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Abstract 

Metabolic syndrome is a cluster of cardiovascular risk factors defined by the presence of 

abdominal obesity, glucose intolerance, hypertension and/or dyslipidemia. It is a major public 

health epidemic worldwide, and a known risk factor for the development of cognitive 

dysfunction and dementia. Several studies have demonstrated a positive association between 

the presence of metabolic syndrome and worse cognitive outcomes, however, evidence of 

brain structure pathology is limited. Diffusion tensor imaging has offered new opportunities to 

detect microstructural white matter changes in metabolic syndrome, and a possibility to detect 

associations between functional and structural abnormalities. This review analyzes the impact 

of metabolic syndrome on white matter microstructural integrity, brain structure abnormalities 

and their relationship to cognitive function. Each of the metabolic syndrome components 

exerts a specific signature of white matter microstructural abnormalities. Metabolic syndrome 

and its components exert both additive/synergistic, as well as, independent effects on brain 

microstructure thus accelerating brain aging and cognitive decline. 

 

Keywords: metabolic syndrome; white matter mictrostructure; white matter abnormalities; 

diffusion tensor imaging; cognitive decline; brain  
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1. Introduction 

Aging can be defined as the combined effects of time, genetics, behavior and enviroment on all 

body functions, leading to their progressive decline. Aging affects all body organs and systems 

and brain aging is related to consistent differences in brain structure, decreased regenerative 

capacity for repair, impaired maintenance of synaptic and cognitive functions including memory 

function, and transition to dementia [1, 2]. Magnetic resonance imaging (MRI) shows that the 

volume of the frontal lobe presents the greatest decline with aging (approximately 12%), 

followed by the volume of the temporal lobe (approximately 9%), while modest volume 

declines are observed in occipital and parietal lobes [3]. The effects of age on cognition vary 

greatly in the general population as well as in associated conditions and diseases that occur 

earlier in life. 

Metabolic syndrome (MetS) is a group of metabolic disorders that occur together and increases 

the risk of cardiovascular disease [4-7], stroke [8, 9], and type 2 diabetes mellitus (T2DM) [10-

12]. MetS is considered a global epidemic by the World Health Organization [13] and it affects 

approximately 20% of adults in the Western world [14]. According to the International Diabetes 

Federation [15] at least three of the following criteria have to be present for its diagnosis: 

increased waist circumference (population and/or country cut-off), increased triglycerides 

(≥150 mg/dl or in treatment), reduced high density lipoprotein (HDL) cholesterol (<40 mg/dl in 

men, <50 mg/dl in women or in treatment),  increased blood pressure (BP) (systolic ≥130 mmHg 

and/or diastolic ≥85 mmHg, or in treatment) and increased fasting glucose (>100 mg/dl or in 

treatment).  

The impact of MetS on cognition and risk of development dementia is well documented [16, 

17]. Numerous studies reported changes in memory, visuospatial and executive functioning, 

processing speed and daily functional activities in adults with MetS relative to healthy controls 

[18-21]. However, there is little evidence regarding the impact of MetS on brain structure and 

its link to cognitive and functional decline. With the advent of diffusion tensor imaging (DTI) in 

MetS, new results characterizing changes in the white matter (WM) microstructure have 

emerged. DTI allows to detect abnormalities in WM microstructure that are no visible on 

conventional MRI, and thus it is a promising tool to identify microstructural brain damage 

secondary to MetS processes.  

2. Methods 

This review concentrates on the effects of MetS and its components on cognitive functioning 

and WM microstructural integrity as measured by DTI in non-demented adults. We present the 

results of previous studies that linked changes in diffusion parameters and cognitive 
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performance, and provide a brief overview of potential future directions in the current 

therapeutic guidelines to control the impact of MetS on the brain.  

For this literature review an electronic search was undertaken in Pubmed from January 2000 up 

to May 2017. Only studies published in English were included. The keywords used were 

“diffusion tensor imaging”, “DTI”, “microstructural white matter”, “white matter disease”, 

“cerebral small vessel disease”, “magnetic resonance imaging”, “MRI”, “metabolic syndrome”, 

“obesity”,  “body mass index”, “BMI”, “waist circumference”, “hyperglycemia”, “chronic 

hyperglycemia”, “glucose intolerance”, “insulin resistance”, “type 2 diabetes”, “T2DM”,  

“hypertension” “high blood pressure”, “dyslipidemia”, “hypercolesterolemia”, “cognition”, 

“cognitive impairment”, “cognitive dysfunction”, “cognitive function” “atrophy”, “white matter 

hyperintensities”, “infarcts”.  

