Loading...
 
Toggle Health Problems and D

Immune system is better fortified by nano forms of Vitamin D, Vit C, Vit B12, Omega-3, resveratrol, etc - March 2021

Potential of Nanonutraceuticals in Increasing Immunity
Nanomaterials 2020,10,2224; doi:10.3390/nano10112224
Josef Jampilek1,2' josef.jampilek at gmail.com and Katarina Kralova
Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6,
842 15 Bratislava, Slovakia; kata.kralova at gmail.com

Nutraceuticals are defined as foods or their extracts that have a demonstrably positive effect on human health. According to the decision of the European Food Safety Authority, this positive effect, the so-called health claim, must be clearly demonstrated best by performed tests. Nutraceuticals include dietary supplements and functional foods. These special foods thus affect human health and can positively affect the immune system and strengthen it even in these turbulent times, when the human population is exposed to the COVID-19 pandemic. Many of these special foods are supplemented with nanoparticles of active substances or processed into nanoformulations. The benefits of nanoparticles in this case include enhanced bioavailability, controlled release, and increased stability. Lipid-based delivery systems and the encapsulation of nutraceuticals are mainly used for the enrichment of food products with these health-promoting compounds.

This contribution summarizes the current state of the research and development of effective nanonutraceuticals influencing the body's immune responses, such as vitamins (C, D, E, B12, folic acid), minerals (Zn, Fe, Se), antioxidants (carotenoids, coenzyme Q10, polyphenols, curcumin), omega-3 fatty acids, and probiotics.

VitaminDWiki

This study does not appear to mention important features of nano forms
1) Can get into the body without going thru the gut - which is 2x to 4 X faster
2) More gets into the body 2X to 10X more
3) Several of the nanonutraceuticals can be in the same liquid

The founder of VitaminDWiki in March 2021 takes emulsion Omega-3, nanoemulsion vitamin D, and combination Vitamin C and B12 nanoemulsion


Immunity category in VitaminDWiki

221 items in Immunity category

    see also

Virus category listing has 835 items along with related searches

Overview Influenza and vitamin D
Search for treg OR "t-cell" in VitaminDWiki 1440 items as of Jan 2020
141 VitaminDWiki pages contained "infection" in title (June 2021)
Search VitaminDWik for BACTERIA in title 25 items as of Aug 2019
Vitamin D and the Immune System – chapter Aug 2019
7X less risk of influenza if Vitamin D levels higher than 30 ng – Oct 2017
Common cold prevented and treated by Vitamin D, Vitamin C, Zinc, and Echinacea – review April 2018
Vitamin D improves T Cell immunity – RCT Feb 2016
Immune system - great 11-minute animated video - Aug 2021 nothing about Vitamin D
13 titles in VitaminDWiki contained INNATE or ADAPTIVE as of July 2021
Increasing publications on vitamin D and Infection
Image

34 studies are in both Immunity and Virus categories

COVID-19 treated by Vitamin D - studies, reports, videos
As of Dec 2, 2021, the VitaminDWiki page had:  34 trials 6 trial results,   28 meta-analyses and reviews,   64 observations,   36 recommendations,   55 associations,  89 speculations,  52 videos   see related:   Governments,   HealthProblems,   Hospitals,  Dark Skins,   26 risk factors are ALL associated with low Vit D,   Recent Virus pages   Fight COVID-19 with 50K Vit D weekly   Vaccines


Vitamin D and Omega-3 category starts with

353 Omega-3 items in category Omega-3 and Vitamin D separately & together help with: Autism (9 studies), Depression (26 studies), Cardiovascular (30 studies), Cognition (47 studies), Pregnancy (33 studies), Infant (24 studies), Obesity (12 studies), Mortality (5 studies), Breast Cancer (5 studies), Smoking, Sleep, Stroke, Longevity, Trauma (12 studies), Inflammation (18 studies), Multiple Sclerosis (9 studies), etc

   See also - Overview: Omega-3 many benefits include helping vitamin D


50,000 IU powder in capsule
Example Biotech Pharmacal
Nanoemulsion
Example micro D3
Average Cost
per day for 10,000 IU
4 cents8 cents
IU per serving 50,000 IU = capsule2,000 IU = drop
Servings if want average
of 10,000 IU/day
1 capsule
per 5 days
25 drops = 1 /4 teaspoon
per 5 days
Shelf life 1 year?6 months?
Add to food/drinkYes (powder) possiblly
Apply to skinNoYes
Swish in mouth
for fast response
Yes if put powder in saliva
or swish vitamin D water
Yes
Gut-friendlyperhapsprobably
Availability to cell
- better than bio-availability
standardperhaps 2X more
- due to small size
or activation of Vitamin D Receptor

 Download the PDF from VitaminDWiki
Table of Contents
Image

Table of contents


Vitamin D section

extracted from 42 page PDF
Vitamin D (calciferols, Figure 2) is the name for the steroid hormonal precursors of calcitriol, a hormone that affects the resorption of calcium and phosphate from the intestine, regulating the levels of calcium and phosphorus in the blood, so it is important for strong and undamaged bones [67,74,94]. It is important for the proper functioning of the immune system (long-term deficiency is associated with respiratory infections and influenza). It is important for alleviating immunodermatological problems [20,21,67]. Vitamin D affects approx. 200 different chemical reactions in the body and is found in all types of human cells and in all human tissues. Structurally, vitamin D occurs in two modifications: vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol) [67]. Vitamin D3 is produced in the skin by the action of sunlight (UVB) from provitamin 7-dehydrocholesterol. This synthesis covers 80% of the daily requirement. The amount of vitamin D produced is reduced by protective creams, frequent baths in hot water, dry skin of the elderly, large amounts of melanin in the skin, body envelopes, and air pollution. In food, vitamin D3 is found in fish oil, liver, egg yolk, and milk. The recommended dose for adults is 2000-4000 IU per day with blood levels of 30-60 ng/mL. At least two-thirds of all people living in northern latitudes are deficient in vitamin D. In plants, the precursor of vitamin D2 is ergosterol ormorphine [67,74,94].
Maurya et al. [95] comprehensively overviewed present findings related to fortification of food products with vitamin D with emphasis on factors affecting its bioavailability and the application of various suitable microencapsulation techniques, including liposomes, SLNPs, NLCs, NEs, spray drying, etc., which can be used for this purpose. Vitamin D NE-based delivery systems fabricated by spontaneous emulsification, which could be used in food industry, were reported by Guttoff et al. [96]. The NE-based delivery system was found to increase the in vitro bioavailability of vitamin D3 3.94-fold, and according to the in vivo test, in which vitamin D3 NE and vitamin D3 coarse emulsion were used, the application of the nanoformulation resulted in a ca. two-fold increase in 25-hydroxycholecalciferol in serum compared to the coarse emulsion (an increase of 73% vs. 36%) [97].
Vitamin D3 incorporated into the polymeric complex of carboxymethyl chitosan (CMCS) with soy protein isolate (SPI) showing sizes of 162-243 nm, zeta potentials ranging from -10 to -20 mV, and EE up to 96.8% exhibited a ca. two-fold lower release in SGF (42.3% vs. 86.1%) but a ca. 4.4-fold higher release in SIF (36.0% vs. 8.2%) compared to NPs fabricated using SPI [98]. Spherical N,N-dimethylhexadecyl CMCS core-shell micelles with a positive charge (+50.7 mV) encapsulated vitamin D3 with 53.2% EE resulting in its improved solubility. These core-shell micelles released vitamin D3 at first rapidly; later its sustained release was observed [99]. Nanocomplexes prepared from ovalbumin, high-methoxylated pectin and encapsulated vitamin D3 showing high EE of 96.37% were characterized with electrostatic interactions, hydrogen bonding, and hydrophobic interactions among the three constituents and released only a small amount of vitamin D3 in SGF, while a large amount in SIF suggesting their potential to be used in food applications [100]. High amylose starch nanocarriers with particle sizes of 14.2-31.8 nm and a negative surface charge loaded with vitamin D3 and achieving 37.06-78.11% EE that were investigated for food fortification using milk as a model food supplementing Ca improved the bioavailability of vitamin D3 and masked the after taste, suggesting their potential to be used for the fortification of food with vitamin D3 [101]. In oil-in-water (O/W) Pickering emulsions stabilized by nanofibrillated cellulose (NFC; diameter: ca. 60 nm, length: several micrometers) encapsulating vitamin D3 containing 0.01% w/w vitamin D3,9.99% w/w soybean oil, 0.10-0.70% w/w NFC as emulsifier at phosphate buffer of pH 7, the extent of lipid digestion and vitamin bioavailability decreased with increasing NFC concentration [102]. Mitbumrung et al. [103] encapsulated vitamin D3 in 10% wt soybean O/W Pickering emulsions stabilized by NFC or whey protein isolate (WPI) providing good stability to the emulsions via a combination of steric and electrostatic repulsion, where emulsions properties and EE were not affected by heating or ionic strength, and at highly acidic conditions (pH 2), particle size increased and EE showed a decrease. By an increase in NFC or WPI concentration, the stability and EE of the emulsions was improved and the encapsulated vitamin was effectively protected against environmental stresses occurring in industrial food production (e.g., pH changes, salt addition, and thermal processing).
The application of digestible oil (DO), indigestible oil (IO), or their mixture affected both the lipid digestion rate and the bioavailability of vitamin D3 encapsulated in NEs. The highest lipid digestion rate and vitamin bioavailability were observed with NEs using DO, the lowest one with those using IO, while comparable results were obtained with oil mixture (OM) consisting of 1:1 DO:IO mixed before homogenization and a 1:1 mixture consisting of DO and IO NEs mixed after homogenization. The maximum amount of vitamin D3 was estimated after ca. 30 min, and then its level showed a decrease during the following 24 h, which could be connected with an initial solubilization of the vitamin within the mixed micelles and following precipitation during prolonged incubation [104]. From O/W NEs prepared using various oils and natural surfactant, quillaja saponin, encapsulating vitamin D3, the release of free fatty acids during lipid digestion in a simulated gastrointestinal tract (GIT) model decreased as follows: medium chain triglycerides (MCT) > corn oil > fish oil > orange oil > mineral oil, while the bioavailability of vitamin D3 increased in following order MCT < mineral oil< orange oil < fish oil < corn oil suggesting that the greatest increase in vitamin D3 bioavailability can be obtained with NEs fabricated with long chain triglycerides (corn or fish oil) [105]. By blending caprylic-/capric triglyceride and Kolliphor HS®15, vitamin D3 and sodium chloride in optimal ratio, Maurya and Aggarwal [106] prepared a formulation with encapsulated vitamin able to tolerate environmental stress conditions, and based on sensory evaluation it was found to be suitable for fortification of vitamin D3 in “Lassi”, a milk based beverage. Uncoated nanoliposomes loaded with vitamins D3 and K2 were fabricated using a novel, a semi continuous technique based on simil-microfluidic principles and covered with CS to enhance the mucoadhesiveness and the stability of the liposomal structures, whereby CS was tested as covering material. Such polymer-lipid hybrid NPs encapsulating the above-mentioned vitamins were characterized with improved stability, loading, and mucoadhesiveness, suggesting their potential to be used in nutraceutical applications [107].
Vitamin D3 was incorporated into an NLC consisting of Precirol® (glyceryl palmitostearate) as a solid lipid and octyl octanoate as a liquid lipid. The surface of these NLCs was coated with either Poloxamer 407 or Tween 20. Both of these surfactants prevented agglomeration during the homogenization process while increasing intestinal absorption of the entire formulation, suggesting that NLCs can be used as an excellent carrier to enrich beverages with vitamin D3 [108].
Berinoetal.[109]studied the interaction of vitamin D3 with p-lactoglobulinathighvitamin/protein ratios and found that when 100 uM vitamin D3 and 20 uM p-lactoglobulin in 20 mM phosphate buffer at pH 7.0 were used, vitamin D3 interacted in the hydrophobic calix in the protein, and the binding of the vitamin caused conformational changes in the secondary p-lactoglobulin structure. With the increasing vitamin concentration, the proportion of bound vitamin increased likely due to a cooperative phenomenon and/or a stacking process. Moeller et al. [110] enriched low fat yoghurt by spray- and freeze-dried casein micelles loaded with vitamin D2 maintaining constant vitamin content in powders during 4 months of storage. Based on the results of an in vitro proteolysis, when 90% of the vitamin D2 encapsulated in dry casein micelles remained active compared to 67% of free vitamin D2, it was assumed that after proteolysis, the vitamin will be ultimately available in the lumen. Using the optimal loading of vitamin D3 into re-assembled casein micelles (1.38-1.46 mg/100 mg casein) performed at 4.9 mM PO43-, 4.0 mM citrate, and 26.1 mM Ca, more vitamin D3 was retained in the re-assembled casein micelles than in control powders during storage, however its loss after 21 days of refrigerated storage with light exposure was comparable with that of the control fortified milks suggesting that re-assembled casein micelles can improve vitamin D3 stability during dry storage [111]. The highly protective effect of the re-assembled casein micelles against gastric degradation of vitamin D3 resulted in its four-fold higher bioavailability compared to the free vitamin D3 [112].
Vitamin D3 and potato protein co-assemblies formed in phosphate buffer at pH 2.5 provided transparent solutions that were able to significantly protect and reduce vitamin D3 losses during pasteurization. Testing performed under different storage conditions suggests that potato protein could be used as a good carrier of vitamin D3 and the entire stable formulation could be used to fortify clear beverages, other foods, and drink products with vitamin D3 [113].
Pea protein-stabilized NEs with particle sizes of 170-350 nm and zeta-potential of -25 mV, which were characterized with good stability and the high EE of D vitamin (94-96%) exhibited considerably higher cellular uptake than emulsions fabricated using a combination of protein and lecithin, the cellular uptake of NEs with particle sizes of 233 nm being higher than that observed with NEs of 350 nm. Evently the transport efficiency of vitamin D in NEs with smaller particle sizes across Caco-2 cell was 5.3-fold greater than that of free vitamin D suspension, suggesting that pea protein could be considered as an effective emulsifier for fabrication of food NEs ensuring the improved bioavailability of vitamin D [114]. Pea protein isolate (PPI), the function properties of which were modified using pH-shifting and sonication combined treatment, was applied to prepare NEs encapsulating vitamin D3. The NEs ensured good protection of vitamin D3 against UV radiation, were stable during 30-day storage, and showed ameliorated antioxidant activity as well as markedly higher recovery of vitamin D3 in micelles through in vitro digestion, suggesting that such NEs could be used for protection and delivery of nutraceuticals in foods [115]. The application of vitamin D3 encapsulated in PPI NE at the dose of 81 daily to vitamin D deficient rats for one week resulted in higher serum 25-hydroxycholecalciferol levels compared to the control as well as in changes in serum parathyroid hormone, Ca, P, and alkaline phosphatase levels as compared to the controls. Hence, vitamin D3 encapsulated in PPI-based NEs improved its absorption and restored its status and biomarkers of bone resorption in vitamin D deficient rats [116].
Salvia-Trujillo et al. [117] investigated the impact of the initial lipid droplet size on the in vitro bioavailability and in vivo absorption of vitamin D2 encapsulated in O/W NE. The in vitro studies, in which vitamin D2-loaded lipid droplets were passed through a simulated GIT, showed the highest
bioavailability of the vitamin with the emulsions containing the smallest droplets, because they were digested more rapidly than larger ones and were able to form quickly mixed micelles in the small intestine capable to solubilize the lipophilic vitamin. On the other hand, in the in vivo rat feeding studies, the highest absorption of vitamin D2 was observed with NEs containing the largest droplets. This discrepancy could be connected with the fact that the simulated GIT cannot precisely reflect the complexity of a real GIT and by the applied in vivo approach, the changes in vitamin levels in the blood were not monitored over time.
Using mixed surfactant (Tween 80 and soya lecithin), vitamin D NEs were fabricated by ultrasonic homogenization showing droplet sizes of 140.15 nm and 155.5 nm after 2 months storage at 4 and 25 〇C, respectively; after 30 days of storage at 4 and 25 〇C, the NEs retained 74.4 ± 1.2 and 55.3 ± 2.1%〇 of vitamin D, suggesting their suitability to be used in food and beverages [118]. The optimized vitamin D NEs fabricated by Mehmood et al. [119] using ultrasonication and lecithin and Tween 80 at a ratio 2:3 showed the size of 112.36 ± 3.6 nm and the vitamin D retention of 76.65 ± 1.7%〇. The higher release of vitamin D3 under simulated intestinal condition was observed from NEs co-encapsulating vitamin D3 and saffron petals' bioactive compounds, which were stabilized with basil seed gum and prepared using high pressure and ultrasound compared to those fabricated using WPC and Tween 80 emulsifiers [120]. The investigation of a series of 2 wt% O/W emulsions containing different initial levels and locations of CS NPs and Tween 80 with encapsulated vitamin D3 showed that the NEs stabilized with Tween 8 exhibited 30% higher lipid digestion and 45% higher vitamin D3 bioavailability than those prepared with CS NPs, and the resulting effect depended on the applied ratio of CS NPs and Tween 80. It can be assumed that a layer of CS NPs limit the lipase to reach the lipid phase, the significant aggregation of droplets coated with CS NPs reduced the area of lipids, which is accessible to the lipase, and the positively charged CS NPs bound to anionic bile acids, fatty acids, or lipase. While the slowing of lipid digestion by CS NPs would be favorable at application in high-satiety foods, the reduced bioavailability of vitamin D is unfavorable [121]. O/W NEs prepared using Tween 20, soybean lecithin, and their mixtures as emulsifiers and soybean oil or mixtures of the oil with cocoa butter as a dispersed oil phase using high pressure homogenization, showing oil droplets encapsulating vitamin D3 with average diameters <200 nm, maintained physical stability for several weeks. In systems stabilized by Tweens, partial vitamin's embedment in the interface of NEs was observed. The whole-fat milk fortified with vitamin D3 enriched NEs remained stable to particle aggregation and gravitational separation for at least 10 days [122].
Leaving aside the above mentioned combined nanoformulation of vitamin D with vitamin C [72], it appears that the described nanoencapsulation of vitamin D into casein [123], micelles and their application to yoghurt [110] has the greatest benefit for immunity of the nanoformulations


