekkawy, A.A.; Mortagy, M.S.; Abdel-Kadder, M. Effect of Zinc supplementation on serum glucose, insulin, glucagon, glucose-6-phosphatase, and mineral levels in diabetics. J. Clin. Biochem. Nutr. 1992,12, 209-215. [CrossRef]

  110. Hussain, S.A.; Khadim, H.M.; Khalaf, B.H.; Ismail, S.H.; Hussein, K.I.; Sahib, A.S. Effects of melatonin and Zinc on glycemic control in type 2 diabetic patients poorly controlled with metformin. Saudi Med. J. 2006, 27,1483-1488.

  111. Kadhim, H.M.; Ismail, S.H.; Hussein, K.I.; Bakir, I.H.; Sahib, A.S.; Khalaf, B.H.; Hussain, S.A.-R. Effects of melatonin and Zinc on lipid profile and renal function in type 2 diabetic patients poorly controlled with metformin. J. Pineal Res. 2006, 41,189-193. [CrossRef]

  112. Parham, M.; Amini, M.; Aminorroaya, A.; Heidarian, E. Effect of Zinc supplementation on microalbuminuria in patients with type 2 diabetes: A double blind, randomized, placebo-controlled, cross-over trial. Rev. Diabet. Stud. 2008,5,102-109. [CrossRef]

  113. Partida-Hernández, G.; Arreola, F.; Fenton, B.; Cabeza, M.; Román-Ramos, R.; Revilla-Monsalve, M. Effect of Zinc replacement on lipids and lipoproteins in type 2-diabetic patients. Biomed. Pharmacother. 2006, 60,161-168. [CrossRef]

  114. Siddique, K.U.; Ashfaq, F.; Ali, W.; Reddy, H.D.; Mishra, A.; Khan, M.I. Effect of high-dose Zinc supplementation with oral hypoglycemic agents on glycemic control and inflammation in type-2 diabetic nephropathy patients. J. Nat. Sci. Biol. Med. 2013, 4, 336-340. [CrossRef]

  115. Simon, S.F.; Taylor, C.G. Dietary Zinc supplementation attenuates hyperglycemia in db/db Mice. Exp. Biol. Med. 2001, 226,43-51. [CrossRef] [PubMed]

  116. El-Ashmony, S.M.A.; Morsi, H.K.; Abdelhafez, A.M. Effect of Zinc supplementation on glycemic control, lipid profile, and renal functions in patients with type II diabetes: A single blinded, randomized, placebo-controlled, trial. J. Biol. Agric. Health 2012, 2, 33-41.

  117. Foster, M.; Petocz, P.; Samman, S. Effects of Zinc on plasma lipoprotein cholesterol concentrations in humans: A meta-analysis of randomised controlled trials. Atherosclerosis 2010,210, 344-352. [CrossRef] [PubMed]

  118. Foster, M.; Petocz, P.; Caterson, I.; Samman, S. Effects of Zinc and a-linolenic acid supplementation on glycemia and lipidemia in women with type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled trial. J. Diabetes Res. Clin. Metab. 2013, 9, 1-9. [CrossRef]

  119. Lee, Y.M.; Wolf, P.; Hauner, H.; Skurk, T. Effect of a fermented dietary supplement containing chromium and Zinc on metabolic control in patients with type 2 diabetes: A randomized, placebo-controlled, double-blind cross-over study. Food Nutr. Res. 2016, 60, 30298. [CrossRef]

  120. Oh, H.-M.; Yoon, J.-S. Glycemic control of type 2 diabetic patients after short-term Zinc supplementation. Nutr. Res. Pr. 2008, 2, 283-288. [CrossRef]

  121. Seet, R.C.; Lee, C.-Y.J.; Lim, E.C.; Quek, A.M.; Huang, H.; Huang, S.H.; Looi, W.F.; Long, L.H.; Halliwell, B. Oral Zinc supplementa­tion does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal Zinc levels. Atherosclerosis 2011, 219, 231-239. [CrossRef]

