COVID-19 severity associated with 3 vitamin D genes – Oct 2021


Associations between Genetic Variants in the Vitamin D Metabolism Pathway and Severity of COVID-19 among UAE Residents

Nutrients 2021, 13(11), 3680; https://doi.org/10.3390/nu13113680
by Fatme Al-Anouti 1,†ORCID,Mira Mousa 2,3,Spyridon N. Karras 4ORCID,William B. Grant 5,Zainab Alhalwachi 3ORCID,Laila Abdel-Wareth 6,7,Maimunah Uddin 8ORCID,Nawal Alkaabi 8,Guan K. Tay 3,9,10,Bassam Mahboub 11 andHabiba AlSafar 3,12,*,†ORCID

Vitamin D has many effects on cells in the immune system. Many studies have linked low vitamin D status with severity of COVID-19. Genetic variants involved in vitamin D metabolism have been implicated as potential risk factors for severe COVID-19 outcomes. This study investigated how genetic variations in humans affected the clinical presentation of COVID-19. In total, 646 patients with SARS-CoV-2 infection were divided into two groups: noncritical COVID-19 (n = 453; 70.12%) and a critical group (n = 193; 29.87%). Genotype data on the GC, NADSYN1, VDR, and CYP2R1 genes along with data on serum 25-hydroxyvitamin D levels were compiled in patients admitted to a major hospital in the United Arab Emirates between April 2020 and January 2021. We identified 12 single-nucleotide polymorphisms associated with the critical COVID-19 condition: rs59241277, rs113574864, rs182901986, rs60349934, and rs113876500; rs4944076, rs4944997, rs4944998, rs4944979, and rs10898210; and rs11574018 and rs11574024. We report significant associations between genetic determinants of vitamin D metabolism and COVID-19 severity in the UAE population. Further research needed to clarify the mechanism of action against viral infection in vitamin D deficiency. These variants could be used with vaccination to manage the spread of SARS-CoV-2 and could be particularly valuable in populations in which vitamin D deficiency is common.
 Download the PDF from VitaminDWiki