Abbreviations

ALG (alginate); AST (astaxanthin); (3-Car (p-carotene); p-CD (p-cyclodextrin); CFU (colony-forming unit); CLPs (colloidal lipid particles); CMC (carboxymethyl cellulose); CMCS (carboxymethyl chitosan); CNC (central nervous system); CoQ10 (Coenzyme Q10); COS (chitooligosaccharide); COVID-19 (coronavirus disease caused by the SARS-CoV-2 virus); CS (chitosan); CUR (curcumin); DHA (docosahexaenoic acid); DO (digestible oil); DPPH (2,2-diphenyl-1-picrylhydrazyl); EE (encapsulation efficiency); EFSA (European Food Safety Authority); EGCG (epigallocatechin-3-gallate); FA (folic acid); FFAs (free fatty acids); FJM (fruitjuice-milk); GA (gum arabic); GABA (gamma-aminobutyric acid); GI (gastrointestinal); GIT (gastrointestinal tract); HA (hyaluronic acid); IFNy (interferon gamma); IL-6 (interleukin-6); IO (indigestible oil); a-LA (a-linolenic acid); LbL (layer-by-layer); LDHs (layered double hydroxides); LNCPs (lipid nanocapsules); MAPK (mitogen activated protein kinase); MCT (medium chain triglycerides); MDX (maltodextrin); MPs (microparticles); Na-ALG (sodium alginate); NaOl (sodium oleate); NE (nanoemulsion); NFC (nanofibrillated cellulose); NLCs (nanostructured lipid carriers); NPs (nanoparticles); ovalbumin (OVA); O/W (oil-in-water); PBMCs (peripheral blood mononuclear cells); PC (phosphatidylcholine); PCR (polymerase chain reaction); PEG (polyethylene glycol); PPI (pea protein isolate); PUFA (polyunsaturated fatty acid); PWP (polymerized whey protein); QR (quercetin); RebA (rebaudioside A); RES (resveratrol); ROS (reactive oxygen species); SGF (simulated gastric fluid); SIF (simulated intestinal fluid); SLNPs (solid lipid nanoparticles); SPI (soy protein isolate); TNFa (tumor necrosis factor alpha); a-Toc (a-tocopherol); W/O (water-in-oil); WP (whey protein); WPC (whey protein concentrate); WPI (whey protein isolate); ZX (zeaxanthin).


