Based on PTH response, obese adolescents may not need and much vitamin D as non-obese (12 ng vs 16.5 ng)
Different threshold levels of circulating total and free 25-hydroxyvitamin D for the diagnosis of vitamin D deficiency in obese adolescents
Eur J Pediatr. 2021 Jun 11. doi: 10.1007/s00431-021-04137-5
Nurullah Çelik 1, Halef Okan Doğan 2, Gökmen Zararsiz 3 4
The total serum 25-hydroxyvitamin D [25(OH)DT] level is lower in obese individuals than in their nonobese peers, despite similar bone turnover markers and bone mineral density. This study aimed to investigate whether the threshold level of 25(OH)D for the diagnosis of vitamin D deficiency (VDD) in obese adolescents was lower than that in controls and to compare 25(OH)DT, free [25(OH)DF] and bioavailable [25(OH)DB] vitamin D with VDBP levels in obese individuals and their controls.
A total of 173 adolescents (90 obese individuals and 83 controls) aged 12-18 years were included in the study. The metabolic and anthropometric parameters of the participants were recorded, the 25(OH)DT, 25(OH)DF, and VDBP levels were measured, and the 25(OH)DB levels were calculated. The cutoff values for VDD were estimated according to the level of 25(OH)D below which parathyroid hormone begins to rise.
The obese subjects had lower
25(OH)DT (12.1 ± 5.8 vs. 16.4 ± 9.3 ng/mL, p < 0.001),
25(OH)DF (12.6 ± 4.2 vs. 16.7 ± 7.6 pg/mL, p < 0.001),
25(OH)DB [4.8 (2.3) vs. 6.1 (5.2) ng/mL, p = 0.012], and
VDBP [112.2 (51.3) vs. 121.9 (95.5) μg/mL, p < 0.001] levels than the controls.
The cutoff values for 25(OH)DT and 25(OH)DF levels for VDD were lower in the obese group than in the control group (9.4 vs. 14.1 ng/mL; 12.2 vs. 16.8 pg/mL, respectively).
Conclusion: The vitamin D cutoff values for the diagnosis of VDD were different in the obese and control groups. Using the same cutoff value for VDD may cause overtreatment in obese adolescents.
What is Known:
Vitamin D deficiency is more prevalent in obese children than nonobese controls,
- despite the same bone turnover markers and bone mineral density
The cutoff value of vitamin D level for the diagnosis of VDD is based on the PTH elevation
What is New
In obese adolescents, total and free vitamin D cutoff value for the diagnosis of VDD was lower than nonobese peers
References
Holick MF (2017) The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord 18:153–165. https://doi.org/10.1007/s11154-017-9424-1 - DOI - PubMed
Turer CB, Lin H, Flores G (2013) Prevalence of vitamin D deficiency among overweight and obese us children. Pediatrics 131:e152–e161. https://doi.org/10.1542/peds.2012-1711 - DOI - PubMed
Walsh JS, Bowles S, Evans AL (2017) Vitamin D in obesity. Curr Opin Endocrinol Diabetes Obes 24:389–394. https://doi.org/10.1097/MED.0000000000000371 - DOI - PubMed
Heaney RP, Horst RL, Cullen DM, Armas LAG (2009) Vitamin D3 Distribution and status in the body. J Am Coll Nutr 28(3):252–256. https://doi.org/10.1080/07315724.2009.10719779 - DOI - PubMed
Bouillon R, Bikle D (2019) Vitamin D metabolism revised: fall of dogmas. J Bone Miner Res 34:1985–1992. https://doi.org/10.1002/jbmr.3884 - DOI - PubMed
Atapattu N, Shaw N, Högler W (2013) Relationship between serum 25-hydroxyvitamin D and parathyroid hormone in the search for a biochemical definition of vitamin D deficiency in children. Pediatr Res 74(5):552–556. https://doi.org/10.1038/pr.2013.139 - DOI - PubMed
Alonso MA, Mantecón L, Santos F (2019) Vitamin D deficiency in children: a challenging diagnosis! Pediatr Res 85:596–601. https://doi.org/10.1038/s41390-019-0289-8 - DOI - PubMed
Ding F, Nie X, Li X, He Y, Li G (2021) Data mining: Biological and temporal factors associated with blood parathyroid hormone, vitamin D, and calcium concentrations in the Southwestern Chinese population. Clin Biochem 87:19–25. https://doi.org/10.1016/j.clinbiochem.2021.01.014 - DOI
