Vitamin D status in pregnant women with asthma and its association with adverse respiratory outcomes during infancy

Megan E. Jensen, V. E. Murphy, P. G. Gibson, J. Mattes & C. A. Camargo Jr.

To cite this article: Megan E. Jensen, V. E. Murphy, P. G. Gibson, J. Mattes & C. A. Camargo Jr. (2018): Vitamin D status in pregnant women with asthma and its association with adverse respiratory outcomes during infancy, The Journal of Maternal-Fetal & Neonatal Medicine, DOI: 10.1080/14767058.2017.1419176

To link to this article: https://doi.org/10.1080/14767058.2017.1419176

Published online: 05 Jan 2018.
Vitamin D status in pregnant women with asthma and its association with adverse respiratory outcomes during infancy

Megan E. Jensena*, V. E. Murphya2, P. G. Gibsonb,c, J. Matthesd, and C. A. Camargo, Jr.e

aPriority Research Centre Grow Up Well, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; bDepartment of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia; cPriority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; dRespiratory Department, John Hunter Children’s Hospital, Newcastle, Australia; eDepartment of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

ABSTRACT

Background: Vitamin D may influence pregnancy and infant outcomes, especially infant respiratory health. This study aimed to examine vitamin D status in pregnant women with asthma, and whether higher vitamin D levels are associated with fewer adverse respiratory outcomes in their infants.

Methods: Pregnant women with asthma, recruited from John Hunter Hospital Newcastle Australia (latitude 33°S), had serum total 25-hydroxyvitamin-D (25(OH)D) measured at 16 and 35 weeks gestation. Infant respiratory outcomes were collected at 12 months by parent-report questionnaire. Mother–infant dyads were grouped by serum 25(OH)D during pregnancy: 25(OH)D < 75 nmol/L at both time-points versus 25(OH)D ≥ 75 nmol/L at one or both time-points.

Results: In 52 pregnant women with asthma, mean serum 25(OH)D levels were 61 (range 26–110) nmol/L at 16 weeks, and 65 (range 32–116) nmol/L at 35 weeks, gestation. Thirty-one (60%) women had 25(OH)D < 75 nmol/L at both time-points; 21 (40%) had 25(OH)D ≥ 75 nmol/L at one or both time-points. Maternal 25(OH)D < 75 nmol/L during pregnancy was associated with a higher proportion of infants with "wheeze ever" at 12 months, compared with 25(OH)D ≥ 75 nmol/L (71 versus 43%, \(p = 0.04\)). Infant acute-care presentations (45 versus 13%, \(p = 0.02\)) and oral corticosteroid use (26 versus 4%, \(p = 0.03\)) due to "asthma/wheezing" were higher in the maternal group with 25(OH)D < 75 nmol/L, versus ≥ 75 nmol/L.

Conclusions: Most pregnant women with asthma had low vitamin D status, which persisted across gestation. Low maternal vitamin D status was associated with greater risk of adverse respiratory outcomes in their infants, a group at high risk of developing childhood asthma.

Introduction

Low vitamin D status (e.g. circulating 25-hydroxyvitamin D (25(OH)D) < 75 nmol/L) affects most women during pregnancy, with average levels ranging from 42 to 72 nmol/L in the western Pacific region [1], and can continue up to 12 months post-partum, regardless of season or supplementation [2]. Although vitamin D levels <75 nmol/L have been reported in adults with asthma and linked to worse asthma outcomes [3,4], it is unknown whether women with asthma have low vitamin D levels during pregnancy. Given the infant is entirely reliant on maternal vitamin D in utero, with cord blood 25(OH)D levels largely determined by maternal levels at term [1], vitamin D status during pregnancy has the potential to influence both maternal and infant outcomes.

Low vitamin D has been associated with poor perinatal outcomes, including gestational diabetes, preclampsia, preterm birth, and low birth weight [5–7]. Furthermore, vitamin D exerts immunomodulatory effects in many tissues throughout the body; this may be important in conditions associated with altered immune function and localised inflammation, such as asthma. Both maternal and cord blood 25(OH)D levels are inversely associated with risk of respiratory infections in the first 3 months of life and preschool wheeze [8,9]. Thus, vitamin D has potential to influence the future respiratory health of offspring.