References

  1. Elgert, K.D. Immunology: Understanding the Immune System; Wiley-Blackwell: Hoboken, NJ, USA, 2009.
  2. Neuschlova, M.; Novakova, E.; Kompanikova, J. Immunology—How the Immune System Works; Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava: Bratislava, Slovakia, 2017. (In Slovak)
  3. Abbas, A.K.; Lichtman, A.H.; Pillai, S. Basic Immunology: Functions and Disorders ofthe Immune System, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2019.
  4. Rao, C.V. An Introduction to Immunology; Alpha Science International: Pangbourne, India, 2002.
  5. Calder, P.C.; Yaqoob, P. Nutrient regulation of the immune response. In Present Knowledge in Nutrition, 11th ed.; Marriott, B.P., Birt, D.F., Stallings, V.A., Yates, A.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp.625-664.
  6. Redondo, N.; Nova, E.; Gomez-Martinez, S.; Diaz-Prieto, L.E.; Marcos, A. Diet, nutrition and the immune system. In Encyclopedia of Food Security and Sustainability; Ferranti, P., Berry, E.M., Anderson, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 250-255.
  7. Lapik, I.A.; Galchenko, A.V.; Gapparova, K.M. Micronutrient status in obese patients: A narrative review. Obes. Med. 2020,18,100224. [CrossRef]
  8. Ashaolu, T.J. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics andprebiotics. Biomed. Pharmacother. 2020,130,110625. [CrossRef] [PubMed]
  9. Kersiene, M.; Jasutiene, I.; Eisinaite, V.; Venskutonis, P.R.; Leskauskaite, D. Designing multiple bioactives loaded emulsions for the formulations for diets of elderly. Food Funct. 2020, 11, 2195-2207. [CrossRef] [PubMed]
  10. Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014, 5,1487-1499. [PubMed]
  11. Kohout, P. Possibilities of affecting the immune system with nutraceutics. Intern. Med. 2010,12,140-144. (In Czech)
  12. Vergallo, C. Nutraceutical vegetable oil nanoformulations for prevention and management of diseases. nanomaterials 2020,10,1232. [CrossRef] [PubMed]
  13. Sachdeva, V.; Roy, A.; Bharadvaja, N. Current prospects of nutraceuticals: A review. Curr. Pharm. Biotechnol. 2020, 21,884-896. [CrossRef][PubMed]
  14. Das, L.; Bhaumik, E.; Raychaudhuri, U.; Chakraborty, R. Role of nutraceuticals in human health. J. Food Sci. Technol. 2012, 49,173-183. [CrossRef]
  15. Aronson, J.K. Defining ‘nutraceuticals': Neither nutritious nor pharmaceutical. Br. J. Clin. Pharmacol. 2017, 8, 19. [CrossRef]
  16. EU. Register of Nutrition and Health Claims Made on Foods. Available online: https://ec.europa.eu/food/ safety/labelling_nutrition/claims/register/public/?event=register.home (accessed on 6 October 2020).
  17. European Commission—Health Claims. Available online: https://ec.europa.eu/food/safety/labelling_ nutrition/claims/health_claims_en (accessed on 6 October 2020).
  18. Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Jeewandara, C.; Ranasinghe, P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr. 2020,14, 367-382. [CrossRef]
  19. Shakoor, H.; Feehan, J.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Apostolopoulos, V.; Stojanovska, L. Immune-boosting role of vitamins D, C, E, zinc, Selenium and Omega-3 fatty acids: Could they help against COVID-19? Maturitas 2021,143,1-9. [CrossRef]
  20. Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020, 12, 988. [CrossRef] [PubMed]
  21. Martineau, A.R.; Forouhi, N.G. vitamin D for COVID-19: A case to answer? Lancet Diabetes Endocrinol. 2020, 8, 735-736. [CrossRef]
  22. Jovic, T.H.; Ali, S.R.; Ibrahim, N.; Jessop, Z.M.; Tarassoli, S.P.; Dobbs, T.D.; Holford, P.; Thornton, C.A.; Whitaker, I.S. Could vitamins help in the fight against COVID-19? Nutrients 2020,12, 2550. [CrossRef]
  23. Alkhatib, A. Antiviral functional foods and exercise lifestyle prevention of Coronavirus. Nutrients 2020,12, 2633. [CrossRef] [PubMed]
  24. Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients 2020,12,1181. [CrossRef]
  25. Morais, A.H.A.; Passos, T.S.; Maciel, B.L.L.; da Silva-Maia, J.K. Can probiotics and diet promote beneficial immune modulation and purine control in Coronavirus infection? Nutrients 2020,12,1737. [CrossRef]
  26. Baud, D.; Agri, V.D.; Gibson, G.R.; Reid, G.; Giannoni, E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front. PublicHealth 2020, 8,186. [CrossRef]
  27. Jampilek, J.; Kralova, K. Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In nanobiomaterials: Applications in Drug Delivery; Sharma, A.K., Keservani, R.K., Kesharwani, R.K., Eds.; CRC Press: Warentown, NJ, USA, 2018; pp. 131-208.
  28. Jampilek, J.; Kralova, K. Recent Advances in lipid nanocarriers applicable in the fight against cancer. In nanoarchitectonics in Biomedicine; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 219-294.
  29. Jampilek, J.; Kralova, K. nanotechnology based formulations for drug targeting to central nervous system. In nanoparticulate Drug Delivery Systems; Keservani, R.K., Sharma, A.K., Eds.; Apple Academic Press & CRC Press: Warentown, NJ, USA, 2019; pp. 151-220.
  30. Jampilek, J.; Kralova, K.; Campos, E.V.R.; Fraceto, L.F. Bio-based nanoemulsion formulations applicable in agriculture, medicine and food industry. In nanobiotechnology in Bioformulations; Prasad, R., Kumar, V., Kumar, M., Choudhary, D.K., Eds.; Springer: Cham, Switzerland, 2019; pp. 33-84.
  31. Pentak, D.; Kozik, V.; Bak, A.; Dybal, P.; Sochanik, A.; Jampilek, J. Methotrexate and cytarabine—Loaded nanocarriers for multidrug cancer therapy. Spectroscopic study. Molecules 2016, 21,1689. [CrossRef]
  32. Placha, D.; Jampilek, J. Graphenic materials for biomedical applications. nanomaterials 2019, 9, 1758. [CrossRef]
  33. Jampilek, J.; Kralova, K. Natural biopolymeric nanoformulations for brain drug delivery. In nanocarriersfor Brain Targetting: Principles and Applications; Raj, K., Keservani, A.K., Rajesh, S., Kesharwani, K., Eds.; Apple Academic Press & CRC Press: Warentown, NJ, USA, 2020; pp. 131-203.
  34. Jampilek, J.; Kralova, K. nanoweapons against tuberculosis. In nanoformulations in Human Health—Challenges and Approaches; Talegaonkar, S., Rai., M., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 469-502.
  35. Jampilek, J.; Kralova, K. nanoformulations—Valuable tool in therapy of viral diseases attacking humans and animals. In nanotheranostic—Applications and Limitations; Rai, M., Jamil, B., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 137-178.
  36. Jampilek, J.; Kralova, K.; Novak, P.; Novak, M. nanobiotechnology in neurodegenerative diseases. In nanobiotechnology in Neurodegenerative Diseases; Rai, M., Yadav, A., Eds.; Springer Nature: Cham, Switzerland, 2019; pp.65-138.
  37. Jampilek, J.; Kos, J.; Kralova, K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. nanomaterials 2019, 9, 296. [CrossRef]
  38. Human Regulatory—nanomedicines. European Medicines Agency. 2020. Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines/ multidisciplinary/multidisciplinary-nanomedicines (accessed on 25 October 2020).
  39. FDA's Approach to Regulation of nanotechnology Products. Available online: https://www.fda.gov/science- research/nanotechnology-programs-fda/fdas-approach-regulation-nanotechnology-products (accessed on 25 October 2020).
  40. nanotechnology Guidance Documents. Available online: https://www.fda.gov/science-research/ nanotechnology-programs-fda/nanotechnology-guidance-documents (accessed on 25 October 2020).
  41. Som, C.; Schmutz, M.; Borges, O.; Jesus, S.; Borchard, G.; Nguyen, V.; Perale, G.; Casalini, T.; Zinn, M.; Amstutz, V.; et al. Guidelines for Implementing a Safe-by-Design Approach for Medicinal Polymeric nanocarriers, Empa St. Gallen. 2019. Available online: https://www.empa.ch/documents/56164/10586277/ Guidelines/b0f2b20b-29d1-426b-8263-8d031b819c61 (accessed on 25 October 2020).
  42. Guidelines for Evaluation of nanopharmaceuticals in India. Department of Biotechnology, Indian Society of nanomedicine. 2019. Available online: https://www.birac.nic.in/webcontent/1550639649_guidelines_for_ evaluation_of_nanopharmaceuticals_in_India_20_02_2019.pdf (accessed on 25 October 2020).
  43. Zainal Abidin, H.F.; Hassan, K.H.; Zainol, Z.A. Regulating risk of nanomaterials for workers through soft law approach. nanoethics 2020,14,155-167. [CrossRef]
  44. Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. nanopharmaceutics: Part I—Clinical trials legislation and Good Manufacturing Practices (GMP) of nanotherapeutics in the EU. Pharmaceutics 2020,12,146. [CrossRef]
  45. Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. nanopharmaceutics: Part II-production scales and clinically compliant production methods. nanomaterials 2020, 10, 455. [CrossRef]
  46. Jampilek, J.; Kralova, K. Impact of nanoparticles on toxigenic fungi. In nanomycotoxicology—Treating Mycotoxins in the nano Way; Rai, M., Abd-Elsalam, K.A., Eds.; Academic Press & Elsevier: London, UK, 2020; pp. 309-348.
  47. Jampilek, J.; Kralova, K. nanocomposites: Synergistic nanotools for management mycotoxigenic fungi. In nanomycotoxicology—Treating Mycotoxins in the nano Way; Rai, M., Abd-Elsalam, K.A., Eds.; Academic Press & Elsevier: London, UK, 2020; pp. 349-383.
  48. Jampilek, J.; Kralova, K.; Fedor, P. Bioactivity of nanoformulated synthetic and natural insecticides and their impact on the environment. In nanopesticides—From Research and Development to Mechanisms ofAction and Sustainable Use in Agriculture; Fraceto, L.F., de Castro, V.L., Grillo, R., Avila, D., Oliveira, H.C., de Lima, R., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 165-225.
  49. Su, S.; Kang, P.M. Systemic review of biodegradable nanomaterials in nanomedicine. nanomaterials 2020,10, 656. [CrossRef] [PubMed]
  50. Zielinska, A.; Costa, B.; Ferreira, M.V.; Migueis, D.; Louros, J.M.S.; Durazzo, A.; Lucarini, M.; Eder, P.; Chaud, M.V.; Morsink, M.; et al. nanotoxicology and nanosafety: Safety-by-design and testing at a glance. Int. J. Environ. Res. Public Health 2020,17, 4657. [CrossRef] [PubMed]
  51. De Stefano, D.; Carnuccio, R.; Maiuri, M.C. nanomaterials toxicity and cell death modalities. J. Drug Deliv. 2012, 2012,167896. [CrossRef] [PubMed]
  52. Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. nanoscale Res. Lett. 2018,13, 44. [CrossRef]
  53. European Food Safety Authority. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J. 2018,16, 5327.
  54. Jampilek, J.; Kralova, K. Benefits and potential risks of nanotechnology applications in crop protection. In nanobiotechnology Applications in Plant Protection, nanotechnology in the Life Sciences; Abd-Elsalam, K.A., Prasad, R., Eds.; Springer International Publishing: Singapore, 2018; pp. 189-246.
  55. Subramani, T.; Ganapathyswamy, H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. Mys. 2020, 57, 3545-3555. [CrossRef]
  56. Aswathanarayan, J.B.; Vittal, R.R. nanoemulsions and their potential applications in food industry. Front. Sustain. Food Syst. 2019, 3, 95. [CrossRef]
  57. Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics 2020,12, 288. [CrossRef]
  58. Zhong, Q.X.; Zhang, L.H. nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications. Adv. Colloid Interface Sci. 2019, 273,102033. [CrossRef]
  59. Assadpour, E.; Jafari, S.M. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by variousnanocarriers. Crit. Rev. Food Sci. Nutr. 2019, 59,3129-3151. [CrossRef]
  60. Katouzian, I.; Jafari, S.M. nano-encapsulation as a promising approach for targeted delivery and controlled release ofvitamins. Trends Food Sci. Technol. 2016, 53, 34-48. [CrossRef]
  61. Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol. 2013, 6, 628-647. [CrossRef]
  62. Fathi, M.; Mozafari, M.R.; Mohebbi, M. nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol. 2012, 23,13-27. [CrossRef]
  63. Arenas-Jal, M.; Sune-Negre, J.M.; Garcia-Montoya, E. An overview of microencapsulation in the food industry: Opportunities, challenges, and innovations. Eur. Food Res. Technol. 2020, 246,1371-1382. [CrossRef]
  64. Zam, W. Microencapsulation: A prospective to protect probiotics. Curr. Nutr. Food Sci. 2020,16, 891-899. [CrossRef]
  65. Naidu, K.A. vitamin C in human health and disease is still a mystery? An overview. Nutr. J. 2003, 2, 7. [CrossRef]
  66. Timoshnikov, V.A.; Kobzeva, T.V.; Polyakov, N.E.; Kontoghiorghes, G.J. Redox interactions of vitamin C and iron: Inhibition of the pro-oxidant activity by deferiprone. Int. J. Mol. Sci. 2020, 21, 3967. [CrossRef] [PubMed]
  67. Nantel, G.; Tontisirin, K. Human vitamin and Mineral Requirements; FAO & WHO: Rome, Italy, 2002; Available online: http://www.fao.org/3y/y2809e/y2809e00.pdf (accessed on 3 October 2020).