  122. Wang, X.; Wu, W.; Zheng, W.; Fang, X.; Chen, L.; Rink, L.; Min, J.; Wang, F. Zinc supplementation improves glycemic control for diabetes prevention and management: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2019,110, 76-90. [CrossRef]

  123. Foster, M.; Samman, S. Zinc and redox signaling: Perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid. Redox Signal. 2010,13,1549-1573. [CrossRef]

  124. Hughes, S.; Samman, S. The effect of Zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis. J. Am. Coll. Nutr. 2006, 25, 285-291. [CrossRef] [PubMed]

  125. Jafarnejad, S.; Mahboobi, S.; McFarland, L.V.; Taghizadeh, M.; Rahimi, F. Meta-analysis: Effects of Zinc supplementation alone or with multi-nutrients, on glucose control and lipid levels in patients with type 2 diabetes. Prev. Nutr. Food Sci. 2019,24, 8-23. [CrossRef] [PubMed]

  126. Chandra, R.K. Excessive intake of Zinc impairs immune responses. JAMA 1984, 252,1443-1446. [CrossRef] [PubMed]

  127. Donangelo, C.M.; Woodhouse, L.R.; King, S.M.; Viteri, F.E.; King, J.C. Supplemental Zinc lowers measures of iron status in young women with low iron reserves. J. Nutr. 2002,132,1860-1864. [CrossRef]

  128. Galvez-Fernandez, M.; Powers, M.; Grau-Perez, M.; Domingo-Relloso, A.; Lolacono, N.; Goessler, W.; Zhang, Y.; Fretts, A.; Umans, J.G.; Maruthur, N.; et al. Urinary Zinc and incident type 2 diabetes: Prospective evidence from the strong heart study. Diabetes Care 2022, 45, 2561-2569. [CrossRef]

  129. Alexander, R.; Khaja, A.; Debiec, N.; Fazioli, A.; Torrance, M.; Razzaque, M.S. Health-promoting benefits of lentils: Anti­inflammatory and anti-microbial effects. Curr. Res. Physiol. 2024, 7,100124. [CrossRef]

  130. Razzaque, M.S. Magnesium: Are we consuming enough? Nutrients 2018,10,1863. [CrossRef]


Effect of zinc supplementation in the management of type 2 diabetes: A grading of recommendations assessment, development, and evaluation-assessed, dose-response meta-analysis of randomized controlled trials - May 2023

Critical Reviews in Food Science and Nutrition

    https://doi.org/10.1080/10408398.2023.2209802 PDF behind $61 paywall

Kimia Ghaedi ORCID Icon,Dorsa Ghasempour ORCID Icon,Mohammadreza Jowshan ORCID Icon,Miaobing Zheng ORCID Icon,Saeed Ghobadi ORCID Icon & Alireza Jafari ORCID Icon

The question of whether zinc supplementation may improve cardio-metabolic health in patients with type 2 diabetes mellitus (T2DM) remains controversial and require further evaluation. This study aimed to summarize the effectiveness of oral zinc supplementation in improving cardio-metabolic risk markers in people with T2DM. We searched PubMed, Scopus, and Web of Science from inception to April 2023, for randomized controlled trials (RCTs). RCTs of type 2 diabetic adults (aged ≥18 years) comparing zinc supplementation with placebo were included. We excluded studies if not randomized, involved co-supplementation, and were conducted in children or pregnant women. Glycemic indices, lipid profiles, blood pressure, anthropometric measure, c-reactive protein (CRP), creatinine, and serum zinc were extracted. Certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methods. We used a random-effect model to perform the dose-response analysis. Effect sizes were presented as mean difference (MD) and 95% confidence interval (CI). 22 studies (n = 1442 participants) were included. The certainty of the evidence was rated as moderate to high.

Zinc supplementation significantly reduced glycemic indices: including two-hour postprandial glucose (2hpp) (mean difference (MD): −34.34 mg/dl; 95%CI: −51.61∼ −17.07), fast blood sugar (FBS) (MD: −23.32 mg/dl; 95% CI: −33.81∼ −12.83), and hemoglobin A1c (HbA1c) (MD: −0.47; 95% CI: −0.71∼ −0.23).