Binding Protein (GC) Table

Image

DHCR7 Table

Image

VDR table

Image


Discussion

To the best of our knowledge, this study is the first to examine the contribution of genetic variants of vitamin D metabolism to COVID-19 disease severity. Specifically, 25(OH)D levels, which reflect vitamin D status in the body, were measured in a cohort of patients who tested positive for SARS-CoV-2 in the UAE. With 63% of critical patients having deficient or severely deficient vitamin D levels, the plausible association with severity of viral infections was examined. These findings also accord with findings associating lower vitamin D levels (<12 ng/mL) with increased risk of critical COVID-19 condition [9]. Specific variants in genes involved in vitamin D metabolism have been proposed as potential risk factors for severe COVID-19 outcomes [11], but specific research in this context remain limited. In this study, we analyzed several variants in the loci near protein-coding genes involved in the vitamin D pathway in a cohort of SARS- CoV-2-positive patients from the UAE population to investigate the possible association with COVID-19 disease severity. The data presented here indicated a significant correlation between specific variants of the GC, VDR, and DHCR7/NADSYN1 genes and susceptibility to severe COVID-19 infection.
The results showed that being older, having higher BMI, and the presence of one or more comorbidities were important risk factors for developing a critical COVID-19 condition among SARS-CoV-2-positive patients. These findings are consistent with previously reported data regarding COVID-19 susceptibility and risk factors from several populations [12,13]. Moreover, severe vitamin D deficiency was an independent risk factor for the critical condition, in accordance with previous reports [14-16].
Genotype data were analyzed in relation to patients' vitamin D levels, revealing the involvement of vitamin D homeostasis and its metabolic pathway in influencing susceptibility to severe COVID-19 disease. These genotypic differences in COVID-19 disease outcome could be attributed to vitamin D's role in host immunity against SARS- CoV-2 or other viral infections [17,18].
The results here also highlighted the genetic contribution of specific haplotypes for VDR, DHCR7/NADSYN1, and GC genes to COVID-19 critical condition, emphasizing the importance of genotypic variations in determining disease severity in populations. For example, the AA genotype in SNP rs59241277, CC genotype in SNP rs113574864, GG genotype in SNP rs182901986, TT genotype in SNP rs60349934, and GG genotype in SNP rs113876500 in gene GC were associated with critical COVID-19 condition. The AA genotype in SNP rs4944076, GG genotype in SNP rs4944997, GG genotype in SNP rs4944998, GG genotype in SNP rs4944979, and AA genotype in SNP rs10898210 in
DHCR7/NADSYN1 gene were similarly associated with severity, whereas for gene VDR, the TT genotype in SNP rs11574018 and GG genotype in SNP rs11574024 were significant.
A recent study by Kotur and colleagues (2021) reported a significant association between specific genetic variants of DHCR7/NADSYN1 rs12785878, GC rs2282679, CYP2R1 rs10741657, and VDR rs2228570 and severe clinical outcomes among Serbian adults but not among pediatric patients [8]. The findings in this study are consistent with results of their study, though in this study no significant correlation was evident between COVID-19 clinical conditions and CYP2R1 genetic variants.
AlSafar and colleagues (2021) recently reported that severe vitamin D deficiency strongly correlated with COVID-19 severity and death among the UAE population [9]. Furthermore, several studies have shown that genetic polymorphisms in the VDR gene affect susceptibility to certain chronic diseases, such as diabetes and obesity [10]. Our group investigated the association of genetic variants within VDR and other genes important in vitamin D metabolism with type 2 diabetes among Emiratis and concluded that a strong association existed with risk of disease for specific variants [19,20]. In a similar context, we showed the implications of such genetic variants in susceptibility to obesity among young Arabs in the UAE [21]. Thus, exploring the relation of genetic variants involved in vitamin D metabolism and COVID-19 severity is worth considering and might offer population-based tools to identify individuals at greater risk of developing severe disease outcomes. Such strategies, which depend on functional polymorphism, could lead to implementing future protective measures in conjunction with vaccination [4,5,8].
A study that examined the effect of GC genetic variability in 913 infants on 25(OH)D concentrations and the response to supplementation demonstrated that vitamin-D-binding protein (DBP) polymorphisms affected the efficacy of vitamin D supplementation and vitamin D status [22]. In addition, similar studies highlighted the role of GC genotypic variation in determining the efficacy of vitamin D supplementation in pregnant women [23].
Physiologically, DBP can play an important role in determining vitamin D status by controlling levels of both total and free vitamin D metabolites. DBP is extremely polymorphic, with variants exhibiting differences in biological function and being associated with several pathophysiological conditions, including susceptibility to viral infections such as hepatitis C [24—26]. A study by Batur and Hekim (2019) evaluated the link between polymorphisms of the DBP-encoding gene GC at specific loci and COVID- 19 positivity/death among several populations across 10 countries. The findings revealed a protective effect for the TT genotype at the rs7041 locus and a susceptibility risk effect for the GT genotype (p < 0.05) at the same locus among all populations. The results suggested an important role for the genetic variants of GC in explaining disparities in the prevalence of COVID-19 infection and its mortality rates in the context of vitamin D metabolism [27].
Several cytochrome P450 enzymes are involved in vitamin D metabolism. CYP2R1 is one of those enzymes that play a key role in vitamin D hydroxylation [28]. Several researchers have evaluated the relation between genetic variants of CYP2R1 and vitamin D status among populations and have concluded that a robust correlation existed between specific polymorphisms on SNPs (rs10766197 and rs10741657) and risk of vitamin D deficiency [29,30]. Interestingly, knockout experiments in mice showed that CYP2R1 activity on vitamin D hydroxylation could be compensated for by another unidentified enzyme [31].
One study of the Arabian and South Asian populations in Kuwait showed that CYP2R1 SNPs (rs10500804 and rs12794714) were significantly correlated with serum 25(OH)D levels among the Arabian group but not among the South Asians [32]. That finding is in agreement with findings from this study because the population in our investigation consisted predominantly of South Asians, not Arabs (290 individuals from South Asia, 40 Arabs, and 23 from other ethnicities). Further research on the ethnicities of the UAE population with a good sample size is thus needed to yield a broad picture about the implications of genetic determinants of CYP2R1 on vitamin D status and before generalizing findings to all races and ethnicities in the UAE population.
To the best of our knowledge, this study is the first to evaluate the contribution of genetic variants of vitamin D metabolism to COVID-19 disease severity in the context of 25(OH)D levels among a cohort of patients who tested positive for SARS-CoV-2 in the UAE. Our findings could pave the way for future investigations aiming to examine the potential role of variants of vitamin-D-related genes in altering not only COVID-19 disease outcome and transmission in this population but also response to vaccination on the basis of vitamin D status and immune responses. Results could be projected to guide future innovative and unique modeling with other viral respiratory diseases by using a personalized genotype- based approach that could be particularly valuable for multiethnic populations.
Despite the strengths of our study, some limitations should be acknowledged. The association between the genetic polymorphism of the genes studied and mortality was not investigated because of the few deaths in the study. A larger sample size, which affords the opportunity to examine death as an endpoint, could offer more insights into the relation between the genetic determinants of vitamin D status and the death arising from SARS-CoV-2 infection. Moreover, some socioeconomic data were not available to explore the effect of UVB exposure, clothing habits, and dietary vitamin D intake on the contribution of polymorphisms to 25(OH)D concentrations and course of COVID-19. The vitamin D status of participants could have been affected by the use of supplements, but that information was not recorded. In addition, the analytical methods for measuring vitamin D in this study could affect the reading, and therefore, it is suggested that they should be evaluated using LC-MS/MS [33].

