Toggle Health Problems and D

Complement system (part of innate immunity) needs Vitamin D (50 ng is good) – Sept 2022

Vitamin D deficiency leads to the abnormal activation of the complement system

Immunol Res. 2022 Sep 30. doi: 10.1007/s12026-022-09324-6
Huan Li # 1 , Xiaomin Xie # 2 , Guirong Bai 1 , Dan Qiang 1 , Li Zhang 1 , Huili Liu 1 , Yanting He 1 , Yanpan Tang 1 , Ling Li 1

Vitamin D deficiency can damage the human immune system, and the complement system is a key component of the immune system. This study aimed to elucidate the mechanism by which vitamin D affects the immune system by analyzing the changes in the protein expression of the complement system under different vitamin D levels. We selected 40 participants and divided them into three groups according to their serum levels of 25-hydroxyvitamin D (25(OH)VD):

  • group A, 25(OH)VD ≥ 40 ng/mL;
  • group B, 30 ng/mL ≤ 25(OH)VD < 40 ng/mL; and
  • group C, 25(OH)VD < 30 ng/mL.

Serum samples were subjected to biochemical analysis, followed by proteomic analysis using high-throughput untargeted proteomic techniques. Vitamin D deficiency increased the levels of fasting blood sugar, fasting serum insulin, and homeostasis model assessment (HOMA) of insulin resistance and decreased the secretion of HOMA of β-cell function, which led to insulin resistance and glucose metabolism disorder. Moreover, vitamin D deficiency resulted in the abnormal expression of 56 differential proteins, among which the expression levels of complement factor B, complement component C9, inducible co-stimulator ligand, and peptidase inhibitor 16 significantly changed with the decrease in vitamin D content. Functional enrichment analysis of these differential proteins showed that they were mainly concentrated in functions and pathways related to insulin secretion and inflammation.

In conclusion, vitamin D deficiency not only contributes to insulin resistance and glucose metabolism disorder but also causes abnormal protein expression, resulting in the abnormal activation of the complement system. This study provides a novel theoretical basis for further studies on the relationship between vitamin D and the immune system.

Clipped from PDF
In conclusion, the main findings of this study were as follows:

  • (1) vitamin D deficiency caused insulin resistance and glucose metabolism disorder,
  • (2) vitamin D deficiency led to the abnormal expression of complement proteins and the activation of the complement system, and
  • (3) functional enrichment analysis revealed that dysregulated complement proteins were involved in cellular functions related to insulin `secretion and glucose metabolism regulation.

This study provides a novel reference for further studies on the regulatory effect of vitamin D on the immune system.
 Download the PDF from VitaminDWiki

Complement system Wikipedia Sept 2022

The complement system, also known as complement cascade, is a part of the immune system that enhances (complements) the ability of antibodies and phagocytic cells to clear microbes and damaged cells from an organism, promote inflammation, and attack the pathogen's cell membrane. It is part of the innate immune system,[1] which is not adaptable and does not change during an individual's lifetime.
The complement system can, however, be recruited and brought into action by antibodies generated by the adaptive immune system.

VitaminDWiki - Immunity category contains

249 items in Immunity category

    see also

Virus category listing has 1227 items along with related searches

Overview Influenza and vitamin D
Vitamin D helps both the innate and adaptive immune systems fight COVID-19 – Jan 2022
Vitamin D aids the clearing out of old cells (autophagy) – many studies
600,000 IU of Vitamin D (total) allowed previously weak immune systems to fight off a virus antigen - Nov 2020
Search for treg OR "t-cell" in VitaminDWiki 1440 items as of Jan 2020
141 VitaminDWiki pages contained "infection" in title (June 2021)
Search VitaminDWik for BACTERIA in title 25 items as of Aug 2019
Vitamin D and the Immune System – chapter Aug 2019
7X less risk of influenza if Vitamin D levels higher than 30 ng – Oct 2017
Common cold prevented and treated by Vitamin D, Vitamin C, Zinc, and Echinacea – review April 2018
Vitamin D improves T Cell immunity – RCT Feb 2016
Immune system - great 11-minute animated video - Aug 2021 nothing about Vitamin D
18 titles in VitaminDWiki contained INNATE or ADAPTIVE as of Jan 2023
Increasing publications on vitamin D and Infection