Snellman G, Melhus H, Gedeborg R, Byberg L, Berglund L, Wernroth L, Michaëlsson K (2010) Determining vitamin D status: a comparison between commercially available assays. PLoS One 5(7):e11555. https://doi.org/10.1371/journal.pone.0011555 - DOI - PubMed - PMC
Yousefzadeh P, Shapses SA, Wang X (2014) Vitamin D binding protein impact on 25-hydroxyvitamin D levels under different physiologic and pathologic conditions. Int J Endocrinol 2014:981581–981586. https://doi.org/10.1155/2014/981581 - DOI - PubMed - PMC
Ashraf AP, Huisingh C, Alvarez JA, Wang X, Gower BA (2014) Insulin resistance indices are inversely associated with vitamin D binding protein concentrations. jcemendojournalsorg J Clin Endocrinol Metab 99:178–183. https://doi.org/10.1210/jc.2013-2452 - DOI - PubMed
Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M, Tamez H, Zhang D, Bhan I, Karumanchi SA, Powe NR, Thadhani R (2013) Vitamin D–binding protein and vitamin D status of Black Americans and White Americans. N Engl J Med 369:1991–2000. https://doi.org/10.1056/NEJMoa1306357 - DOI - PubMed - PMC
Safadi FF, Thornton P, Magiera H, Hollis BW, Gentile M, Haddad JG, Liebhaber SA, Cooke NE (1999) Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J Clin Invest 103:239–251. https://doi.org/10.1172/JCI5244 - DOI - PubMed - PMC
Holmlund-Suila E, Pekkinen M, Ivaska KK, Andersson S, Mäkitie O, Viljakainen H (2016) Obese young adults exhibit lower total and lower free serum 25-hydroxycholecalciferol in a randomized vitamin D intervention. Clin Endocrinol 85:378–385. https://doi.org/10.1111/cen.13093 - DOI
Corica D, Zusi C, Olivieri F, Marigliano M, Piona C, Fornari E, Morandi A, Corradi M, Miraglia del Giudice E, Gatti D, Rossini M, Bonadonna RC, Maffeis C (2019) Vitamin D affects insulin sensitivity and β-cell function in obese non-diabetic youths. Eur J Endocrinol 181(4):439–450 - DOI
Pekkinen M, Saarnio E, Viljakainen HT, Kokkonen E, Jakobsen J, Cashman K, Mäkitie O, Lamberg-Allardt C (2014) Vitamin D binding protein genotype is associated with serum 25-hydroxyvitamin D and PTH concentrations , as well as bone health in children and adolescents in Finland. PLoS One 30 9(1):e87292. https://doi.org/10.1371/journal.pone.0087292 - DOI
Lopez-Molina M, Santillan C, Murillo M, Valls A, Bosch L, Bel J, Granada ML (2018) Measured free 25-hydroxyvitamin D in healthy children and relationship to total 25-hydroxyvitamin D, calculated free 25-hydroxyvitamin D and vitamin D binding protein. Clin Biochem 61:23–27. https://doi.org/10.1016/j.clinbiochem.2018.08.007 - DOI - PubMed
Mehramiz M, Khayyatzadeh SS, Esmaily H, Ghasemi F, Sadeghi-Ardekani K, Tayefi M, Mirmousavi SJ, Hanachi P, Bahrami-Taghanaki H, Eslami S, Vatanparast H, Ferns GA, Ghayour-Mobarhan M, Avan A (2019) Associations of vitamin D binding protein variants with the vitamin D-induced increase in serum 25-hydroxyvitamin D. Clin Nutr ESPEN 29:59–64. https://doi.org/10.1016/j.clnesp.2018.12.005 - DOI - PubMed
Madden K, Feldman HA, Chun RF, Smith EM, Sullivan RM, Agan AA, Keisling SM, Panoskaltsis-Mortari A, Randolph AG (2015) Critically ill children have low vitamin D-binding protein, influencing bioavailability of vitamin D. Ann Am Thorac Soc 12:1654–1661. https://doi.org/10.1513/AnnalsATS.201503-160OC - DOI - PubMed - PMC
Bacha F, Bartz SK, Tomsa A, Sharma S (2019) Free vitamin D: relationship to insulin sensitivity and vascular health in youth. J Pediatr 212:28–34.e2. https://doi.org/10.1016/j.jpeds.2019.04.057 - DOI - PubMed
Del Giudice EM, Grandone A, Cirillo G et al (2015) Bioavailable vitamin D in obese children: the role of insulin resistance. J Clin Endocrinol Metab 100:3949–3955. https://doi.org/10.1210/jc.2015-2973 - DOI