  68. Jiao, Z.; Wang, X.D.; Yin, Y.T.; Xia, J.X. Preparation and evaluation of vitamin C and folic acid-coloaded antioxidant liposomes. Particul. Sci. Technol. 2019, 37, 449-455. [CrossRef]
  69. Parhizkar, E.; Rashedinia, M.; Karimi, M.; Alipour, S. Design and development of vitamin C-encapsulated proliposome with improved in-vitro and ex-vivo antioxidant efficacy. J. Microencapsul. 2018, 35, 301-311. [CrossRef]
  70. Jiao, Z.; Wang, X.D.; Yin, Y.T.; Xia, J.X.; Mei, Y.N. Preparation and evaluation of a chitosan-coated antioxidant liposome containing vitamin C and folic acid. J. Microencapsul. 2018, 35, 272-280. [CrossRef]
  71. Liu, W.L.; Tian, M.M.; Kong, Y.Y.; Lu, J.M.; Li, N.; Han, J.Z. Multilayered vitamin C nanoliposomes by self-assembly of alginate and chitosan: Long-term stability and feasibility application in mandarin juice. LWT Food Sci. Technol. 2017, 75, 608-615. [CrossRef]
  72. Gautam, M.; Santhiya, D. Pectin/PEG food grade hydrogel blend for the targeted oral co-delivery of nutrients. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 637-644. [CrossRef]
  73. Salaheldin, T.A.; Regheb, E.M. In-vivo nutritional and toxicological evaluation of nano iron fortified biscuits as food supplement for iron deficient anemia. J. nanomed. Res. 2016, 3, 00049. [CrossRef]
  74. Charoenngam, N.; Holick, M.F. Immunologic effects of vitamin D on human health and disease. Nutrients 2020, 12, 2097. [CrossRef] [PubMed]
  75. O'Leary, D.; Samman, S. vitamin B12 in health and disease. Nutrients 2010, 2, 299-316. [CrossRef]
  76. Grdber, U.; Kisters, K.; Schmidt, J. Neuroenhancement with vitamin B!2-underestimated neurological significance. Nutrients 2013, 5, 5031-5045. [CrossRef]
  77. Zhu, K.; Chen, X.Y.; Yu, D.; He, Y.; Song, G.L. Preparation and characterisation of a novel hydrogel based on Auricularia polytricha p-glucan and its bio-release property for vitamin B12 delivery. J. Sci. Food Agric. 2018, 98, 2617-2623. [CrossRef]
  78. Liu, G.Y.; Yang, J.Q.; Wang, Y.X.; Liu, X.H.; Guan, L.L.; Chen, L.Y. Protein-lipid composite nanoparticles for the oral delivery of vitamin B12: Impact of protein succinylation on nanoparticle physicochemical and biological properties. Food Hydrocoil. 2019, 92,189-197. [CrossRef]
  79. Mazzocato, M.C.; Thomazini, M.; Favaro-Trindade, C.S. Improving stability of vitamin B12 (Cyanocobalamin) using microencapsulation by spray chilling technique. Food Res. Int. 2019,126,108663. [CrossRef]
  80. Camilli, G.; Tabouret, G.; Quintin, J. The complexity of fungal p-glucan in health and disease: Effects on the mononuclear phagocyte system. Front. Immunol. 2018, 9, 673. [CrossRef]
  81. Stanger, O. Physiology of folic acid in health and disease. Curr. Drug Metab. 2002, 3, 211-223. [CrossRef]
  82. Crnivec, I.G.O.; Istenic, K.; Skrt, M.; Ulrih, N.P. Thermal protection and pH-gated release of folic acid in microparticles and nanoparticles for food fortification. Food Funct. 2020,11,1467-1477. [CrossRef]
  83. Acevedo-Fani, A.; Soliva-Fortuny, R.; Martin-Belloso, O. Photo-protection and controlled release of folic acid using edible alginate/chitosan nanolaminates. J. Food Eng. 2016, 229, 72-82. [CrossRef]
  84. Perez-Masia, R.; Lopez-Nicolas, R.; Periago, M.J.; Ros, G.; Lagaron, J.M.; Lopez-Rubio, A. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem. 2015,168,12-133. [CrossRef]
  85. do Evangelho, J.A.; Crizel, R.L.; Chaves, F.C.; Prietto, L.; Pinto, V.Z.; de Miranda, M.Z.; Dias, A.R.G.; Zavareze, E.D. Thermal and irradiation resistance of folic acid encapsulated in zein ultrafine fibers or nanocapsules produced by electrospinning and electrospraying. Food Res. Int. 2019,124,137-146. [CrossRef]
  86. Assadpour, E.; Maghsoudlou, Y.; Jafari, S.M.; Ghorbani, M.; Aalami, M. Evaluation of folic acid nano-encapsulation by double emulsions. Food Bioprocess Technol. 2016, 9, 2024-2032. [CrossRef]
  87. Ochnio, M.E.; Martinez, J.H.; Allievi, M.C.; Palavecino, M.; Martinez, K.D.; Perez, O.E. Proteins as nano-carriers for bioactive compounds. The case of 7S and 11S soy globulins and folic acid complexation. Polymers 2018, 10, 149. [CrossRef]
  88. Zema, P.; Pilosof, A.M.R. On the binding of folic acid to food proteins performing as vitamin micro/nanocarriers. FoodHydrocoll. 2018, 79, 509-517. [CrossRef]
  89. Perez-Esteve, E.; Ruiz-Rico, M.; de la Torre, C.; Villaescusa, L.A.; Sancenon, F.; Marcos, M.D.; Amoros, P.; Martinez-Manez, R.; Barat, J.M. Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chem. 2016,196, 66-75. [CrossRef]
  90. Perez-Esteve, E.; Fuentes, A.; Coll, C.; Acosta, C.; Bernardos, A.; Amoros, P.; Marcos, M.D.; Sancenon, F.; Martinez-Manez, R.; Barat, J.M. Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Micropor. Mesopor. Mat. 2015,202,124-132. [CrossRef]
  91. Perez-Esteve, E.; Ruiz-Rico, M.; Fuentes, A.; Marcos, M.D.; Sancenon, F.; Martinez-Manez, R.; Barat, J.M. Enrichment of stirred yogurts with folic acid encapsulated in pH-responsive mesoporous silica particles: Bioaccessibility modulation and physico-chemical characterization. LWT Food Sci. Technol. 2016, 72, 351-360. [CrossRef]
  92. Ruiz-Rico, M.; Perez-Esteve, E.; Lerma-Garcia, M.J.; Marcos, M.D.; Martinez-Manez, R.; Barat, J.M. Protection of folic acid through encapsulation in mesoporous silica particles included in fruit juices. Food Chem. 2017, 218,471-478. [CrossRef]
  93. Pagano, C.; Tiralti, M.C.; Perioli, L. nanostructured hybrids for the improvement of folic acid biopharmaceutical properties. J. Pharm. Pharmacol. 2016, 68,1384-1395. [CrossRef]
  94. Lips, O. vitamin D physiology. Prog. Biophys. Mol. Biol. 2006, 92, 4-8. [CrossRef]
  95. Maurya, V.K.; Bashir, K.; Aggarwal, M. vitamin D microencapsulation and fortification: Trends and technologies. J. Steroid Biochem. Mol. Biol. 2020,196,105489. [CrossRef]
  96. Guttoff, M.; Saberi, A.H.; McClements, D.J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chem. 2015,171,117-122. [CrossRef]
  97. Kadappan, A.S.; Guo, C.; Gumus, C.E.; Bessey, A.; Wood, R.J.; McClements, D.J.; Liu, Z.H. The efficacy of nanoemulsion-based delivery to improve vitamin D absorption: Comparison of in vitro and in vivo studies. Mol. Nutr. Food Res. 2018, 62,1700836. [CrossRef]
  98. Teng, Z.; Luo, Y.C.; Wang, Q. Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food Chem. 2013,141, 524-532. [CrossRef]
  99. Li, W.J.; Peng, H.L.; Ning, F.J.; Yao, L.H.; Luo, M.; Zhao, Q.; Zhu, X.M.; Xiong, H. Amphiphilic chitosan derivative-based core-shell micelles: Synthesis, characterisation and properties for sustained release of vitamin D3. Food Chem. 2014,152, 307-315. [CrossRef]
  100. Xiang, C.Y.; Gao, J.; Ye, H.X.; Ren, G.R.; Ma, X.J.; Xie, H.J.; Fang, S.; Lei, Q.F.; Fang, W.J. Development of ovalbumin-pectin nanocomplexes for vitamin D3 encapsulation: Enhanced storage stability and sustained release in simulated gastrointestinal digestion. Food Hydrocoil. 2020,106,105926. [CrossRef]
  101. Hasanvand, E.; Fathi, M.; Bassiri, A.; Javanmard, M.; Abbaszadeh, R. Novel starch based nanocarrier for vitamin D fortification of milk: Production and characterization. Food Bioprod. Process. 2015, 96, 264-277. [CrossRef]
  102. Winuprasith, T.; Khomein, P.; Mitbumrung, W.; Suphantharika, M.; Nitithamyong, A.; McClements, D.J. Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food Hydrocoil. 2018, 83,153-164. [CrossRef]
  103. Mitbumrung, W.; Suphantharika, M.; McClements, D.J.; Winuprasith, T. Encapsulation of vitamin D3 in Pickering emulsion stabilized by nanofibrillated mangosteen cellulose: Effect of environmental stresses. J. Food Sci. 2019, 84, 3213-3221. [CrossRef]
  104. Tan, Y.B.; Liu, J.N.; Zhou, H.L.; Mundo, J.M.; McClements, D.J. Impact of an indigestible oil phase (mineral oil) on the bioaccessibility of vitamin D3 encapsulated in whey protein-stabilized nanoemulsions. Food Res. Int. 2019,120, 264-274. [CrossRef]
  105. Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D.J. nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chem. 2015,187, 499-506. [CrossRef]
  106. Maurya, V.K.; Aggarwal, M. Fabrication of nano-structured lipid carrier for encapsulation of vitamin D3 for fortification of ‘Lassi'; A milk based beverage. J. Steroid Biochem. Mol. Biol. 2019,193,105429. [CrossRef]
  107. Dalmoro, A.; Bochicchio, S.; Lamberti, G.; Bertoncin, P.; Janssens, B.; Barba, A.A. Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology. RSC Adv. 2019, 9, 19800-19812. [CrossRef]
  108. Mohammadi, M.; Pezeshki, A.; Abbasi, M.M.; Ghanbarzadeh, B.; Hamishehkar, H. vitamin D3-loaded nanostructured lipid carriers as a potential approach for fortifying food beverages; in vitro and in vivo evaluation. Adv. Pharm. Bull. 2017, 7,61-71. [CrossRef]
  109. Berino, R.P.; Baez, G.D.; Ballerini, G.A.; Llopart, E.E.; Busti, P.A.; Moro, A.; Delorenzi, N.J. Interaction of vitamin D3 with beta-lactoglobulin at high vitamin/protein ratios: Characterization of size and surface charge of nanoparticles. Food Hydrocoll. 2019, 90, 182-188. [CrossRef]
  110. Moeller, H.; Martin, D.; Schrader, K.; Hoffmann, W.; Lorenzen, P.C. Spray- or freeze-drying of casein micelles loaded with vitamin D2: Studies on storage stability and in vitro digestibility. LWT Food Sci. Technol. 2018, 97, 87-93. [CrossRef]
  111. Loewen, A.; Chan, B.; Li-Chan, E.C.Y. Optimization of vitamins A and D3 loading in re-assembled casein micelles and effect of loading on stability of vitamin D3 during storage. Food Chem. 2018, 240, 472-481. [CrossRef]
  112. Cohen, Y.; Levi, M.; Lesmes, U.; Margier, M.; Reboul, E.; Livney, Y.D. Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model. Food Funct. 2017, 8, 2133-2141. [CrossRef]
  113. David, S.; Livney, Y.D. Potato protein based nanovehicles for health promoting hydrophobic bioactives in clear beverages. Food Hydrocoil. 2016, 57, 229-235. [CrossRef]
  114. Walia, N.; Chen, L.Y. Pea protein based vitamin D nanoemulsions: Fabrication, stability and in vitro study using Caco-2 cells. Food Chem. 2020, 305,125475. [CrossRef] [PubMed]
  115. Jiang, S.S.; Yildiz, G.; Ding, J.Z.; Andrade, J.; Rababahb, T.M.; Almajwalc, A.; Abulmeatyc, M.M.; Feng, H. Pea protein nanoemulsion and nanocomplex as carriers for protection of cholecalciferol (vitamin D3). Food Bioprocess Technol. 2019, 12, 1031-1040. [CrossRef]
  116. Almajwal, A.M.; Abulmeaty, M.M.A.; Feng, H.; Alruwaili, N.W.; Dominguez-Uscanga, A.; Andrade, J.E.; Razak, S.; ElSadek, M.F. Stabilization of vitamin D in pea protein isolate nanoemulsions increases its bioefficacy in rats. Nutrients 2019,11, 75. [CrossRef]
  117. Salvia-Trujillo, L.; Fumiaki, B.; Park, Y.; McClements, D.J. The influence of lipid droplet size on the oral bioavailability of vitamin D2 encapsulated in emulsions: An in vitro and in vivo study. Food Funct. 2017, 8, 767-777. [CrossRef] [PubMed]
  118. Mehmood, T.; Ahmed, A. Tween 80 and soya-lecithin-based food-grade nanoemulsions for the effective deliveryofvitamin D. Langmuir 2020, 36, 2886-2892. [CrossRef][PubMed]
  119. Mehmood, T.; Ahmed, A.; Ahmed, Z.; Ahmad, M.S. Optimization of soya lecithin and Tween 80 based novel vitamin D nanoemulsions prepared by ultrasonication using response surface methodology. Food Chem.
  120. 289, 664-670. [CrossRef] [PubMed]
  121. Gahruie, H.H.; Niakousari, M.; Parastouei, K.; Mokhtarian, M.; Es, I.; Khaneghah, A.M. Co-encapsulation of vitamin D3 and saffron petals' bioactive compounds in nanoemulsions: Effects of emulsifier and homogenizer types. J.FoodProcess. Preserv. 2020, 44,14629. [CrossRef]
  122. Zhou, H.L.; Tan, Y.B.; Lv, S.S.; Liu, J.N.; Mundo, J.L.M.; Bai, L.; Rojas, O.J.; McClements, D.J. nanochitin-stabilized pickering emulsions: Influence of nanochitin on lipid digestibility and vitamin bioaccessibility. FoodHydrocoll. 2020,106,105878. [CrossRef]
  123. Golfomitsou, I.; Mitsou, E.; Xenakis, A.; Papadimitriou, V. Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. J. Mol. Liq. 2018, 268, 73-742. [CrossRef]
  124. Otani, H.; Kihara, Y.; Park, M. The immunoenhancing property of a dietary casein phosphopeptide preparation in mice. FoodAgric. Immunol. 2000,12,165-173. [CrossRef]
  125. Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ. Med. J. 2014,14, e157-e165.
  126. Dietary Supplement Fact Sheets: vitamin E, Office of Dietary Supplements, NIH, USA. Available online: https://ods.od.nih.gov/factsheets/vitaminE-HealthProfessional/ (accessed on 3 October 2020).
  127. Parthasarathi, S.; Anandharamakrishnan, C. Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food Bioprod. Process. 2016,100, 469-476.
  128. Jaberi, N.; Anarjan, N.; Jafarizadeh-Malmiri, H. Optimization the formulation parameters in preparation of a-tocopherol nanodispersions using low-energy solvent displacement technique. Int. J. Vitam. Nutr. Res.