Infants born to women with asthma have a high risk for poor respiratory outcomes in early life, including bronchiolitis [10], persistent wheeze [11], and asthma [12,13]. However, infant health may be...
influenced via manipulation of the prenatal environment, including nutritional status. Our group has previously demonstrated that optimised asthma management during pregnancy reduces the odds of recurrent bronchiolitis in infants [14]. Here, we examine if low vitamin D status during pregnancy in women with asthma is associated with a lower prevalence of adverse respiratory outcomes in their infants.

We hypothesise that persistently low vitamin D status (<75 nmol/L) is common in women with asthma during pregnancy and associated with adverse respiratory outcomes in their offspring. The aims of this study were to: (i) assess the vitamin D status of pregnant women with asthma; and (ii) to compare the proportion of infants experiencing adverse respiratory outcomes in the first 12 months of life, by maternal vitamin D status during pregnancy.

Materials and methods

Study design
This is a secondary analysis of a randomised controlled trial (RCT) of asthma management during pregnancy [15], with longitudinal follow-up of their infants during the first 12 months of life. The study was approved by the Hunter New England Human Research Ethics Committee (#07/02/21/3.06).

Population
Pregnant women aged ≥18 years, with physician-diagnosed asthma, between 12 and 20 weeks gestation, were recruited from John Hunter Hospital, Newcastle, Australia (latitude 33°S) [15]. Participants were eligible if they had used inhaled therapy (β₂-agonist, inhaled corticosteroids [ICS]) in the past year, and ineligible if they used more than three courses of oral corticosteroids (OCS) in the past 12 months. As previously described [15], women were randomised before 22-week gestation to either: (i) fractional exhaled nitric oxide (FENO)-guided asthma management, where asthma maintenance medication dose was altered according to FENO and symptoms; or (ii) the clinical guidelines-based asthma management group, where medications were altered according to asthma symptoms. Both groups were followed monthly during pregnancy. Infants were followed up during the first 12 months of life [14].

Clinical assessment
Maternal height and weight were recorded at baseline and body mass index (BMI, kg/m²) calculated. Weight was collected at subsequent visits and gestational weight gain calculated and compared to recommended guidelines [16]. Smoking status was determined by participant report and confirmed by exhaled carbon monoxide (≥10 ppm, piCO Smokerlyzer Breath CO Monitor, Bedfont, UK) and urinary cotinine measurement (≥level 5 or 2840 nmol/L, Nicalert, NYMOX, Saint-Laurent, Quebec, Canada). A nonfasting blood sample was collected from a subset of women, at approximately 16 and 35 weeks gestation. Serum aliquots were stored at −80°C until batch analysis of total 25(OH)D. Asthma treatment was self-reported throughout the study. Use of nutritional supplements was assessed from antenatal records.

Outcome measurement
The incidence and frequency of adverse infant respiratory outcomes, including wheeze, bronchiolitis and viral infections, and any related acute-care presentations (emergency department/unscheduled general practitioner visit), hospital admissions and medication use (ICS, OCS, and bronchodilators), were captured via administration of a validated parental-report questionnaire at 12 months of age [17].

Vitamin D measurement
Serum total 25(OH)D (comprised of 25(OH)D₂ and 25(OH)D₃) was quantified using the Abbott Architect assay (Abbott Park, IL), an enzyme-linked immunosorbent assay, at Massachusetts General Hospital, Boston, MA. Intra- and interassay coefficients of variation were <10%. Based on Endocrine Society guidelines for vitamin D status [18], serum 25(OH)D values were dichotomised at 75 nmol/L. Mother–infant pairs were grouped by maternal 25(OH)D level during pregnancy: (i) 25(OH)D ≥75 nmol/L at one or both gestational time-points; versus (ii) 25(OH)D <75 nmol/L at both time-points.

Analysis
Statistics were performed using Stata version 11.1 (Stata Corp LP, College Station, TX). Two-sided p <.05 were considered statistically significant. Results are presented as mean (SD) or median [IQR], analysed using Student’s t-test or Wilcoxon’s rank-sum test, as appropriate. Proportions were analysed using X²-test.