45 studies are in both Immunity and Virus categories

VitaminDWiki pages with INNATE in title (14 as of Sept 2022)

This list is automatically updated

Items found: 14

VitaminDWiki - Is 50 ng of vitamin D too high, just right, or not enough

VitaminDWiki pages with 50 ng in title (60 as of Sept 2022)

This list is automatically updated

Items found: 77
Title Modified
50 ng level of Vitamin D proven to fight many diseases - Whittle May 2023 17 May, 2023
4X reduction in prediabetes progressing to T2D if more than 50 ng of vitamin D – RCT March 2023 01 May, 2023
Fight infections such as COVID with 50 ng of Vitamin D – Sunil Dec 2022 19 Dec, 2022
Mortality reduced by 35 percent if everyone had 50 ng of vitamin D - Grant Oct 2021 09 Dec, 2022
Kidney Inflammation not reduced by 30 ng Vitamin D (many health problems need 50 ng) – Nov 2022 09 Nov, 2022
Complement system (part of innate immunity) needs Vitamin D (50 ng is good) – Sept 2022 01 Oct, 2022
10,000 IU Vitamin D raised basketball player levels (more than 50 ng need to improve performance) – June 2022 01 Aug, 2022
Suggested dosing to get 50 ng of Vitamin D (if healthy) - July 2022 21 Jul, 2022
COVID probably fought by Vitamin D, might need 50 ng - Dr. Patrick Nov 8, 2021 21 Jul, 2022
Is 50 ng of vitamin D too high, just right, or not enough 14 May, 2022
COVID-19 mortality extrapolates to zero at 50 ng of vitamin D – 18th Meta-analysis Sept 2021 18 Mar, 2022
Optimal Vitamin D level: 50-90 ng - Dr. Vasquez 18 Mar, 2022
Psoriasis reduced for those getting Vitamin D levels above 50 ng – RCT Feb 2018 11 Mar, 2022
See all vitaminDWiki pages with 50...150 AND ng in title 28 Feb, 2022
Prevent half of T1 Diabetes with vitamin D levels of 50 ng – Dec 2012 04 Jan, 2022
Texas town wants employees above 50 ng of Vitamin D to fight COVID-19 - Dec 24, 2020 26 Nov, 2021
Discussion of COVID and 50 ng of Vitamin D (video and transcript)– Dr. Campbell Nov 17, 2021 19 Nov, 2021
Vitamin D might a risk factor of insulin resistance, diabetes, obesity, etc. (50 ng) – Oct 2021 26 Oct, 2021
Vitamin D and COVID, review of evidence, loading dose if less than 50 ng - Masterjohn Sept 2021 05 Sep, 2021
Less muscle inflammation after exercise if high level of Vitamin D (50 ng) -July 2021 08 Jul, 2021
T-cells need at least 40-50 ng of Vitamin D to fight COVID-19 - June 2021 01 Jun, 2021
Little risk of infection after surgery if have more than 50 ng of vitamin D - 2014 30 May, 2021
50,000 IU of Vitamin D once every 2 weeks achieved 40 ng in 3 months – RCT March 2021 24 Apr, 2021