90, 5-16. [CrossRef]

  1. Hategekirnana, J.; Masamba, K.G.; Ma, J.G.; Zhong, F. Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydr. Polym. 2015,124,172-179. [CrossRef]
  2. Xia, S.Q.; Tan, C.; Xue, J.; Lou, X.W.; Zhang, X.M.; Feng, B.A. Chitosan/tripolyphosphate-nanoliposomes core-shell nanocomplexes as vitamin E carriers: Shelf-life and thermal properties. Int. J. Food Sci. Technol. 2014, 49,1367-1374. [CrossRef]
  3. Huang, Z.G.; Brennan, C.S.; Zhao, H.; Liu, J.F.; Guan, W.Q.; Mohan, M.S.; Stipkovits, L.; Zheng, H.T.; Kulasiri, D. Fabrication and assessment of milk phospholipid-complexed antioxidant phytosomes with vitamin C and E: A comparison with liposomes. Food Chem. 2020, 324,126837. [CrossRef]
  4. Saratale, R.G.; Lee, H.S.; Koo, Y.E.; Saratale, G.D.; Kim, Y.J.; Imm, J.Y.; Park, Y. Absorption kinetics of vitamin E nanoemulsion and green tea microstructures by intestinal in situ single perfusion technique in rats. Food Res. Int. 2018,106,149-155. [CrossRef]
  5. Hategekimana, J.; Chamba, M.V.M.; Shoemaker, C.F.; Majeed, H.; Zhong, F. vitamin E nanoemulsions by emulsion phase inversion: Effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloids Surf, A Physicochem. Eng. Asp. 2015, 483, 70-80. [CrossRef]
  6. Saxena, V.; Hasan, A.; Sharma, S.; Pandey, L.M. Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle. Int. J. Polym. Mater. Polym. Biomater. 2018, 67,410-419. [CrossRef]
  7. He, J.B.; Shi, H.; Huang, S.S.; Han, L.J.; Zhang, W.N.; Zhong, Q.X. Core-shell nanoencapsulation of a-tocopherol by blending sodium oleate and rebaudioside A: Preparation, characterization, and antioxidant activity. Molecules 2018, 23, 3183. [CrossRef]
  8. Parthasarathi, S.; Muthukumar, S.P.; Anandharamakrishnan, C. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions. Food Funct. 2016, 7, 2294-2302. [CrossRef]
  9. Lv, S.S.; Gu, J.Y.; Zhang, R.J.; Zhang, Y.H.; Tan, H.Y.; McClements, D.J. vitamin E encapsulation in plant-based nanoemulsions fabricated using dual-channel microfluidization: Formation, stability, and bioaccessibility. J. Agric. Food Chem. 2018, 66, 10532-10542. [CrossRef]
  10. Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D.J. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. J. Food Eng. 2014,142, 57-63. [CrossRef]
  11. Fang, Z.; Wusigale; Bao, H.Y.; Ni, Y.Z.; Choijilsuren, N.; Liang, L. Partition and digestive stability of a-tocopherolandresveratrol/naringenin inwheyproteinisolate emulsions. Int. Dairy J. 2019, 93,116-123. [CrossRef]
  12. Schroder, A.; Sprakel, J.; Schroen, K.; Berton-Carabin, C.C. Chemical stability of a-tocopherol in colloidal lipid particles with various morphologies. Eur. J. LipidSci. Technol. 2020,122,2000012. [CrossRef]
  13. Sharif, H.R.; Goff, H.D.; Majeed, H.; Liu, F.; Nsor-Atindana, J.; Haider, J.; Liang, R.; Zhong, F. Physicochemical stability of p-carotene and a-tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 550-559. [CrossRef]
  14. Liu, Y.Q.; Hou, Z.Q.; Yang, J.; Gao, Y.X. Effects of antioxidants on the stability of p-carotene in O/W emulsions stabilized by gum arabic. J. Food Sci. Technol. Mys. 2015, 52, 3300-3311. [CrossRef]
  15. Kaur, K.; Kaur, J.; Kumar, R.; Mehta, S.K. Formulation and physiochemical study of a-tocopherol based oil in water nanoemulsion stabilized with non-toxic, biodegradable surfactant: Sodium stearoyl lactate. Ultrason. Sonochem. 2017, 38, 570-578. [CrossRef]
  16. Ramos, O.L.; Pereira, R.N.; Martins, A.; Rodrigues, R.; Fucinos, C.; Teixeira, J.A.; Pastrana, L.; Malcata, F.X.; Vicente, A.A. Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Crit. Rev. Food Sci. Nutr. 2017, 57,1377-1393. [CrossRef]
  17. Martin, M.; Kopaliani, I.; Jannasch, A.; Mund, C.; Todorov, V.; Henle, T.; Deussen, A. Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate. Acta Physiol. 2015, 215,167-176. [CrossRef]
  18. Corrochano, A.R.; Buckin, V.; Kelly, P.M.; Giblin, L. Whey proteins as antioxidants and promoters of cellular antioxidantpathways. J. Dairy Sci. 2018,101, 4747-761. [CrossRef] [PubMed]
  19. Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014,19,164-174. [PubMed]
  20. Tsykhanovska, I.; Evlash, V.; Oleksandrov, O.; Gontar, T. Mechanism of fat-binding and fat-contenting of the nanoparticles of a food supplement on the basis of double oxide of two- and trivalent iron. Ukr. Food J. 2018, 7, 702-715. [CrossRef]
  21. Kruhlova, O.; Yevlash, T.; Evlash, V.; Tsykhanovska, I.; Potapov, V. Comprehensive analysis of food production efficiency using nanoparticles of nutritional supplements on the basis of oxides of two and three valence iron “Magnetofood”. Ukr. Food J. 2019, 8, 400-416. [CrossRef]
  22. Zimmermann, M.B.; Hilty, F.M. nanocompounds of iron and zinc: Their potential in nutrition. nanoscale 2011, 3, 2390-2398. [CrossRef]
  23. Rayman, M.P. Selenium and human health. Lancet 2012, 379,1256-1268. [CrossRef]
  24. Michalke, B. Selenium. In Molecular and Integrative Toxicology; Springer: Cham, Switzerland, 2018.
  25. Gangadoo, S.; Bauer, B.W.; Bajagai, Y.S.; Van, T.T.H.; Moore, R.J.; Stanley, D. In vitro growth of gut microbiota withSelenium nanoparticles. Anim. Nutr. 2019, 5,424-431. [CrossRef]
  26. Mates, I.; Antoniac, I.; Laslo, V.; Vicas, S.; Brocks, M.; Fritea, L.; Milea, C.; Mohan, A.; Cavalu, S. Selenium nanoparticles: Production, characterization and possible applications in biomedicine and food science. Sci. Bull. B Chem. Mater. Sci. UPB 2019, 81, 205-216.
  27. Martinez, F.G.; Barrientos, M.E.C.; Mozzi, F.; Pescuma, M. Survival of Selenium-enriched lactic acid bacteria in a fermented drink under storage and simulated gastro-intestinal digestion. Food Res. Int. 2019, 123, 115-124. [CrossRef] [PubMed]
  28. Chen, W.W.; Yue, L.; Jiang, Q.X.; Xia, W.S. Effect of chitosan with different molecular weight on the stability, antioxidant and anticancer activities of well-dispersed Selenium nanoparticles. IET nanobiotechnol. 2019,13, 30-35. [CrossRef] [PubMed]
  29. Bai, K.K.; Hong, B.H.; Huang, W.W.; He, J.L. Selenium-nanoparticles-loaded chitosan/chitooligosaccharide microparticles and their antioxidant potential: A chemical and in vivo investigation. Pharmaceutics 2020, 12, 43. [CrossRef]
  30. Bai, K.K.; Hong, B.H.; Tan, R.; He, J.L.; Hong, Z. Alcohol-induced gastric mucosal injury in rats: Rapid preparation, oral delivery, and gastroprotective potential of Selenium nanoparticles. Int. J. nanomed. 2020, 15,1187-1203. [CrossRef]
  31. Qiu, W.Y.; Wang, Y.Y.; Wang, M.; Yan, J.K. Construction, stability, and enhanced antioxidant activity of pectin-decorated Selenium nanoparticles. Colloids Surf, B Biointerfaces 2018,170, 692-700. [CrossRef]
  32. Wu, Y.; Liu, H.; Li, Z.; Huang, D.Y.; Nong, L.Z.; Ning, Z.X.; Hu, Z.Z.; Xu, C.P.; Yan, J.K. Pectin-decorated Selenium nanoparticles as a nanocarrier of curcumin to achieve enhanced physicochemical and biological properties. IET nanobiotechnol. 2019,13, 880-886. [CrossRef]
  33. Tang, H.Y.; Huang, Q.; Wang, Y.L.; Yang, X.Q.; Su, D.X.; He, S.; Tan, J.C.; Zeng, Q.Z.; Yuan, Y. Development, structure characterization and stability of food grade Selenium nanoparticles stabilized by tilapia polypeptides. J. Food Eng. 2020, 275,109878. [CrossRef]
  34. Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013,18,144-157.
  35. Livingstone, X. Zinc: Physiology, deficiency, and parenteral nutrition. Nutr. Clin. Pract. 2015, 30, 371-382. [CrossRef]
  36. Go, M.R.; Yu, J.; Bae, S.H.; Kim, H.J.; Choi, S.J. Effects of interactions between ZnO nanoparticles and saccharides on biological responses. Int. J. Mol. Sci. 2018,19, 486.
  37. Yu, J.; Kim, H.J.; Go, M.R.; Bae, S.H.; Choi, S.J. ZnO interactions with biomatrices: Effect of particle size on ZnO-protein corona. nanomaterials 2017, 7, 377. [CrossRef]
  38. Ebrahiminezhad, A.; Moeeni, F.; Taghizadeh, S.M.; Seifan, M.; Bautista, C.; Novin, D.; Ghasemi, Y.; Berenjian, A. Xanthan gum capped ZnO microstars as a promising dietary zinc supplementation. Foods 2019, 8, 88. [CrossRef]
  39. Swain, P.S.; Rao, S.B.N.; Rajendran, D.; Dominic, G.; Selvaraju, S. nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2016,2,134-141. [CrossRef]
  40. Hassan, M.A.; El-Nekeety, A.A.; Abdel-Aziem, S.H.; Hassan, N.S.; Abdel-Wahhab, M.A. Zinc citrate incorporation with whey protein nanoparticles alleviate the oxidative stress complication and modulate gene expression in the liver of rats. Food Chem. Toxicol. 2019,125, 439-451. [CrossRef]
  41. Lamas, B.; Breyner, N.M.; Houdeau, E. Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: Potential consequences for host health. Part. Fibre Toxicol. 2020,17,19. [CrossRef]
  42. Senapati, V.A.; Gupta, G.S.; Pandey, A.K.; Shanker, R.; Dhawan, A.; Kumar, A. Zinc oxide nanoparticle induced age dependent immunotoxicity in BALB/c mice. Toxicol. Res. 2017, 6, 342-352. [CrossRef] [PubMed]
  43. Akal, C. Benefits of whey proteins on human health. In Dairy in Human Health and Disease Across the Lifespan; Watson, R.R., Collier, R.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2017; pp. 363-372.
  44. Yamaguchi, M. Carotenoids: Food Sources, Production and Health Benefits; NOVA Science Publishers: Hauppauge, NY, USA, 2013.
  45. Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018,15, 18-26. [CrossRef]
  46. Tan, C.; Feng, B.; Zhang, X.M.; Xia, W.S.; Xia, S.Q. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoil. 2016,52, 774-784. [CrossRef]
  47. Rehman, A.; Tong, Q.Y.; Jafari, S.M.; Assadpour, E.; Shehzad, Q.; Aadil, R.M.; Iqbal, M.W.; Rashed, M.M.A.; Mushtaq, B.S.; Ashraf, W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv. Colloid. Interface Sci. 2020, 275,102048. [CrossRef]
  48. Choi, S.J.; McClements, D.J. nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Sci. Biotechnol. 2020, 29, 149-168. [CrossRef]
  49. Nazemiyeh, E.; Eskandani, M.; Sheikhloie, H.; Nazemiyeh, H. Formulation and physicochemical characterization of lycopene-loaded solid lipid nanoparticles. Adv. Pharm. Bull. 2016, 6, 235-241. [CrossRef]
  50. de Campo, C.; Assis, R.Q.; da Silva, M.M.; Costa, T.M.H.; Paese, K.; Guterres, S.S.; Rios, A.D.; Floresa, S.H. Incorporation of zeaxanthin nanoparticles in yogurt: Influence on physicochemical properties, carotenoid stability and sensory analysis. Food Chem. 2019, 301, 125230. [CrossRef]
  51. Saravana, P.S.; Shanmugapriya, K.; Gereniu, C.R.N.; Chae, S.J.; Kang, H.W.; Woo, H.C.; Chun, B.S. Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by K-carrageenan: Process optimization, bio-accessibility and cytotoxicity. Ultrason. Sonochem. 2019, 55,105-116. [CrossRef]
  52. Liu, X.J.; Zhang, R.J.; McClements, D.J.; Li, F.; Liu, H.; Cao, Y.; Xiao, H. nanoemulsion-based delivery systems for nutraceuticals: Influence of long-chain triglyceride (LCT) type on in vitro digestion and astaxanthin bioaccessibility. FoodBiophys. 2018,13,412-421. [CrossRef]
  53. Shen, X.; Fang, T.Q.; Zheng, J.; Guo, M.R. Physicochemical properties and cellular uptake of astaxanthin-loaded emulsions. Molecules 2019, 24, 727. [CrossRef][PubMed]