Zinc had a favorable effect on lipid profiles low-density lipoprotein (LDL) (MD: −10.76 mg/dl; CI: −17.79∼−3.73), triglyceride (TG) (MD: −18.23 mg/dl; CI: −32.81∼−3.65), total cholesterol (TC) (MD: −12.74 mg/dl; CI: −21.68∼−3.80), VLDL (MD: −5.39 mg/dl; CI: −7.35∼−3.43) and high-density lipoprotein (HDL) (MD: 4.04 mg/dl; CI: 0.96 ∼ 7.12). Systolic blood pressure (SBP) (MD): −3.64 mmHg; 95% CI: −6.77∼ −0.52), weight (MD: 1.00 kg; 95% CI: 0.34∼1.66), CRP (MD: −3.37 mg/l, 95% CI: −4.05∼ −2.70), and serum zinc (MD: 15.38 µg/dl; 95% CI: 10.74∼ 20.02) changed to a statistically significant extent with zinc supplementation. There was also a linear association between additional 10 mg/d zinc treatment with FBS, HbA1c, HDL, LDL, TG, TC, and serum zinc. A non-linear dose-response gradient was seen for FBS, HDL, and SBP (p < 0.05). Egger’s test showed no substantial publication bias.

Our findings strongly suggest a potential beneficial effect of zinc supplementation on type 2 diabetic patients. Further high-quality research is needed to determine the optimal form, dosage, and duration of zinc supplementation for this population.


Zinc Supplementation in Individuals with Prediabetes and type 2 Diabetes: a GRADE-Assessed Systematic Review and Dose-Response Meta-analysis - Oct 2023

Biological Trace Element Research Volume 202, pages 2966–2990, (2024)

    https://doi.org/10.1007/s12011-023-03895-7 PDF behind paywall

Matin Nazari, Mahlagha Nikbaf-Shandiz, Fereshteh Pashayee-Khamene, Reza Bagheri, Kian Goudarzi, Navid Vahid Hosseinnia, Sina Dolatshahi, Hossein Salehi Omran, Niusha Amirani, Damoon Ashtary-larky,

Zinc supplementation has therapeutic effects on cardiovascular disease (CVD) risk factors, including dyslipidemia, hyperglycemia, and inflammation as the main contributors to CVD pathogenesis. Since CVD is a major cause of mortality among people with type 2 diabetes mellitus (T2DM), this study aimed to overview the potential effects of zinc supplementation on CVD risk factors in T2DM patients. To determine appropriate randomized clinical trials (RCTs) investigating the effects of zinc supplementation on CVD risk factors, electronic sources including PubMed, Web of Science, and Scopus were systematically searched until January 2023. The heterogeneity of trials was checked using the I2 statistic. According to the heterogeneity tests, random-effects models were estimated, and pooled data were defined as the weighted mean difference (WMD) with a 95% confidence interval (CI).

Of the 4004 initial records, 23 studies that met inclusion criteria were analyzed in this meta-analysis. The pooled findings indicated the significant lowering effects of zinc supplementation on triglycerides (TG), total cholesterol (TC), fasting blood glucose (FBG), hemoglobin A1C (HbA1C), and C-reactive protein (CRP), while high-density cholesterol (HDL) concentrations showed an elevation after zinc supplementation. In addition to statistical significance, the effect of zinc supplementation on most of the variables was clinically significant; however, the quality of evidence in the included studies is regarded as low or very low for most variables.

Our study demonstrated that zinc supplementation has beneficial effects on glycemic control markers, lipid profile, and CRP levels as a classic marker of inflammation in T2DM. Due to the high degree of heterogeneity between studies and the low rate of quality in them, further well-designed studies are necessitated to strengthen our findings.