Drincic AT, Armas LAG, Van Diest EE, Heaney RP (2012) Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity 20:1444–1448. https://doi.org/10.1038/oby.2011.404 - DOI - PubMed
Neyzi O, Bundak R, Gökçay G, Günöz H, Furman A, Darendeliler F, Baş F (2015) Reference values for weight, height, head circumference, and body mass index in Turkish children. JCRPE J Clin Res Pediatr Endocrinol 7:280–293. https://doi.org/10.4274/jcrpe.2183 - DOI - PubMed
Hatipoglu N, Ozturk A, Mazicioglu MM, Kurtoglu S, Seyhan S, Lokoglu F (2008) Waist circumference percentiles for 7- to 17-year-old Turkish children and adolescents. Eur J Pediatr 167(4):383–389. https://doi.org/10.1007/s00431-007-0502-3 - DOI - PubMed
Bundak R, Furman A, Gunoz H, Darendeliler F, Bas F, Neyzi O (2006) Body mass index references for Turkish children. Acta Paediatr 95(2):194–198. https://doi.org/10.1080/08035250500334738 - DOI - PubMed
Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M, on behalf of the Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society (2008) Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 122:398–417 - DOI
Bikle DD, Gee E, Halloran B et al (1986) Assessment of the free fraction of 25-hydroxyvitamin d in serum and its regulation by albumin and the vitamin d-binding protein. J Clin Endocrinol Metab 63(4):954–959. https://doi.org/10.1210/jcem-63-4-954 - DOI - PubMed
Conwell LS, Trost SG, Brown WJ, Batch JA (2004) Indexes of insulin resistance and secretion in obese children and adolescents: a validation study. Diabetes Care 27:314–319. https://doi.org/10.2337/diacare.27.2.314 - DOI - PubMed
Muggeo VMR (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071. https://doi.org/10.1002/sim.1545 - DOI - PubMed - PMC
Peris P, Filella X, Monegal A et al (2017) Comparison of total, free and bioavailable 25-OH vitamin D determinations to evaluate its biological activity in healthy adults: the LabOscat study. Osteoporos Int 28:2457–2464. https://doi.org/10.1007/s00198-017-4062-8 - DOI - PubMed
Dastani Z, Berger C, Langsetmo L, Fu L, Wong BYL, Malik S, Goltzman D, Cole DE, Richards JB (2014) In healthy adults, biological activity of vitamin d, as assessed by serum pth , is largely independent of DBP concentrations. J Bone Miner Res 29:494–499. https://doi.org/10.1002/jbmr.2042 - DOI - PubMed
Ponda MP, Mcgee D, Breslow JL (2014) Vitamin D-binding protein levels do not influence the effect of vitamin D repletion on serum PTH and calcium: data from a randomized, controlled trial. jcemendojournalsorg J Clin Endocrinol Metab 99:2494–2499. https://doi.org/10.1210/jc.2014-1181 - DOI - PubMed
Bikle DD, Malmstroem S, Schwartz J (2017) Current controversies: are free vitamin metabolite levels a more accurate assessment of vitamin D status than total levels? Endocrinol Metab Clin N Am 46:901–918. https://doi.org/10.1016/j.ecl.2017.07.013 - DOI
Aloia J, Dhaliwal R, Mikhail M, Shieh A, Stolberg A, Ragolia L, Fazzari M, Abrams SA (2015) Free 25(OH)D and calcium absorption, PTH , and markers of bone turnover. J Clin Endocrinol Metab 100:4140–4145. https://doi.org/10.1210/jc.2015-2548 - DOI - PubMed - PMC
Bikle D, Bouillon R, Thadhani R, Schoenmakers I (2017) Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status? J Steroid Biochem Mol Biol 173:105–116. https://doi.org/10.1016/j.jsbmb.2017.01.007 - DOI - PubMed
Asghari G, Yuzbashian E, Wagner CL, Mahdavi M, Shamsi R, Hosseinpanah F, Mirmiran P (2019) The relation between circulating levels of Vitamin D and parathyroid hormone in children and adolescents with overweight or obesity: Quest for a threshol d. PLoS One 26 14(11):e0225717. https://doi.org/10.1371/journal.pone.0225717 - DOI
