Genetic Variation of the Vitamin D Binding Protein Affects Vitamin D Status and Response to Supplementation in Infants
J Clin Endocrinol Metab . 2019 Nov 1;104(11):5483-5498. doi: 10.1210/jc.2019-00630.
Maria Enlund-Cerullo 1 2 3, Laura Koljonen 2 3, Elisa Holmlund-Suila 1 3, Helena Hauta-Alus 1 3, Jenni Rosendahl 1 3, Saara Valkama 1 3, Otto Helve 1, Timo Hytinantti 1, Heli Viljakainen 2 4, Sture Andersson 1, Outi Mäkitie 1 2 3 5, Minna Pekkinen 1 2 3
Infants were given 1200 IU daily for 2 years
Note: 1200 IU is a lot for a newborn, but not much for a 2 year old
Vitamin D Binding Protein category listing has 178 items and the following introduction
Vitamin D Binding Protein (GC) gene can decrease the bio-available Vitamin D that can get to cells,
- GC is not the only such gene - there are 3 others, all invisible to standard Vitamin D tests
- The bio-available calculation does not notice the effect of GC, CYP27B1, CYP24A1, and VDR
- The actual D getting to the cells is a function of measured D and all 4 genes
- There is >2X increase in 8+ health problems if have poor VDBP (GC)
- It appears that VDBP only blocks oral vitamin D,
- but NOT Vitamin D from sun, UV, topical or inhaled (tissue activated)
- A clue: - Vitamin D from UV is 2X better for MS than oral Vitamin D
Vitamin D Binding Protein has a list of health problems
Increased
Risk Health Problem
11 X Preeclampsia
6.5X T1D in SA Blacks
6 X Food Allergy
5 X PTSD
4 X, 5X Kidney Cancer
4 X Poor Response to Oral Vitamin D
3 X Ear infection
2.8 X MS
2.5 X Severe Autism
2 X Colorectal Cancer
2 X Prostate Cancer -in those with dark skins
1.3 X Infertility
Genetics category listing contains the following
343 articles in the Genetics category
see also
- Vitamin D Receptor has
530 items
- Vitamin D Binding Protein = GC has
178 items
- CYP27B1 has
63 items
- CYP24A1 in title of 39+ items
- CYP2R1 25+ items
- Calcidiol has
48 items
- Calcitriol has
62 items
- Topical Vitamin D
- Nanoemulsion Vitamin D may be a substantially better form
- 1289 genes changed with higher doses of Vitamin D - RCT Dec 2019
- CYP3A4 (7 as of Dec 2022)
- Getting Vitamin D into your body
-
Vitamin D blood test misses a lot
- Vitamin D from coming from tissues (vs blood) was speculated to be 50% in 2014, and by 2017 was speculated to be 90%
- Note: Good blood test results (> 40 ng) does not mean that a good amount of Vitamin D actually gets to cells
- A Vitamin D test in cells rather than blood was feasible (2017 personal communication) Commercially available 2019
- However, test results would vary in each tissue due to multiple genes
- Good clues that Vitamin D is being restricted from getting to the cells
1) A vitamin D-related health problem runs in the family
especially if it is one of 51+ diseases related to Vitamin D Receptor
2) Slightly increasing Vitamin D shows benefits (even if conventional Vitamin D test shows an increase)
3) DNA and VDR tests - 100 to 200 dollars $100 to $250
4) PTH bottoms out ( shows that parathyroid cells are getting Vitamin d)
Genes are good, have enough Magnesium, etc.
5) Back Pain
probably want at least 2 clues before taking adding vitamin D, Omega-3, Magnesium, Resveratrol, etc
- The founder of VitaminDWiki took action with clues #3&5
 Download the PDF from VitaminDWiki
Context: Single nucleotide polymorphisms (SNPs) of the vitamin D binding protein encoding the GC (group component) gene affect 25-hydroxyvitamin D (25OHD) concentrations, but their influence on vitamin D status and response to vitamin D supplementation in infants is unknown.
Objective: To study GC genotype-related differences in 25OHD concentrations and the response to supplementation during a vitamin D intervention study in infants.
Design: In this randomized controlled trial, healthy term infants received vitamin D3 (10 or 30 μg/d) from 2 weeks to 24 months of age. GC SNPs rs2282679, rs4588, rs7041, and rs1155563 were genotyped. rs4588/7041 diplotype and haplotypes of rs2282679, rs4588, and rs7041 (Haplo3SNP) and of all four SNPs (Haplo4SNP) were determined.
Main outcome measures: 25OHD measured in cord blood at birth and at 12 and 24 months during intervention.
Results: A total of 913 infants were included. Minor allele homozygosity of all studied GC SNPs, their combined haplotypes, and rs4588/rs7041 diplotype 2/2 were associated with lower 25OHD concentrations at all time points in one or both intervention groups [analysis of covariance (ANCOVA) P < 0.043], with the exception of rs7041, which did not affect 25OHD at birth. In the high-dose supplementation group receiving 30 μg/d vitamin D3, but not in those receiving 10 µg/d, genotype of rs2282679, rs4588, and rs7041; diplotype; and Haplo3SNP significantly affected intervention response (repeated measurement ANCOVA Pinteraction < 0.019). Minor allele homozygotes had lower 25OHD concentrations and smaller increases in 25OHD throughout the intervention.