Results
There were 52 mother–infant pairs with serum 25(OH)D measurements for both time-points during
Pregnancy. Samples were collected at a mean 16.3 (2.7) and 35.4 (2.4) weeks gestation. Across the whole sample, mean serum 25(OH)D levels were 61 (range 26–110) nmol/L at 16 weeks, and 65 (range 32–116) nmol/L at 35 weeks, gestation. Most women had low vitamin D status at both 16 and 35 weeks gestation (Figure 1). In early pregnancy, 29% had 25(OH)D levels <50 nmol/L, 48% between 50–74.9 nmol/L, and 23% ≥ 75 nmol/L. In late gestation, 25% had 25(OH)D levels <50 nmol/L, 42% between 50–74.9 nmol/L, and 33% ≥ 75 nmol/L. Women were grouped according to vitamin D status (Figure 2): 31 (60%) had 25(OH)D < 75 nmol/L at both 16 and 35 weeks gestation, whilst 21 (40%) had 25(OH)D ≥ 75 nmol/L at one or both time-points.

There were no significant group differences in maternal or infant characteristics, when compared by maternal 25(OH)D status during pregnancy (Table 1). Maternal 25(OH)D levels <75 nmol/L during pregnancy were associated with a significantly higher proportion of infants with parent-reported “wheeze ever” at 12 months of age, compared with maternal 25(OH)D ≥ 75 nmol/L (71% [n = 22] versus 43% [n = 9] p = .04). A significant difference was also observed for infant acute-care presentations and OCS use due to parent-reported “wheeze/asthma”, in favour of higher maternal 25(OH)D during pregnancy (Figure 3). No significant difference was observed for hospitalisations, ICS or short-acting β-agonist (SABA) use at 12 months of age (Figure 3).

Discussion

In pregnant women with asthma, we found that 77% in early–mid gestation (16 weeks) and 67% in late gestation (35 weeks) had serum 25(OH)D levels <75 nmol/L. Furthermore, we observed a significant association between persistently low vitamin D status during pregnancy and a higher risk of parent-reported “wheeze” in their infants, as well as clinically important increases in acute-care presentations, hospitalisations, and rescue medication use in the first 12 months of life.

Maternal 25(OH)D levels during pregnancy were <75 nmol/L in most participants; notably, this persisted across pregnancy in 60% of women. This is consistent with literature reporting low 25(OH)D levels are highly prevalent during pregnancy, with average maternal 25(OH)D levels in the western Pacific region at 42–72 nmol/L [1]. A study examining maternal midgestation and cord blood 25(OH)D levels as an indicator of persistent vitamin D deficiency, found one in five mother–infant dyads were severely deficient (defined as 25(OH)D < 25 nmol/L) at both time-points, with another 29% severely deficient at either time-point [19]. Our finding highlights that vitamin D status needs to be addressed in the nutritional care of pregnant women with asthma.

In this sample of pregnant women with asthma, we essentially compared transiently versus persistently low vitamin D status. Most (62%) women in the high 25(OH)D group had a transient level below/above the
75 nmol/L cut-point, which highlights two important points. Firstly, our data indicates that a single measurement is not reflective of overall vitamin D status during pregnancy. This is a limitation of many studies, and of meta-analyses which compare respiratory outcomes in studies where a single measurement has been collected, with the heterogeneity in sampling time-point a limiting factor. Secondly, our data highlights that low vitamin D status during pregnancy is a significant nutritional problem in this group: only 15% of women maintained a high vitamin D status from 16 to 35 weeks gestation. Newborn vitamin D levels largely depend upon maternal values \[1\]; thus, addressing this nutritional deficit in women with asthma during pregnancy is essential to reduce the impact on both maternal and infant health.