Habibesadat S, Ali K, Shabnam JM, Arash A (2014) Prevalence of vitamin D deficiency and its related factors in children and adolescents living in North Khorasan, Iran. J Pediatr Endocrinol Metab 27:431–436. https://doi.org/10.1515/jpem-2013-0198 - DOI - PubMed
Amini Z, Bryant S, Smith C, Singh R, Kumar S (2013) Is the serum vitamin d-parathyroid hormone relationship influenced by obesity in children? Horm Res Paediatr 80:252–256. https://doi.org/10.1159/000354645 - DOI - PubMed
Miraglia E, Giudice D, Grandone A et al (2015) Bioavailable vitamin D in obese children: the role of insulin resistance. J Clin Endocrinol Metab 100:3949–3955. https://doi.org/10.1210/jc.2015-2973 - DOI
Sorensen K, Aksglaede L, Munch-Andersen T, Aachmann-Andersen NJ, Petersen JH, Hilsted L, Helge JW, Juul A (2009) Sex hormone-binding globulin levels predict insulin sensitivity, disposition index, and cardiovascular risk during puberty. Diabetes Care 32(5):909–914. https://doi.org/10.2337/dc08-1618 - DOI - PubMed - PMC
Maddux BA, Chan A, Mandarino LJ, Goldfine ID (2006) IGF-binding protein-1 levels are related to insulin-mediated glucose disposal and are a potential serum marker of insulin resistance. Diabetes Care 29(7):1535–1537. https://doi.org/10.2337/dc05-1367 - DOI - PubMed
Arnaud J, Constans J (1993) Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet 92:183–188. https://doi.org/10.1007/BF00219689 - DOI - PubMed
Moschonis G, Androutsos O, Hulshof T, Dracopoulou M, Chrousos GP, Manios Y (2018) Vitamin D insufficiency is associated with insulin resistance independently of obesity in primary schoolchildren. The healthy growth study. Pediatr Diabetes 19:866–873. https://doi.org/10.1111/pedi.12678 - DOI - PubMed
Ashraf AP, Huisingh C, Alvarez JA, Wang X, Gower BA (2014) Insulin resistance indices are inversely associated with vitamin D binding protein concentrations. J Clin Endocrinol Metab 99:178–183. https://doi.org/10.1210/jc.2013-2452 - DOI - PubMed
Naderpoor N, Shorakae S, Abell SK, Mousa A, Joham AE, Moran LJ, Stepto NK, Spritzer PM, Teede HJ, de Courten B (2018) Bioavailable and free 25-hydroxyvitamin D and vitamin D binding protein in polycystic ovary syndrome: relationships with obesity and insulin resistance. J Steroid Biochem Mol Biol 177:209–215. https://doi.org/10.1016/j.jsbmb.2017.07.012 - DOI - PubMed
Mesinovic J, Teede HJ, Shorakae S, Lambert GW, Lambert EA, Naderpoor N, de Courten B (2020) The Relationship between vitamin D metabolites and androgens in women with polycystic ovary syndrome. Nutrients 12(5):1219. https://doi.org/10.3390/nu12051219 - DOI - PMC
Lopez-Molina M, Santillan C, Murillo M, Valls A, Bosch L, Bel J, Granada ML (2018) Measured free 25-hydroxyvitamin D in healthy children and relationship to total 25-hydroxyvitamin D, calculated free 25-hydroxyvitamin D and vitamin D binding protein. Clin Biochem 61:23–27. https://doi.org/10.1016/j.clinbiochem.2018.08.007 - DOI - PubMed
Evangelos A, Makariou SE, Challa A et al (2020) Adipokines clinical research vitamin D status and cardiometabolic risk factors in Greek adolescents with obesity-the effect of vitamin D supplementation: a pilot study. Arch Med Sci Atheroscler Dis 22 5:e64–e71. https://doi.org/10.5114/amsad.2020.95569 - DOI
Gangloff A, Bergeron J, Lemieux I, Tremblay A, Poirier P, Alméras N, Després JP (2020) Relationships between circulating 25(OH) vitamin D, leptin levels and visceral adipose tissue volume: results from a 1-year lifestyle intervention program in men with visceral obesity. Int J Obes 44:280–288. https://doi.org/10.1038/s41366-019-0347-7 - DOI
Schwartz JB, Lai J, Lizaola B, Kane L, Markova S, Weyland P, Terrault NA, Stotland N, Bikle D (2014) A comparison of measured and calculated free 25(OH) vitamin D levels in clinical populations. J Clin Endocrinol Metab 99:1631–1637. https://doi.org/10.1210/jc.2013-3874 - DOI - PubMed - PMC