Jaw joint (TMJ) needs 30-50 ng of Vitamin D and a good VDR – April 2021 14 Apr, 2021
More than 30 ng of vitamin D is sometimes needed (Kidney needs 50 ng) – March 2019 31 Mar, 2021
To protect against COVID-19, how much vitamin D – 20 to 50 ng – March 19, 2021 23 Mar, 2021
5000 IU of vitamin D in daily bread resulted in 50 ng and improved quality of life– May 2014 20 Mar, 2021
How much vitamin D is needed ( perhaps 50 ng for infections) 08 Mar, 2021
Influenza prevented by 40 ng levels or treated with vitamin D hammer (50,000 IU) – June 2015 26 Dec, 2020
Saudi study defines normal Vitamin D level to be 50 to 70 ng (diabetes, etc.) - June 2020 12 Dec, 2020
Diabetes 50X less likely if 30 ng of Vitamin D and intense exercise – April 2018 11 Nov, 2020
Only 1 NCAA basketball player getting 10,000 IU vitamin D daily achieved 50 ng goal – Jan 2020 01 Sep, 2020
Critically Ill or injured patients need 30-50 ng of Vitamin D – Matthews March 2020 18 Mar, 2020
Low Vitamin D symptoms, need 50-80 ng, he takes 5,000 IU – Matthews interview Dec 2019 29 Dec, 2019
NCAA trainers are getting on board the Vitamin D train (40-50 ng)– Nov 2019 16 Nov, 2019
Biology of Vitamin D – 30ng min., 50ng preferred, 1000X lower cost than health problem – Feb 2019 02 Mar, 2019
Diabetes 5X less likely if more than 50 ng of Vitamin D – April 2018 23 Jan, 2019
Vitamin D is needed for human fertility – goal is 50 ng – Sept 2018 22 Aug, 2018
Colorectal cancer 60 percent less likely if have more than 50 ng of vitamin D (vs 5 ng) – meta-analysis April 2017 09 Aug, 2018
Korea proposes vitamin D of 20 ng, but notes 20ng increases osteo by 50 percent – Oct 2012 03 Jul, 2018
Half of Tianjin China had less than sufficient vitamin D (IoM of 20-50 ng) - June 2018 04 Jun, 2018
Inflammatory Bowel Disease and Vitamin D review (needs 40-50 ng) – Feb 2018 26 Feb, 2018
Hypertension not controlled by 26 ng of Vitamin D (50,000 IU bi-weekly A-A) – RCT Nov 2017 18 Nov, 2017
Hypothyroidism risk reduced 32 percent in those getting vitamin D levels above 50 ng – Oct 2017 27 Oct, 2017
Chinese women in tropics needed 50,000 IU of Vitamin D monthly to keep above 30 ng – RCT May 2017 14 Jul, 2017
All myopic children had less than 50 ng of vitamin D – March 2016 06 Apr, 2017
A group of 6,000 people have vitamin D levels higher than 50 ng – GrassrootsHealth 29 Jun, 2016
Populations with more than 50 ng of vitamin D 09 Apr, 2016
Staph infection reduced 50 percent when have more than 30 ng of vitamin D – Aug 2011 13 Feb, 2016
Outdoor distance runners had great Vitamin D levels (50 ng) – Dec 2015 24 Dec, 2015
  • «
  • 1 (current)
  • 2