This study demonstrated that having 25(OH)D < 75 nmol/L at just one or two time-points during pregnancy, was associated with less adverse respiratory outcomes in infants at high risk for developing asthma. Specifically, a lower proportion of infant wheeze and associated healthcare utilisation and rescue medication use, which is indicative of more severe episodes of wheeze, during infancy. This is an important finding as wheeze in the first years of life has been implicated in lung function deficits that persist into adulthood and increase the risk of asthma \[20,21\]; therefore, the potential for maternal nutritional status to influence early life respiratory outcomes in a group

Table 1. Maternal and infant characteristics grouped by maternal vitamin D status during pregnancy.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Maternal 25(OH)D < 75 nmol/L (n = 31)</th>
<th>Maternal 25(OH)D ≥ 75 nmol/L (n = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>28.1 (5.8)</td>
<td>28.6 (6.8)</td>
</tr>
<tr>
<td>Parity, n</td>
<td>0 [0, 1]</td>
<td>1 [0, 1]</td>
</tr>
<tr>
<td>Ethnicity: Caucasian, n (%)</td>
<td>29 (94%)</td>
<td>17 (81%)</td>
</tr>
<tr>
<td>RCT group allocation: Intervention, n (%)</td>
<td>17 (45%)</td>
<td>11 (48%)</td>
</tr>
<tr>
<td>Supplement use during pregnancy, n (%)</td>
<td>10 (32%)</td>
<td>7 (33%)</td>
</tr>
<tr>
<td>ICS use at baseline, n (%)</td>
<td>7 (23%)</td>
<td>7 (33%)</td>
</tr>
<tr>
<td>ICS dose, µg</td>
<td>30.5 [7.8]</td>
<td>27.2 [5.2]</td>
</tr>
<tr>
<td>BMI category: healthy weight/overweight/obese, %</td>
<td>26/19/55</td>
<td>38/33/29</td>
</tr>
<tr>
<td>Gestational weight gain (16–35 weeks), kg[^a]</td>
<td>7.3 [4.2]</td>
<td>7.1 [4.1]</td>
</tr>
<tr>
<td>Weight gain per week above recommendations, n (%)[^a]</td>
<td>20 (74%)</td>
<td>13 (68%)</td>
</tr>
<tr>
<td>Infant characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestational age at birth, weeks</td>
<td>39.4 (1.5)</td>
<td>39.2 (2.0)</td>
</tr>
<tr>
<td>Birth weight, grams</td>
<td>3469.8 (593.0)</td>
<td>3291.6 (586.8)</td>
</tr>
<tr>
<td>Gender: Male, n (%)</td>
<td>13 (42%)</td>
<td>7 (33%)</td>
</tr>
<tr>
<td>Ethnicity: Caucasian, n (%)[^b]</td>
<td>24 (86%)</td>
<td>13 (65%)</td>
</tr>
<tr>
<td>Birth season: Summer/Autumn/Winter/Spring, %</td>
<td>32/16/19/32</td>
<td>33/14/29/24</td>
</tr>
<tr>
<td>Breastfed (ever), n (%)</td>
<td>26 (84%)</td>
<td>16 (76%)</td>
</tr>
<tr>
<td>Breastfed (current at 12 months), n (%)[^c]</td>
<td>6 (21%)</td>
<td>4 (20%)</td>
</tr>
<tr>
<td>Day care attendance, n (%)</td>
<td>11 (36%)</td>
<td>5 (24%)</td>
</tr>
<tr>
<td>One or more siblings, n (%)</td>
<td>15 (48%)</td>
<td>12 (57%)</td>
</tr>
<tr>
<td>Siblings, n</td>
<td>2 [1, 3]</td>
<td>1 [1, 2]</td>
</tr>
<tr>
<td>Smoke exposure: maternal, n (%)[^d]</td>
<td>3 (10%)</td>
<td>4 (19%)</td>
</tr>
<tr>
<td>Smoke exposure: household (exc mother), n (%)[^d]</td>
<td>6 (20%)</td>
<td>8 (40%)</td>
</tr>
</tbody>
</table>

Data presented as mean (SD), median [IQR], or n (%).

\[^a^\]n = 27 and n = 19 had available data in the <75 nmol/L versus ≥75 nmol/L group, respectively.

\[^b^\]n = 28 and n = 20 had available data in the <75 nmol/L versus ≥75 nmol/L group, respectively.

\[^c^\]n = 29 and n = 20 had available data in the <75 nmol/L versus ≥75 nmol/L group, respectively.

\[^d^\]n = 1 missing data.

Figure 3. Maternal vitamin D serum 25(OH)D < 75 nmol/L at both 16 and 35 weeks gestation is associated with increased healthcare utilisation and medication use related to adverse infant respiratory outcomes in the first 12 months of life. SABA: short acting β-agonist; ICS: inhaled corticosteroids; OCS: oral corticosteroids.
at high risk of developing asthma may represent a promising strategy for primary prevention.