  54. Liu, X.J.; McClements, D.J.; Cao, Y.; Xiao, H. Chemical and physical stability of astaxanthin-enriched emulsion-based delivery systems. Food Biophys. 2016,11, 302-310. [CrossRef]
  55. Zhang, Z.P.; Zhang, R.J.; McClements, D.J. Encapsulation of p-carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocoil. 2016, 61,1-10. [CrossRef]
  56. Liu, F.G.; Ma, C.C.; Zhang, R.J.; Gao, Y.X.; McClements, D.J. Controlling the potential gastrointestinal
  57. fate of p-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with
  58. polyphenol-protein-carbohydrate conjugate. Food Chem. 2017, 221, 395-403. [CrossRef]
  59. Mao, L.K.; Wang, D.; Liu, F.G.; Gao, Y.X. Emulsion design for the delivery of p-carotene in complex food systems. Crit. Rev. Food Sci. Nutr. 2018, 58, 770-784. [CrossRef]
  60. Moeller, H.; Martin, D.; Schrader, K.; Hoffmann, W.; Lorenzen, P.C. Native casein micelles as nanocarriers for p-carotene: pH-and temperature-induced opening of the micellar structure. Int. J. Food Sci. Technol. 2017,52, 1122-1130. [CrossRef]
  61. Zhang, J.P.; Zhang, X.X.; Wang, X.Y.; Huang, Y.; Yang, B.B.; Pan, X.; Wu, C.B. The influence of maltodextrin on the physicochemical properties and stabilization of beta-carotene emulsions. AAPS PharmSciTech 2017,18, 821-828. [CrossRef]
  62. Gu, L.P.; Su, Y.J.; Zhang, M.Q.; Chang, C.H.; Li, J.H.; McClements, D.J.; Yang, Y.J. Protection of p-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates. Food Res. Int. 2017, 96, 84-93. [CrossRef]
  63. Salvia-Trujillo, L.; McClements, D.J. Improvement of p-carotene bioaccessibility from dietary supplements using excipient nanoemulsions. J. Agric. Food Chem. 2016, 64, 4639-647. [CrossRef]
  64. Liu, X.; Bi, J.F.; Xiao, H.; McClements, D.J. Lipid digestion products on bioaccessibility of carotenoids and phenolics from mangoes. J. Food Sci. 2016, 81, N754-N761. [CrossRef]
  65. Li, Q.; Li, T.; Liu, C.M.; Dai, T.T.; Zhang, R.J.; Zhang, Z.P.; McClements, D.J. Enhancement of carotenoid bioaccessibility from tomatoes using excipient emulsions: Influence of particle size. Food Biophys. 2017,12, 172-185. [CrossRef]
  66. Mehrad, B.; Ravanfar, R.; Licker, J.; Regenstein, J.M.; Abbaspourrad, A. Enhancing the physicochemical stability of p-carotene solid lipid nanoparticle (SLNP) using whey isolate. Food Res. Int. 2018,105, 962-969. [CrossRef]
  67. Molina, C.V.; Lima, J.G.; Moraes, I.C.F.; Pinho, S.C. Physicochemical characterization and sensory evaluation of yogurts incorporated with beta-carotene-loaded solid lipid microparticles stabilized with hydrolyzed soy protein isolate. Food Sci. Biotechnol. 2019,28, 59-66. [CrossRef]
  68. Hernandez-Camacho, J.D.; Bernier, M.; Lopez-Lluch, G.; Navas, P. Coenzyme Q10 supplementation in aging and disease. Front. Physiol. 2018, 9, 44. [CrossRef]
  69. Saini, R. Coenzyme Q10: The essential nutrient. J. Pharm. Bioallied. Sci. 2011, 3, 466-467. [CrossRef]
  70. Martelli, A.; Testai, L.; Colletti, A.; Cicero, A.F.G. Coenzyme Qiq: Clinical applications in cardiovascular diseases. Antioxidants 2020, 9, 341. [CrossRef]
  71. Zaki, N.M. Strategies for oral delivery and mitochondrial targeting of CoQ10. Drug Deliv. 2016,23,1868-1881. [CrossRef]
  72. Kumar, S.; Rao, R.; Kumar, A.; Mahant, S.; Nanda, S. Novel carriers for coenzyme Q10 delivery. Curr. Drug Deliv. 2016,13,1184-1204. [CrossRef]
  73. Uekaji, Y.; Terao, K. Bioavailability enhancement of hydrophobic nutraceuticals using y-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2019, 93, 3-15. [CrossRef]
  74. Wei, Y.; Yang, S.F.; Zhang, L.; Dai, L.; Tai, K.D.; Liu, J.F.; Mao, L.K.; Yuan, F.; Gao, Y.X.; Mackie, A. Fabrication, characterization and in vitro digestion of food grade complex nanoparticles for co-delivery of resveratrol and coenzyme Q10. Food Hydrocoil. 2020,105,105791. [CrossRef]
  75. Chen, S.; Zhang, Y.H.; Qing, J.; Han, Y.H.; McClements, D.J.; Gao, Y.X. Core-shell nanoparticles for co-encapsulation of coenzyme Q10 and piperine: Surface engineering of hydrogel shell around protein core. Food Hydrocoll. 2020, 103, 105651. [CrossRef]
  76. Alavi, S.; Akhlaghi, S.; Dadashzadeh, S.; Haeri, A. Green formulation of triglyceride/phospholipid-based nanocarriers as a novel vehicle for oral coenzyme Q10 delivery. J. Food Sci. 2019, 84, 2572-2583. [CrossRef]
  77. Vatsa, P.; Sanchez, L.; Clement, C.; Baillieul, F.; Dorey, S. Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int. J. Mol. Sci. 2010,11, 5095-5108. [CrossRef]
  78. Ramirez-Garza, S.L.; Laveriano-Santos, E.P.; Marhuenda-Munoz, M.; Storniolo, C.E.; Tresserra-Rimbau, A.; Vallverdu-Queralt, A.; Lamuela-Raventos, R.M. Health effects of resveratrol: Results fromhuman intervention trials. Nutrients 2018,10,1892. [CrossRef]
  79. Pannu, N.; Bhatnagar, A. Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother. 2019,109, 2237-2251. [CrossRef]
  80. De Amicis, F.; Chimento, A.; Montalto, F.I.; Casaburi, I.; Sirianni, R.; Pezzi, V. Steroid receptor signallings as targets for resveratrol actions in breast and prostate cancer. Int. J. Mol. Sci. 2019,20,1087. [CrossRef]
  81. Wei, Y.; Li, C.; Zhang, L.; Dai, L.; Yang, S.F.; Liu, J.F.; Mao, L.K.; Yuan, F.; Gao, Y.X. Influence of calcium ions on the stability, microstructure and in vitro digestion fate of zein-propylene glycol alginate-tea saponin ternary complex particles for the delivery of resveratrol. Food Hydrocoil. 2020,106,105886. [CrossRef]
  82. Huang, X.L.; Liu, Y.; Zou, Y.; Liang, X.; Peng, Y.Q.; McClements, D.J.; Hu, K. Encapsulation of resveratrol in zein/pectin core-shell nanoparticles: Stability, bioaccessibility, and antioxidant capacity after simulated gastrointestinal digestion. Food Hydrocoil. 2019, 93, 261-269. [CrossRef]
  83. Fan, Y.T.; Zeng, X.X.; Yi, J.; Zhang, Y.Z. Fabrication of pea protein nanoparticles with calcium-induced cross-linking for the stabilization and delivery of antioxidative resveratrol. Int. J. Biol. Macromol. 2020,152, 189-198. [CrossRef]
  84. Liu, Y.X.; Fan, Y.T.; Gao, L.Y.; Zhang, Y.Z.; Yi, J. Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with a-lactalbumin. Food Funct. 2018, 9,4781-4790. [CrossRef]
  85. Xiong, W.F.; Ren, C.; Li, J.; Li, B. Enhancing the photostability and bioaccessibility of resveratrol using ovalbumin-carboxymethylcellulose nanocomplexes and nanoparticles. Food Funct. 2018, 9, 3788-3797. [CrossRef]
  86. Wu, W.H.; Kong, X.Z.; Zhang, C.M.; Hua, Y.F.; Chen, Y.M.; Li, X.F. Fabrication and characterization of resveratrol-loaded gliadin nanoparticles stabilized by gum Arabic and chitosan hydrochloride. LWT Food Sci. Technol. 2020,129,109532. [CrossRef]
  87. Qiu, C.; McClements, D.J.; Jin, Z.Y.; Qin, Y.; Hu, Y.; Xu, X.M.; Wang, J.P. Resveratrol-loaded core-shell nanostructured delivery systems: Cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation. Food Chem. 2020, 317,126328. [CrossRef]
  88. Davidov-Pardo, G.; McClements, D.J. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem. 2015,167, 205-212. [CrossRef]
  89. Neves, A.R.; Lucio, M.; Martins, S.; Lima, J.L.C.; Reis, S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. nanomed. 2013, 8,177-187.
  90. Pando, D.; Beltran, M.; Gerone, I.; Matos, M.; Pazos, C. resveratrol entrapped niosomes as yoghurt additive. Food Chem. 2015,170, 281-287. [CrossRef]
  91. Seethu, B.G.; Pushpadass, H.A.; Emerald, F.M.E.; Nath, B.S.; Naik, N.L.; Subramanian, K.S. Electrohydrodynamic encapsulation of resveratrol using food-grade nanofibres: Process optimization, characterization and fortification. Food Bioprocess Technol. 2020,13, 341-354. [CrossRef]
  92. Layman, D.K.; Lonnerdal, B.; Fernstrom, J.D. Applications for a-lactalbumin in human nutrition. Nutr. Rev. 2018, 76, 444-460. [CrossRef]
  93. Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kilig, C.S.; Sytar, O.; et al. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega 2020, 5,11849-11872. [CrossRef]
  94. Nam, J.S.; Sharma, A.R.; Nguyen, L.T.; Chakraborty, C.; Sharma, G.; Lee, S.S. Application of bioactive quercetin in oncotherapy: From nutrition to nanomedicine. Molecules 2016,21,108. [CrossRef]
  95. Isemura, M. Catechin in human health and disease. Molecules 2019,24, 528. [CrossRef]
  96. Ni, S.; Hu, C.B.; Sun, R.; Zhao, G.D.; Xia, Q. nanoemulsions-based delivery systems for encapsulation of quercetin: Preparation, characterization, and cytotoxicity studies. J. Food Process Eng. 2017, 40,12374. [CrossRef]
  97. Aditya, N.P.; Macedo, A.S.; Doktorovov, S.; Souto, E.B.; Kim, S.; Chang, P.S.; Ko, S. Development and evaluation of lipid nanocarriers for quercetin delivery: A comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT Food Sci. Technol. 2014, 59, 115-121. [CrossRef]
  98. Azzi, J.; Jraij, A.; Auezova, L.; Fourmentin, S.; Greige-Gerges, H. Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes. Food Hydrocoil.
  99. 81, 328-340. [CrossRef]
  100. Sadeghi-Ghadi, Z.; Ebrahimnejad, P.; Talebpour Amiri, F.; Nokhodchi, A. Improved oral delivery of quercetin with hyaluronic acid containing niosomes as a promising formulation. J. Drug Target. 2020, in press. [CrossRef]
  101. Chen, S.; Han, Y.H.; Huang, J.Y.; Dai, L.; Du, J.; McClements, D.J.; Mao, L.K.; Liu, J.F.; Gao, Y.X. Fabrication and characterization of layer-by-layer composite nanoparticles based on zein and hyaluronic acid for codelivery of curcumin and quercetagetin. ACS Appl. Mater. Interfaces 2019,11,16922-16933. [CrossRef]
  102. Ghayour, N.; Hosseini, S.M.H.; Eskandari, M.H.; Esteghlal, S.; Nekoei, A.R.; Gahruie, H.H.; Tatar, M.; Naghibalhossaini, F. nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food Hydrocoll. 2019, 87, 394-03. [CrossRef]
  103. Campbell, E.L.; Chebib, M.; Johnston, G.A. The dietary flavonoids apigenin and (—)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABAa receptors. Biochem. Pharmacol. 2004, 68,1631-1638. [CrossRef] [PubMed]
  104. Adachi, N.; Tomonaga, S.; Tachibana, T.; Denbow, D.M.; Furuse, M. (-)-Epigallocatechin gallate attenuates acute stress responses through GABAergic system in the brain. Eur. J. Pharmacol. 2006, 531, 171-175. [CrossRef]
  105. Legeay, S.; Rodier, M.; Fillon, L.; Faure, S.; Clere, N. Epigallocatechin gallate: A review of its beneficial properties to prevent metabolic syndrome. Nutrients 2015, 7, 5443-5468. [CrossRef]
  106. Granja, A.; Frias, I.; Neved, A.R.; Pinheiro, M.; Reis, S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed. Res. Int. 2017, 2017,5813793. [CrossRef] [PubMed]
  107. Gani, A.; Benjakul, S.; ul Ashraf, Z. Nutraceutical profiling of surimi gel containing p-glucan stabilized virgin coconut oil with and without antioxidants after simulated gastro-intestinal digestion. J. Food Sci. Technol. Mys. 2020, 57, 3132-3141. [CrossRef]
  108. Shpigelman, A.; Israeli, G.; Livney, Y.D. Thermally-induced protein-polyphenol co-assemblies: Beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocoll. 2010, 24, 735-743. [CrossRef]
  109. Wang, Q.; Li, W.R.; Liu, P.; Hu, Z.Z.; Qin, X.G.; Liu, G. A glycated whey protein isolate-epigallocatechin gallate nanocomplex enhances the stability of emulsion delivery of p-carotene during simulated digestion. Food Funct. 2019,10, 6829-6839. [CrossRef]