The Role of Zinc Homeostasis in the Prevention of Diabetes Mellitus and Cardiovascular Diseases

Journal of Atherosclerosis and Thrombosis https://doi.org/10.5551/jat.RV17057

Yukinori Tamura

Zinc is an essential micronutrient for human health and is involved in various biological functions, such as growth, metabolism, and immune function. In recent years, research on intracellular zinc dynamics has progressed, and it has become clear that zinc transporters strictly control intracellular zinc localization, zinc regulates the functions of various proteins and signal transduction pathways as a second messenger similar to calcium ions, and intracellular zinc dyshomeostasis is associated with impaired insulin synthesis, secretion, sensitivity, lipid metabolism, and vascular function. Numerous animal and human studies have shown that zinc deficiency may be associated with the risk factors for diabetes and cardiovascular diseases (CVDs) and zinc administration might be beneficial for the prevention and treatment of these diseases. Therefore, an understanding of zinc biology may help the establishment of novel strategies for the prevention and treatment of diabetes and CVDs. This review will summarize the current knowledge on the role of zinc homeostasis in the pathogenesis of diabetes and atherosclerosis and will discuss the potential of zinc in the prevention of these diseases.

📄 Download the PDF from VitaminDWiki


Diabetes and zinc dyshomeostasis: Can zinc supplementation mitigate diabetic complications? - 2022

Critical Reviews in Food Science and Nutrition https://doi.org/10.1080/10408398.2020.1833178

Susmita Barman &Krishnapura; Srinivasan

Overview: Diabetes with and without Zinc

image

Diabetes with and without Zinc

image

Human Diabetes and Zinc studies

image

Proven benefits of Zinc on Diabetes

image

Zinc present in the islet cells of the pancreas is crucial for the synthesis, storage, and secretion of insulin. The excretion of large amounts of zinc from the body is reported in diabetic situations. Zinc depletion and increased oxidative stress have a major impact on the pathogenesis of diabetic complications. It would be most relevant to ascertain if intervention with supplemental zinc compensating for its depletion would beneficially mitigate hyperglycemia and the attendant metabolic abnormalities, and secondary complications in diabetes. An exhaustive literature search on this issue indicates:

  • (1) Concurrent hypozincemia and decreased tissue zinc stores in diabetes as a result of its increased urinary excretion and/or decreased intestinal absorption,

  • (2) Several recent experimental studies have documented that supplemental zinc has a potential hypoglycemic effect in the diabetic situation, and also beneficially modulate the attendant metabolic abnormalities and compromised antioxidant status, and

  • (3) Supplemental zinc also alleviates renal lesions, cataract and the risk of cardiovascular disease accompanying diabetes mellitus, and help restore gastrointestinal health in experimental diabetes.

These studies have also attempted to identify the precise mechanisms responsible for zinc-mediated beneficial effects in diabetic situation. The evidence discussed in this review highlights that supplemental zinc may significantly contribute to its clinical application in the management of diabetic hyperglycemia and related metabolic abnormalities, and in the alleviation of secondary complications resulting from diabetic oxidative stress.

📄 Download the PDF from VitaminDWiki


1,490,000 hits for zinc (diabetes OR pancreas) as of Nov 2024

Google Scholar


VitaminDWiki – Overview Diabetes and vitamin D contains

{include}

Diabetic Epidemic

{include}


All categories associated with Diabetes

Intervention55;  Pregnancy 42;  Infant-Child 38;  Meta-analysis 36;  Obesity 32;  Cardiovascular 31;  Magnesium 25;  Skin - Dark 24;  Intervention - non daily22;  Vitamin D Receptor22;  Metabolic Syndrome15;  Hypertension13;  Kidney12;  Genetics12;  Omega-311;  Cognitive10;  Depression10;  Cancer9;  Autoimmune9;  Deficiency9;  Virus8;  Loading dose8;  Inflammation8;  Vision7;  Mortality 7;  Rheumatoid Arthritis7;  Middle East6;  Injection6;  Immunity6;  Antibiotics, probiotics6;  Multiple Sclerosis6;  Lupus6;  Stroke5;  Vitamin K5;  Youth 5;  Vit D Binding Protein 5;  Bone - Health 4;  Pain - chronic 4;  Thyroid and parathyroid 4;  Books, videos 4;  Sports 4;  Fortification 4         As of Oct 2022

and Zinc cut in half the rate of prediabetes progressing to diabetes (20 mg) – RCT Oct 2017


VitaminDWiki – Zinc and Vitamin D contains:

{include}

Tags: Diabetes Zinc