Many epidemiological studies and meta-analyses have reported inverse associations between maternal and cord blood 25(OH)D levels with the risk of infant respiratory infections and preschool wheeze [7,22]; such an association may be modified by the sample type or time-point of collection, with a meta-analysis showing a stronger association for cord blood (versus maternal blood) with risk of infant wheeze [7]. This may suggest that late pregnancy 25(OH)D levels are more relevant to offspring respiratory health; however, due to heterogeneity in the gestational time-points in the included studies, further investigation is warranted [7]. Moreover, recent data from a combined analysis of two RCTs reported that the effect of prenatal vitamin D supplementation on “recurrent wheeze/asthma” at age 3 years was strongest in women who had 25(OH)D levels \geq75 nmol/L at randomisation (10–18 weeks and 22- to 26-week gestation, respectively) [23].

A meta-analysis of recent RCTs of vitamin D supplementation during pregnancy revealed high, versus low, vitamin D supplementation was associated with a significantly lower risk of recurrent wheeze in offspring (relative risk 0.81, 95%CI: 0.67–0.98) [24]. Furthermore, Chawes et al. found a significant difference in the number of episodes of “troublesome lung symptoms” in the first 3 years of life in infants of mothers who received vitamin D supplements during pregnancy, versus controls (1.3 [0.2–2.4], $p = .02$) [25]. Another clinical trial of maternal vitamin D supplementation during gestation reported the effect size to decrease with infant age, with the maximal group difference in infant wheeze (8.9%) detected at 12 months [26]; this suggests that the effect of maternal vitamin D supplementation during pregnancy on infant respiratory outcomes may be greater in the first 12 months of life. Our results add to the evidence base suggesting vitamin D status during gestation in women with asthma is associated with infant respiratory outcomes in the first 12 months of life, an important determinant of future respiratory health.

Our observation that high maternal vitamin D status during pregnancy is associated with less adverse respiratory outcomes in offspring, could be mediated via 25(OH)D exposure in utero or during infancy. It may also be that a higher level of serum 25(OH)D is an indicator of overall maternal health and nutritional status, and this may be the important factor in optimising infant outcomes [27]. Alternatively, with evidence to suggest a role for both prenatal and postnatal vitamin D exposure in lung development, it is possible that the observed association is mediated by suboptimal vitamin D status in the infants themselves; unfortunately, we did not measure cord blood or infant 25(OH)D levels. Longitudinal studies with repeat measures of 25(OH)D in both mother and infant are needed to examine the interaction between 25(OH)D level and time-point of exposure from early development.

This study was a secondary analysis of a small sample of pregnant women with asthma, with follow-up of their infants at 12 months of age. Despite a small sample size, we observed a considerable effect size for wheeze and related healthcare utilisation, in high-risk infants. Secondly, we dichotomised high vitamin D status as 25(OH)D \geq 75 nmol/L at one or two time-points; with a larger sample, we may have observed a greater effect size for women who had levels \geq75 nmol/L at both time-points. Infant respiratory outcomes were parent-reported and not confirmed through medical records or more objective approaches, and data on sunshine exposure, skin type or infant supplement use were not available. Lastly, although we collected samples at two time-points during pregnancy, we did not have an early trimester measure, nor did we collect a cord blood or infant blood sample, which may represent important time-points in relation to infant respiratory health. Follow-up studies in a much larger cohort are warranted, using more objective outcomes, and repeat measures of maternal and infant 25(OH)D levels.

In summary, low vitamin D status is common in pregnant women with asthma and may influence infant respiratory outcomes and health-care usage in the first 12 months of life. This observation in a group of children who are at high risk of asthma development, warrants further investigation in a larger cohort.

Acknowledgements
The authors acknowledge Kelly Steel and Karen McLaughlin for recruitment and clinical follow-up of the study participants.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This study is supported by National Health Medical Research Centre and Hunter Medical Research Institute.

ORCID
Megan E. Jensen http://orcid.org/0000-0001-8653-4801
V. E. Murphy http://orcid.org/0000-0003-3282-1324
References