  110. Zhang, G.H.; Wang, Q.; Chen, J.J.; Zhang, X.M.; Tam, S.C.; Zheng, Y.T. The anti-HIV-1 effect of scutellarin. Biochem. Biophys. Res. Commun. 2005, 334, 812-816. [CrossRef]
  111. Xiong, L.; Du, R.; Xue, L.L.; Jiang, Y.; Huang, J.; Chen, L.; Liu, J.; Wang, T.H. Anti-colorectal cancer effects of scutellarin revealed by genomic and proteomic analysis. Chin. Med. 2020,15, 28. [CrossRef]
  112. Matos, A.L.; Bruno, D.F.; Ambrosio, A.F.; Santos, P.F. The benefits of flavonoids in diabetic retinopathy. Nutrients 2020, 12, 3169. [CrossRef] [PubMed]
  113. Wang, J.; Tan, J.; Luo, J.; Huang, P.; Zhou, W.; Chen, L.; Long, L.; Zhang, L.M.; Zhu, B.; Yang, L.; et al. Enhancement of scutellarin oral delivery efficacy by vitamin Bi2-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. J. nanobiotechnol. 2017,15,18. [CrossRef]
  114. Hewlings, S.J.; Kalman, D.S. curcumin: A review of its effects on human health. Foods 2017, 6, 92. [CrossRef]
  115. Tsuda, T. curcumin as a functional food-derived factor: Degradation products, metabolites, bioactivity, and future perspectives. Food Funct. 2018, 9, 705-714. [CrossRef]
  116. Lopresti, A.L. The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv. Nutr. 2018, 9, 41-50. [CrossRef] [PubMed]
  117. Kotha, R.R.; Luthria, D.L. curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 2019, 24, 2930. [CrossRef]
  118. Bansode, P.A.; Patil, P.V.; Birajdar, A.R.; Somasundaram, I.; Bachute, M.T.; Rashinkar, G.S. Anticancer, antioxidant and antiangiogenic activities of nanoparticles of bioactive dietary nutraceuticals. ChemistrySelect
  119. 4,13792-13796. [CrossRef]
  120. Ipar, V.S.; Dsouza, A.; Devarajan, P.V. Enhancing curcumin oral bioavailability through nanoformulations. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 459-480. [CrossRef] [PubMed]
  121. Nasery, M.M.; Abadi, B.; Poormoghadam, D.; Zarrabi, A.; Keyhanvar, P.; Khanbabaei, H.; Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Sethi, G. curcumin delivery mediated by bio-based nanoparticles: A review. Molecules 2020,25, 689. [CrossRef]
  122. Kharat, M.; McClements, D.J. Recent advances in colloidal delivery systems for nutraceuticals: A case study—Delivery by Design of curcumin. J. Colloid Interface Sci. 2019, 557, 506-518. [CrossRef]
  123. Zheng, B.J.; Lin, H.; Zhang, X.Y.; McClements, D.J. Fabrication of curcumin-loaded dairy milks using the pH-shift method: Formation, stability, and bioaccessibility. J. Agric. Food Chem. 2019, 67,12245-12254. [CrossRef]
  124. Zheng, B.J.; Peng, S.F.; Zhang, X.Y.; McClements, D.J. Impact of delivery system type on curcumin bioaccessibility: Comparison of curcumin-loaded nanoemulsions with commercial curcumin supplements. J. Agric. Food Chem. 2018, 66,10816-10826. [CrossRef]
  125. Yerramilli, M.; Longmore, N.; Ghosh, S. Stability and bioavailability of curcumin in mixed sodium caseinate and pea protein isolate nanoemulsions. J. Am. OH Chem. Soc. 2018, 95,1013-1026. [CrossRef]
  126. Dharunya, G.; Duraipandy, N.; Lakra, R.; Korapatti, P.S.; Jayavel, R.; Kiran, M.S. curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy. Biomed. Mater. 2016, 11, 045011. [CrossRef]
  127. Sneharani, A.H. curcumin-sunflower protein nanoparticles-A potential antiinflammatory agent. J. Food Biochem. 2019, 43,12909. [CrossRef]
  128. Araujo, J.F.; Bourbon, A.I.; Simoes, L.S.; Vicente, A.A.; Coutinho, P.J.G.; Ramos, O.L. Physicochemical characterisation and release behaviour of curcumin-loaded lactoferrin nanohydrogels into food simulants. Food Funct. 2020, 11, 305-317. [CrossRef]
  129. Liu, F.G.; Ma, D.; Luo, X.; Zhang, Z.Y.; He, L.L.; Gao, Y.X.; McClements, D.J. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocoll. 2018, 79, 450-461. [CrossRef]
  130. Dai, L.; Wei, Y.; Sun, C.X.; Mao, L.K.; McClements, D.J.; Gao, Y.X. Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin. Food Hydrocoil. 2018, 85, 75-85. [CrossRef]
  131. Chen, S.; Li, Q.; McClements, D.J.; Han, Y.H.; Dai, L.; Mao, L.K.; Gao, Y.X. Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion. Food Hydrocoll. 2020, 99, 105334. [CrossRef]
  132. Huang, X.X.; Huang, X.L.; Gong, Y.S.; Xiao, H.; McClements, D.J.; Hu, K. Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles. Food Res. Int. 2016, 87,1-9. [CrossRef]
  133. Silva, H.D.; Poejo, J.; Pinheiro, A.C.; Donsi, F.; Serra, A.T.; Duarte, C.M.M.; Ferrari, G.; Cerqueira, M.A.; Vicente, A.A. Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. J. Funct. Foods 2018, 48, 605-613. [CrossRef]
  134. Guo, C.J.; Yin, J.G.; Chen, D.Q. Co-encapsulation of curcumin and resveratrol into novel nutraceutical hyalurosomes nano-food delivery system based on oligo-hyaluronic acid-curcumin polymer. Carbohydr. Polym. 2018, 181, 1033-1037. [CrossRef]
  135. Aadinath, W.; Bhushani, A.; Anandharamakrishnan, C. Synergistic radical scavenging potency of curcumin-in-p-cyclodextrin-in-nanomagnetoliposomes. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 64, 293-302. [CrossRef]
  136. Peng, S.F.; Li, Z.L.; Zou, L.Q.; Liu, W.; Liu, C.M.; McClements, D.J. Enhancement of curcumin bioavailability by encapsulation in sophorolipid-coated nanoparticles: An in vitro and in vivo study. J. Agric. Food Chem. 2018, 66, 1488-1497. [CrossRef] [PubMed]
  137. Peng, S.F.; Li, Z.L.; Zou, L.Q.; Liu, W.; Liu, C.M.; McClements, D.J. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct. 2018, 9,1829-1839. [CrossRef]
  138. Li, Z.L.; Peng, S.F.; Chen, X.; Zhu, Y.Q.; Zou, L.Q.; Liu, W.; Liu, C.M. Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Food Res. Int. 2018,108, 246-253. [CrossRef]
  139. Zarate, R.; Jaber-Vazdekis, N.; Tejera, N.; Perez, J.A.; Rodriguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017, 6, 25. [CrossRef]
  140. Serini, S.; Calviello, G. Omega-3 PUFA responders and non-responders and the prevention of lipid dysmetabolism and related diseases. Nutrients 2020,12,1363. [CrossRef]
  141. Lunn, J.; Theobald, H.E. The health effects of dietary unsaturated fatty acids. Nutr. Bull. 2006, 31,178-224. [CrossRef]
  142. Serini, S.; Cassano, R.; Trombino, S.; Calviello, G. nanomedicine-based formulations containing Omega-3 polyunsaturated fatty acids: Potential application in cardiovascular and neoplastic diseases. Ini. J. nanomed. 2019,14, 2809-2828. [CrossRef] [PubMed]
  143. Valenzuela, A.; Valenzuela, R.; Sanhueza, J.; de la Barra, F.; Morales, G. Phospholipids from marine origin: A new alternative for supplementing Omega-3 fatty acids. Rev. Chil. Nutr. 2014, 41, 433-38.
  144. Gulotta, A.; Saberi, A.H.; Nicoli, M.C.; McClements, D.J. nanoemulsion-based delivery systems for polyunsaturated (Omega-3) oils: Formation using a spontaneous emulsification method. J. Agric. Food Chem. 2014, 62,1720-1725. [CrossRef]
  145. Uluata, S.; McClements, D.J.; Decker, E.A. Physical stability, autoxidation, and photosensitized oxidation of Omega-3 oils in nanoemulsions prepared with natural and synthetic surfactants. J. Agric. Food Chem. 2015, 63, 9333-9340. [CrossRef]
  146. Walker, R.M.; Gumus, C.E.; Decker, E.A.; McClements, D.J. Improvements in the formation and stability of fish oil-in-water nanoemulsions using carrier oils: MCT, thyme oil, & lemon oil. J. Food Eng. 2017, 211, 60-68.
  147. Esquerdo, V.M.; Silva, P.P.; Dotto, G.L.; Pinto, L.A.A. nanoemulsions from unsaturated fatty acids concentrates of carp oil using chitosan, gelatin, and their blends as wall materials. Eur. J. Lipid Sci. Technol. 2018,120, 1700240. [CrossRef]
  148. Dey, T.K.; Koley, H.; Ghosh, M.; Dey, S.; Dhar, P. Effects of nano-sizing on lipid bioaccessibility and ex vivo bioavailability from EPA-DHA rich oil in water nanoemulsion. Food Chem. 2019, 275,135-142. [CrossRef]
  149. Li, Y.; Li, M.D.; Qi, Y.M.; Zheng, L.; Wu, C.L.; Wang, Z.J.; Teng, F. Preparation and digestibility of fish oil nanoemulsions stabilized by soybean protein isolate-phosphatidylcholine. Food Hydrocoil. 2020,100,105310. [CrossRef]
  150. Hwang, J.Y.; Ha, H.K.; Lee, M.R.; Kim, J.W.; Kim, H.J.; Lee, W.J. Physicochemical property and oxidative stability of whey protein concentrate multiple nanoemulsion containing fish oil. J. Food Sci. 2017, 82,437-44. [CrossRef]
  151. Prieto, C.; Lagaron, J.M. nanodroplets of docosahexaenoic acid-enriched algae oil encapsulated within microparticles of hydrocolloids by emulsion electrospraying assisted by pressurized gas. nanomaterials 2020, 10, 270. [CrossRef] [PubMed]
  152. Torres-Giner, S.; Martinez-Abad, A.; Ocio, M.J.; Lagaron, J.M. Stabilization of a nutraceutical Omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J. Food Sci. 2010, 75, N69-N79. [CrossRef] [PubMed]
  153. Dey, T.K.; Banerjee, P.; Chatterjee, R.; Dhar, P. Designing of Omega-3 PUFA enriched biocompatible nanoemulsion with sesame protein isolate as a natural surfactant: Focus on enhanced shelf-life stability and biocompatibility. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 36-44. [CrossRef]
  154. Zimet, P.; Rosenberg, D.; Livney, Y.D. Re-assembled casein micelles and casein nanoparticles as nano-vehicles for Omega-3 polyunsaturated fatty acids. Food Hydrocoil. 2011,25,1270-1276. [CrossRef]
  155. Semenova, M.G.; Antipova, A.S.; Zelikina, D.V.; Martirosova, E.I.; Plashchina, I.G.; Palmina, N.P.; Binyukov, V.I.; Bogdanova, N.G.; Kasparov, V.V.; Shumilina, E.A.; et al. Biopolymer nanovehicles for essential polyunsaturated fatty acids: Structure-functionality relationships. Food Res. Int. 2016, 88, 70-78. [CrossRef]
  156. Zimet, P.; Livney, Y.D. Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ⑴-3 polyunsaturated fatty acids. Food Hydrocoll. 2009, 23, 1120-1126. [CrossRef]
  157. Loughrill, E.; Thompson, S.; Owusu-Ware, S.; Snowden, M.J.; Douroumis, D.; Zand, N. Controlled release of microencapsulated docosahexaenoic acid (DHA) by spray-drying processing. Food Chem. 2019, 286, 368-375. [CrossRef]
  158. Hashemi, F.S.; Farzadnia, F.; Aghajani, A.; NobariAzar, F.A.; Pezeshki, A. Conjugated linoleic acid loaded nanostructured lipid carrier as a potential antioxidant nanocarrier for food applications. Food Sci. Nutr. 2020, 8, 4185-4195. [CrossRef]
  159. Yaghmur, A.; Ghazal, A.; Ghazal, R.; Dimaki, M.; Svendsen, W.E. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride. Phys. Chem. Chem. Phys. 2019, 21,13005-13013. [CrossRef]
  160. Shao, X.R.; Bor, G.; Al-Hosayni, S.; Salentinig, S.; Yaghmur, A. Structural characterization of self-assemblies of new Omega-3 lipids: Docosahexaenoic acid and docosapentaenoic acid monoglycerides. Phys. Chem. Chem. Phys. 2018,20,23928-23941. [CrossRef]
  161. Zarrabi, A.; Abadi, M.A.A.; Khorasani, S.; Mohammadabadi, M.R.; Jamshidi, A.; Torkaman, S.; Taghavi, E.; Mozafari, M.R.; Rasti, B. nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules 2020,25, 638. [CrossRef]
  162. Gill, H.; Guarner, F. Probiotics and human health: A clinical perspective. Postgrad. Med. J. 2004, 80, 516-526. [CrossRef]
  163. Wan, M.L.Y.; Forsythe, S.J.; El-Nezami, H. Probiotics interaction with foodborne pathogens: A potential alternative to antibiotics and future challenges. Crit. Rev. Food Sci. Nutr. 2019, 59, 3320-3333. [CrossRef]