Conclusions

The findings described here showed that variability in the genetic determinants of vitamin D bioavailability and metabolism could play a role in modulating COVID-19 outcome among affected people in the UAE. These preliminary results could pave the way for future investigations about the role of vitamin D status and supplementation in conjunction with genotypic profile in reducing the severity of COVID-19 and risk of infection. The implications of our research could also be informative for improving treatment options by identifying individuals at risk of developing more severe outcomes after infection on the basis of a personalized genetic profile, which could complement the vaccination and vitamin D supplementation approach for improving assessment of treatment. Larger studies and randomized clinical trials are warranted to fully decipher the link between vitamin D homeostasis and genetic determinants and COVID-19 severity among the multiethnic UAE population


VitaminDWiki

Gene Chart in VitaminDWiki

in Visio for 2023

Virus and VDR

VDR results not seen by blood test, Virus might reduce the VDR

Virus and Genetics


Virus and Vitamin D Binding Protein = GC (not seen by blood test)

Vitamin D Binding Protein category listing has 176 items and the following introduction

Vitamin D Binding Protein (GC) gene can decrease the bio-available Vitamin D that can get to cells,

  • GC is not the only such gene - there are 3 others, all invisible to standard Vitamin D tests
  • The bio-available calculation does not notice the effect of GC, CYP27B1, CYP24A1, and VDR
  • The actual D getting to the cells is a function of measured D and all 4 genes
  • There is >2X increase in 8+ health problems if have poor VDBP (GC)
  • It appears that VDBP only blocks oral vitamin D,

Vitamin D Binding Protein many assocated health problems

Increased
Risk
Health Problem
11 XPreeclampsia
6.5XT1D in SA Blacks
6 XFood Allergy
5 XPTSD
4 X, 5XKidney Cancer
4 XPoor Response to Oral Vitamin D
3 XEar infection
2.8 X MS
2 X Colorectal Cancer
2 XProstate Cancer -in those with dark skins
1.3 XInfertility

VitaminDWiki pages with DHCR7 in title (how much Vitamin D from sun/uvb)

This list is automatically updated

Items found: 5


2361 visitors, last modified 20 Oct, 2021,
Printer Friendly Follow this page for updates