Complement system part I – molecular mechanisms of activation and regulation - 2015 PDF
Complement system part II - 2015 PDF
   No mention of vitamin in either one

PDF References

  1. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008;87(4):1080S-S1086.
  2. Grad R. Cod and the consumptive: a brief history of cod-liver oil in the treatment of pulmonary tuberculosis. Pharm Hist. 2004;46(3):106-20.
  3. Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera- Mendoza L, Lin R, Hanrahan JW, Mader S, White JH. Cutting edge: 25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173(10):2909-12.
  4. Dai X, Sayama K, Tohyama M, Shirakata Y, Hanakawa Y, Toku- maru S, Yang L, Hirakawa S, Hashimoto K. PPARy mediates innate immunity by regulating the 1a,25-dihydroxyvitamin D3 induced hBD-3 and cathelicidin in human keratinocytes. J Dermatol Sci. 2010;60(3):179-86.
  5. Sly LM, Lopez M, Nauseef WM, Reiner NE. 1alpha,25-Dihy- droxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J Biol Chem. 2001;276(38):35482-93.
  6. Shin DM, Yuk JM, Lee HM, Lee SH, Son JW, Harding CV, Kim JM, Modlin RL, Jo EK. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol. 2010;12(11):1648-65.
  7. Fakhoury HMA, Kvietys PR, AlKattan W, Anouti FA, Elahi MA, Karras SN, Grant WB. Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol. 2020;200:105663.
  8. Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013;5(7):2502-21.
  9. Cyprian F, Lefkou E, Varoudi K, Girardi G. Immunomodulatory effects of vitamin D in pregnancy and beyond. Front Immunol. 2019;10:2739.
  10. Blanck S, Aberra F. Vitamin d deficiency is associated with ulcerative colitis disease activity. Dig Dis Sci. 2013;58(6):1698-702.
  11. Vijayendra Chary A, Hemalatha R, Seshacharyulu M, Vasudeva Murali M, Jayaprakash D, Dinesh KB. Vitamin D deficiency in pregnant women impairs regulatory T cell function. J Steroid Bio- chem Mol Biol. 2015;147:48-55.
  12. Bakshi S, Cunningham F, Nichols EM, Biedzka-Sarek M, Neisen J, Petit-Frere S, Bessant C, Bansal L, Peletier LA, Zamuner S, van der Graaf PH. Mathematical modelling of alternative pathway of complement system. Bull Math Biol. 2020;82(2):33.
  13. Alper CA, Rosen FS. Alper CA, Rosen FS: Studies of the in vivo behavior of human C'3 in normal subjects and patients. J Clin Invest. 1967;46(12):2021-34.
  14. Scholl HP, Charbel Issa P, Walier M, Janzer S, Pollok-Kopp B, Börncke F, Fritsche LG, Chong NV, Fimmers R, Wienker T, Holz FG, Weber BH, Oppermann M. Systemic complement activation in age-related macular degeneration. PLoS One. 2008;3(7):e2593.
  15. Korotaevskiy AA, Hanin LG, Khanin MA. Non-linear dynamics of the complement system activation. Math Biosci. 2009;222(2):127-43.
  16. Chen M, Daha MR, Kallenberg CG. The complement system in systemic autoimmune disease. J Autoimmun. 2010;34(3):J276-86.
  17. Kirschfink M, Mollnes TE. Modern complement analysis. Clin Diagn Lab Immunol. 2003;10(6):982-9.
  18. Melis JP, Strumane K, Ruuls SR, Beurskens FJ, Schuurman J, Parren PW. Complement in therapy and disease: regulating the complement system with antibody-based therapeutics. Mol Immunol. 2015;67(2 Pt A):117-30.
  19. Li XQ, Chang DY, Chen M, Zhao MH. Complement activation in patients with diabetic nephropathy. Diabetes Metab. 2019;45(3):248-53.
  20. Zhang C, Fu S, Zhao M, Liu D, Zhao Y, Yao Y. Associations between complement components and vitamin D and the physical activities of daily living among a longevous population in Hainan. China Front Immunol. 2020;11:1543.
  21. Small AG, Harvey S, Kaur J, Putty T, Quach A, Munawara U, Perveen K, McPhee A, Hii CS, Ferrante A. Vitamin D upregu- lates the macrophage complement receptor immunoglobulin in innate immunity to microbial pathogens. Commun Biol. 2021;4(1):401.
  22. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S13-S28.