  164. Kerry, R.G.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.S.; Das, G. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 2018,26, 927-939. [CrossRef]
  165. Sanders, M.E.; Merenstein, D.; Merrifield, C.A.; Hutkins, R. Probiotics for human use. Nutr. Bull. 2018, 43, 212-225. [CrossRef]
  166. Coghetto, C.C.; Brinques, G.B.; Ayub, M.A. Probiotics production and alternative encapsulation methodologies to improve their viabilities under adverse environmental conditions. Int. J. Food Sci. Nutr. 2016, 67, 929-943. [CrossRef]
  167. Kavitake, D.; Kandasamy, S.; Devi, P.B.; Shetty, P.H. Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods—A review. Food Biosci. 2018, 21, 34-44. [CrossRef]
  168. Anal, A.K.; Singh, H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 2007,18, 240-251. [CrossRef]
  169. Kwiecien, I.; Kwiecien, M. Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels 2018, 4, 47. [CrossRef]
  170. Pathak, K.; Akhtar, N. nanoprobiotics: Progress and Issues. In nanonutraceuticals, 1st ed.; Singh, B., Ed.; CRC Press: Boca Raton, FL, USA, 2018; Chapter 9; 18p.
  171. Durazzo, A.; Nazhand, A.; Lucarini, M.; Atanasov, A.G.; Souto, E.B.; Novellino, E.; Capasso, R.; Santini, A. An updated overview on nanonutraceuticals: Focus on nanoprebiotics and nanoprobiotics. Int. J. Mol. Sci. 2020, 21, 2285. [CrossRef]
  172. Anselmo, A.C.; McHugh, K.J.; Webster, J.; Langer, R.; Jaklenec, A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 2016, 28, 9486-9490. [CrossRef]
  173. Liu, H.; Cui, S.W.; Chen, M.; Li, Y.; Liang, R.; Xu, F.F.; Zhong, F. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2863-2878. [CrossRef] [PubMed]
  174. Qi, W.; Liang, X.; Yun, T.; Guo, W. Growth and survival of microencapsulated probiotics prepared by emulsion and internal gelation. J. Food Sci. Technol. 2019, 56,1398-1404. [CrossRef]
  175. Hansen, L.T.; Allan-Wojtas, P.M.; Jin, Y.L.; Paulson, A.T. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 2002, 19, 35-45. [CrossRef]
  176. Holkem, A.T.; Raddatz, G.C.; Barin, J.S.; Flores, E.M.M.; Muller, E.I.; Codevilla, C.F.; Jacob-Lopes, E.; Grosso, R.F.; Menezes, C.R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT Food Sci. Technol. 2017, 76, 216-221. [CrossRef]
  177. Wang, J.; Korber, D.R.; Low, N.H.; Nickerson, M.T. Encapsulation of Bifidobacterium adolescentis cells with legume proteins and survival under stimulated gastric conditions and during storage in commercial fruit juices. Food Sci. Biotechnol. 2015,24,383-391. [CrossRef]
  178. Patrignani, F.; Siroli, L.; Serrazanetti, D.I.; Braschi, G.; Betoret, E.; Reinheimer, J.A.; Lanciotti, R. Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Res. Int. 2017, 97, 250-257. [CrossRef]
  179. Atia, A.; Gomaa, A.; Fliss, I.; Beyssac, E.; Garrait, G.; Subirade, M. A prebiotic matrix for encapsulation of probiotics: Physicochemical and microbiological study. J. Microencapsul. 2016, 33, 89-101. [CrossRef] [PubMed]
  180. Coghetto, C.C.; Brinques, G.B.; Siqueira, N.M.; Pletsch, J.; Soarea, N.D.; Ayub, M.A.Z. Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. J. Funct. Foods 2016, 24, 316-326. [CrossRef]
  181. Silva, K.C.G.; Cezarino, E.C.; Michelon, M.; Sato, A.C.K. Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT Food Sci. Technol. 2018, 89, 503-509. [CrossRef]
  182. Yao, M.F.; Li, B.; Ye, H.W.; Huang, W.H.; Luo, Q.X.; Xiao, H.; McClements, D.J.; Li, L.J. Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles. Food Hydrocoll. 2018, 83, 246-252. [CrossRef]
  183. Poletto, G.; Raddatz, G.C.; Cichoski, A.J.; Zepla, L.Q.; Lopse, E.J.; Barin, J.S.; Wagner, R.; Menezes, C.R. Study of viability and storage stability of Lactobacillus acidophillus when encapsulated with the prebiotics rice bran, inulin and Hi-maize. Food Hydrocoll. 2019, 95, 238-244. [CrossRef]
  184. Huq, T.; Fraschini, C.; Khan, A.; Riedl, B.; Bouchard, J.; Lacroix, M. Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydr. Polym. 2017, 168, 61-69. [CrossRef]
  185. Pitigraisorn, P.; Srichaisupakit, K.; Wongpadungkiat, N.; Wongsasulak, S. Encapsulation of Lactobacillus acidophilus in moist-heat-resistant multilayered microcapsules. J. Food Eng. 2017,192,11-18. [CrossRef]
  186. Ji, R.; Wu, J.; Zhang, J.L.; Wang, T.; Zhang, X.D.; Shai, L.; Chen, D.J.; Wang, J. Extending viability of Bifidobacterium longum in chitosan-coated alginate microcapsules using emulsification and internal gelation encapsulation technology. Front. Microbiol. 2019, 10, 1389. [CrossRef]
  187. Riaz, T.; Iqbal, M.W.; Saeed, M.; Yasmin, I.; Hassanin, H.A.M.; Mahmood, S.; Rehman, A. In vitro survival of Bifidobacterium bifidum microencapsulated in zein-coated alginate hydrogel microbeads. J. Microencapsul. 2019, 36,192-203. [CrossRef]
  188. Ramos, P.E.; Abrunhosa, L.; Pinheiro, A.; Cerqueira, M.A.; Motta, C.; Castanheira, I.; Chandra-Hioe, M.V.; Arcot, J.; Teixeira, J.A.; Vicente, A.A. Probiotic-loaded microcapsule system for human in situ folate production: Encapsulation and system validation. Food Res. Int. 2016, 90, 25-32. [CrossRef] [PubMed]
  189. Ramos, P.E.; Cerqueira, M.A.; Teixeira, J.A.; Vicente, A.A. Physiological protection of probiotic microcapsules by coatings. Crit. Rev. Food Sci. Nutr. 2018, 58,186-1877. [CrossRef] [PubMed]
  190. Calinoiu, L.-F.; Stefanescu, B.E.; Pop, I.D.; Muntean, L.; Vodnar, D.C. Chitosan coating applications in probiotic microencapsulation. Coatings 2019, 9, 194. [CrossRef]
  191. Ebrahimnejad, P.; Khavarpour, M.; Khalilid, S. Survival of Lactobacillus acidophilus as probiotic bacteria using chitosan nanoparticles. IJE Trans. Basics 2017, 30, 456-463.
  192. Kim, J.U.; Kim, B.; Shahbaz, H.M.; Lee, S.H.; Park, D.; Park, J.Y. Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. Int. J. Food Sci. Technol. 2017, 52, 519-530. [CrossRef]
  193. Chen, L.; Yang, T.;Song, Y.; Shu, G.W.; Chen, H. Effect of xanthan-chitosan-xanthan double layer encapsulation on survival of Bifidobacterium BB01 in simulated gastrointestinal conditions, bile salt solution and yogurt. LWT Food Sci. Technol. 2017, 81, 274-280. [CrossRef]
  194. Priya, A.J.; Vijayalakshmi, S.P.; Raichur, A.M. Enhanced survival of probiotic Lactobacillus acidophilus by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach. J. Agric. Food Chem. 2011, 59,11838-11845. [CrossRef]
  195. Shah, A.; Gani, A.; Ahmad, M.; Ashwar, B.A.; Masoodi, F.A. p-Glucan as an encapsulating agent: Effect on probiotic survival in simulated gastrointestinal tract. Int. J. Biol. Macromol. 2016, 82, 217-222. [CrossRef]
  196. Nawong, S.; Oonsivilai, R.; Boonkerd, N.; Truelstrup Hansen, L. Entrapment in food-grade transglutaminase cross-linked gelatin-maltodextrin microspheres protects Lactobacillus spp. during exposure to simulated gastro-intestinaljuices. Food Res. Int. 2016, 85,191-199. [CrossRef]
  197. Nunes, G.L.; Etchepare, M.A.; Cichoski, A.J.; Zepka, L.Q.; Lopes, E.J.; Barin, J.S.; Flores, E.M.D.M.; Silva, C.D.B.; Menezes, C.R. Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT Food Sci. Technol. 2018, 89, 128-133. [CrossRef]
  198. Krithika, B.; Preetha, R. Formulation of protein based inulin incorporated synbiotic nanoemulsion for enhanced stability ofprobiotic. Mat. Res. Express 2019, 6,114003. [CrossRef]
  199. Rodrigues, D.; Sousa, S.; Rocha-Santos, T.; Silva, J.P.; Sousa Lobo, J.M.; Costa, R.; Amaral, M.H.; Pintado, M.M.; Gomes, A.M.; Malcata, F.X.; et al. Influence of L-cysteine, oxygen and relative humidity upon survival throughout storage of probiotic bacteria in whey protein-based microcapsules. Int. Dairy J. 2011, 21, 869-876. [CrossRef]
  200. Gonzalez-Ferrero, C.; Irache, J.M.; Gonzalez-Navarro, C.J. Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chem. 2018, 239, 879-888. [CrossRef] [PubMed]
  201. Mao, L.; Pan, Q.; Yuan, F.; Gao, Y. Formation of soy protein isolate-carrageenan complex coacervates for improved viability of Bifidobacterium longum during pasteurization and in vitro digestion. Food Chem. 2019, 276, 307-314. [CrossRef]
  202. Zupancic, S.; Skrlec, K.; Kocbek, P.; Kristl, J.; Berlec, A. Effects of electrospinning on the viability of ten species of lactic acid bacteria in poly(ethylene oxide) nanofibers. Pharmaceutics 2019,11,483. [CrossRef]
  203. Pedroso, D.L.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S. Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int. Dairy J. 2012, 26, 127-132. [CrossRef]
  204. Pedroso, D.L.; Dogenski, M.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology. Braz. J. Microbiol. 2013, 44, 777-783. [CrossRef]
  205. de Matos Junior, F.E.; Silva, M.P.; Kasemodel, M.G.C.; Santosm, T.T.; Burns, P.; Reinheimer, J.; Vinderola, G.; Favaro-Trindade, C.S. Evaluation of the viability and the preservation of the functionality of microencapsulated Lactobacillus paracasei BGP1 and Lactobacillus rhamnosus 64 in lipid particles coated by polymer electrostatic interaction. J. Funct. Foods 2019, 54, 98-108. [CrossRef]
  206. Paula, D.A.; Martins, E.M.F.; Costa, N.A.; Oliveira, P.M.; Oliveira, E.B.; Ramos, A.M. Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation. Int. J.Biol. Macromol. 2019,133,722-731. [CrossRef] [PubMed]
  207. Okuro, P.K.; Thomazini, M.; Balieiro, J.C.C.; Liberal, R.D.C.O.; Favaro-Trindade, C.S. Co-encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Res. Int. 2013, 53, 96-103. [CrossRef]
  208. Amakiri, A.C.; Kalombo, L.; Thantsha, M.S. Lyophilised vegetal BM 297 ATO-inulin lipid-based synbiotic microparticles containing Bifidobacterium longum LMG 13197: Design and characterisation. J. Microencapsul. 2015, 32, 820-827. [CrossRef]
  209. Verruck, S.; de Carvalho, M.W.; de Liz, G.R.; Amante, E.R.; Vieira, C.R.W.; Amboni, R.D.D.C.; Prudencio, E.S. Bifidobacterium BB-12 microencapsulated with full-fat goat's milk and prebiotics when exposed to simulated gastrointestinal conditions and thermal treatments. Small Rumin. Res. 2017,153,48-56. [CrossRef]
  210. Nagy, Z.K.; Wagner, I.; Suhajda, A.; Tobak, T.; Harsztos, A.H.; Vigh, T.; Soti, P.L.; Pataki, K.; Molnar, K.; Marosi, G. nanofibrous solid dosage form of living bacteria prepared by electrospinning. Express Polym. Lett. 2014, 8,352-361. [CrossRef]
  211. Ceylan, Z.; Uslu, E.; Ispirli, H.; Meral, R.; Gavgali, M.; Yilmaz, M.T.; Dertli, E. A novel perspective for Lactobacillus reuteri: nanoencapsulation to obtain functional fish fillets. LWT Food Sci. Technol. 2019,115, 108427. [CrossRef]
  212. Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Rizwan Sharif, H.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, health benefits and food applications. Carbohydr. Polym. 2016,147,444-454. [CrossRef]

Created by admin. Last Modification: Wednesday March 17, 2021 01:08:14 GMT-0000 by admin. (Version 18)

Attached files

ID Name Comment Uploaded Size Downloads
15267 Nanoneutra ToC.jpg admin 16 Mar, 2021 18:08 23.50 Kb 135
15266 Nanonutraceuticals for COVID-19.pdf PDF 2021 admin 16 Mar, 2021 18:08 2.99 Mb 103
See any problem with this page? Report it (WORKS NOV 2021)