Conclusions: In infants, vitamin D binding protein genotype affects 25OHD concentration and efficiency of high-dose vitamin D3 supplementation.
Trial registration: ClinicalTrials.gov NCT01723852.
4059 visitors, last modified 02 Mar, 2021,
Printer Friendly
Follow this page for updates
Vitamin D Binding Protein (GC) gene can decrease the bio-available Vitamin D that can get to cells,
- GC is not the only such gene - there are 3 others, all invisible to standard Vitamin D tests
- The bio-available calculation does not notice the effect of GC, CYP27B1, CYP24A1, and VDR
- The actual D getting to the cells is a function of measured D and all 4 genes
- There is >2X increase in 8+ health problems if have poor VDBP (GC)
- It appears that VDBP only blocks oral vitamin D,
- but NOT Vitamin D from sun, UV, topical or inhaled (tissue activated)
- A clue: - Vitamin D from UV is 2X better for MS than oral Vitamin D
Vitamin D Binding Protein has a list of health problems
Increased Risk | Health Problem |
11 X | Preeclampsia |
6.5X | T1D in SA Blacks |
6 X | Food Allergy |
5 X | PTSD |
4 X, 5X | Kidney Cancer |
4 X | Poor Response to Oral Vitamin D |
3 X | Ear infection |
2.8 X | MS |
2.5 X | Severe Autism |
2 X | Colorectal Cancer |
2 X | Prostate Cancer -in those with dark skins |
1.3 X | Infertility |
Genetics category listing contains the following
see also
- Vitamin D Receptor has
530 items - Vitamin D Binding Protein = GC has
178 items - CYP27B1 has
63 items - CYP24A1 in title of 39+ items
- CYP2R1 25+ items
- Calcidiol has
48 items - Calcitriol has
62 items - Topical Vitamin D
- Nanoemulsion Vitamin D may be a substantially better form
- 1289 genes changed with higher doses of Vitamin D - RCT Dec 2019
- CYP3A4 (7 as of Dec 2022)
- Getting Vitamin D into your body
Vitamin D blood test misses a lot
- Vitamin D from coming from tissues (vs blood) was speculated to be 50% in 2014, and by 2017 was speculated to be 90%
- Note: Good blood test results (> 40 ng) does not mean that a good amount of Vitamin D actually gets to cells
- A Vitamin D test in cells rather than blood was feasible (2017 personal communication) Commercially available 2019
- However, test results would vary in each tissue due to multiple genes
- Good clues that Vitamin D is being restricted from getting to the cells
1) A vitamin D-related health problem runs in the family
especially if it is one of 51+ diseases related to Vitamin D Receptor
2) Slightly increasing Vitamin D shows benefits (even if conventional Vitamin D test shows an increase)
3) DNA and VDR tests - 100 to 200 dollars $100 to $250
4) PTH bottoms out ( shows that parathyroid cells are getting Vitamin d)
Genes are good, have enough Magnesium, etc.
5) Back Pain
probably want at least 2 clues before taking adding vitamin D, Omega-3, Magnesium, Resveratrol, etc- The founder of VitaminDWiki took action with clues #3&5
 Download the PDF from VitaminDWiki
Context: Single nucleotide polymorphisms (SNPs) of the vitamin D binding protein encoding the GC (group component) gene affect 25-hydroxyvitamin D (25OHD) concentrations, but their influence on vitamin D status and response to vitamin D supplementation in infants is unknown.
Objective: To study GC genotype-related differences in 25OHD concentrations and the response to supplementation during a vitamin D intervention study in infants.
Design: In this randomized controlled trial, healthy term infants received vitamin D3 (10 or 30 μg/d) from 2 weeks to 24 months of age. GC SNPs rs2282679, rs4588, rs7041, and rs1155563 were genotyped. rs4588/7041 diplotype and haplotypes of rs2282679, rs4588, and rs7041 (Haplo3SNP) and of all four SNPs (Haplo4SNP) were determined.
Main outcome measures: 25OHD measured in cord blood at birth and at 12 and 24 months during intervention.
Results: A total of 913 infants were included. Minor allele homozygosity of all studied GC SNPs, their combined haplotypes, and rs4588/rs7041 diplotype 2/2 were associated with lower 25OHD concentrations at all time points in one or both intervention groups [analysis of covariance (ANCOVA) P < 0.043], with the exception of rs7041, which did not affect 25OHD at birth. In the high-dose supplementation group receiving 30 μg/d vitamin D3, but not in those receiving 10 µg/d, genotype of rs2282679, rs4588, and rs7041; diplotype; and Haplo3SNP significantly affected intervention response (repeated measurement ANCOVA Pinteraction < 0.019). Minor allele homozygotes had lower 25OHD concentrations and smaller increases in 25OHD throughout the intervention.
Conclusions: In infants, vitamin D binding protein genotype affects 25OHD concentration and efficiency of high-dose vitamin D3 supplementation.
Trial registration: ClinicalTrials.gov NCT01723852.
4059 visitors, last modified 02 Mar, 2021, - Vitamin D Binding Protein = GC has