  23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Anal Biochem. 1976;72:248-54.
  24. Mailhot G, White JH. Vitamin D and immunity in infants and children. Nutrients. 2020;12(5):1233.
  25. Conigliaro P, Triggianese P, Ballanti E, Perricone C, Perricone R, Chimenti MS. Complement, infection, and autoimmunity. Curr Opin Rheumatol. 2019;31(5):532-41.
  26. Szymczak-Pajor I, Drzewoski J, Sliwinska A. The molecular mechanisms by which vitamin D prevents insulin resistance and associated disorders. Int J Mol Sci. 2020;21(18):6644.
  27. Lagowska K, Bajerska J, Jamka M. The role of vitamin D oral supplementation in insulin resistance in women with polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2018;10(11):1637.
  28. Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10(5):293-302.
  29. Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin North Am. 2014;43(1):205-32.
  30. Harrison SR, Li D, Jeffery LE, Raza K, Hewison M. Vitamin D, autoimmune disease and rheumatoid arthritis. Calcif Tissue Int. 2020;106(1):58-75.
  31. Lubbers R, van Essen MF, van Kooten C, Trouw LA. Production of complement components by cells of the immune system. Clin Exp Immunol. 2017;188(2):183-94.
  32. Lesavre PH, Hugli TE, Esser AF, Müller-Eberhard HJ. The alternative pathway C3/C5 convertase: chemical basis of factor B activation. J Immunol. 1979;123(2):529-34.
  33. Rawal N, Pangburn MK. Formation of high affinity C5 convertase of the classical pathway of complement. J Biol Chem. 2003;278(40):38476-83.
  34. Horiuchi T, Tsukamoto H, Sawabe T, Harashima S, Morita C, Kashiwagi Y, Himeji D, Masumoto K, Otsuka T, Kusaba T, Nagasawa K. Behçet’s disease associated with complement component 9 (C9) deficiency. Mod Rheumatol. 2000;10(4):276-8.
  35. Franc V, Yang Y, Heck AJ. Proteoform profile mapping of the human serum complement component C9 revealing unexpected new features of N-, O-, and C-glycosylation. Anal Chem. 2017;89(6):3483-91.
  36. Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RH, Ekkel SM, Kondos SC, Goode RJ, Ramm G, Whisstock JC, Saibil HR, Dunstone MA. Structure of the poly- C9 component of the complement membrane attack complex. Nat Commun. 2016;7:10588.
  37. Menny A, Serna M, Boyd CM, Gardner S, Joseph AP, Morgan BP, Topf M, Brooks NJ, Bubeck D. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers. Nat Commun. 2018;9(1):5316.
  38. Roussel L, Landekic M, Golizeh M, Gavino C, Zhong MC, Chen J, Faubert D, Blanchet-Cohen A, Dansereau L, Parent MA, Marin S, Luo J, Le C, Ford BR, Langelier M, King IL, Divangahi M, Foulkes WD, Veillette A, Vinh DC. Loss of human ICOSL results in combined immunodeficiency. J Exp Med. 2018;215:3151-64.
  39. Engel P, Boumsell L, Balderas R, Bensussan A, Gattei V, Hore- jsi V, Jin BQ, Malavasi F, Mortari F, Schwartz-Albiez R, Stock- inger H, van Zelm MC, Zola H, Clark G. CD nomenclature 2015: human leukocyte differentiation antigen workshops as a driving force in immunology. J Immunol. 2015;195(10):4555-63.
  40. Dalmas E. Innate immune priming of insulin secretion. Curr Opin Immunol. 2019;56:44-9.
  41. Vlaicu SI, Tatomir A, Boodhoo D, Vesa S, Mircea PA, Rus H. The role of complement system in adipose tissue-related inflammation. Immunol Res. 2016;64(3):653-64.

Created by admin. Last Modification: Saturday October 1, 2022 17:51:09 GMT-0000 by admin. (Version 15)

Attached files

ID Name Comment Uploaded Size Downloads
18527 CompII_CompressPdf.pdf admin 01 Oct, 2022 17:49 785.35 Kb 40
18526 Complement 2015_CompressPdf.pdf admin 01 Oct, 2022 17:49 969.62 Kb 43
18523 Complement table.jpg admin 01 Oct, 2022 01:01 46.03 Kb 113
18522 Complement wikipedia.png admin 01 Oct, 2022 00:27 38.34 Kb 94
18521 complement system_CompressPdf.pdf PDF 2022 admin 01 Oct, 2022 00:26 373.24 Kb 52