3. Role of DTI in clinical studies 

DTI is a relatively novel MRI technique that identifies changes in the WM microstructure [22], 

by quantifying directional diffusion. DTI has become one of the most powerful imaging tools 

available to understand the pathophysiological mechanisms of diseases like T2DM [23, 24], 

ischemic stroke [25], and hypertension [26] and their relationships to cognitive deficits. DTI is 

based on the assumption that water molecules follow a physiological perpendicular path 

through the long axis of neural fibers and bundles, formed by the integrity of the axons and the 

thick myelin membrane surrounding them [27]. Any alteration in the integrity of the WM fibers 

(eg. demyelination) will result in changes in the water diffusion and consequently in the DTI 

parameters [28]. These subtle abnormalities will subsequently lead to disruptions in the 

connectivity between different brain regions and contribute to a decline in the cognitive 

performance in patients.  

Fractional anisotropy (FA) and mean diffusivity (MD) are the main DTI-metrics used to identify 

alterations in WM organization and interconnectivity. These imaging parameters provide 

information about the density of the WM fiber, diameter of the axon and degree of myelination 

based on a quantitative measure of the diffusion anisotropy [29]. Additionally, DTI allow us to 

identify changes in the integrity of the axon with the metric of axial diffusivity (AD), and 

information regarding the quality of the myelin sheath with the measure of radial diffusivity 

(RD). This is especially important considering that these alterations in WM tracts may  disturb 

functional connectivity and the information transfer between different brain regions, 

potentially leading to cognitive deficit. A number of clinical studies of the last decade have 

revealed alterations in FA and/or MD in several brain diseases and disorders such as multiple 

sclerosis, schizophrenia, traumatic brain injury, amyotrophic lateral sclerosis, amnestic mild 

cognitive impairment and Alzheimer’s disease [30-35]. All of them have found important WM 

microstructural alterations complementary to or not seen otherwise in conventional MRI scans.  
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4. Metabolic Syndrome  

The associations between MetS and brain health are etiologically quite complex (see a 
conceptual model in the Figure 1).  MetS components share common pathways leading to 
metabolic, inflammatory, and microvascular disturbances that may futher contribute to WM 
microstructural damage and cognitive decline [47]. However, the individual componets also 
have their specific signatures in the brain. Specifically, genetic factors may contribute to the 
changes at the cellular and vascular levels, with concomittteant effects of oxidative stress and 
inflammation. Insulin resistance alters insulin signaling and its functions in the brain, as well as 
glucose metabolism [48]. Brain hyperglycemia and oxidative stress can lead to the formation of 
glycated end products and neuroinflammation [49, 50]. Oxidative stress could lead to blood 
brain barrier alterations [51], neuronal cell damage and glucose toxicity [48]. Insulin resistance 
in its turn increases oxidative stress [52] leading to a vicious circle. 

 

4.1 Molecular basis for cellular and vascular mechanisms of MetS 
 

Altered insulin signaling in the brain attenuates phosphatidylinositol-3 kinase function and 
protein kinase B activation leading to  reduced glucose transport and increased apoptosis, 
decreased glucose and energy metabolism and reduced adenosine triphosphate production 
which contributes to cognitive decline [53]. Decreased intraneuronal glucose metabolism 
induced by insulin resistance compromises the generation of O-N-acetylglycosamine throught 
the hexosamine biosynthetic pathway, which O-N-acetylglycosamine competes protein 
phosphorylation and help in the prevention of cognitive decline, dementia and Alzheimer's 
disease [54]. Insulin resistance also leads to endothelial dysfunction due to alterations in 
vasoreactivity, microvascular blood flow, cellular glucose and lipid metabolism which leads to  
increased levels of reactive oxygen (ROS) and nitrogen species and  overconsumption of 
endothelial-derived nitric oxide (NO) in combination with NO decreased synthethis or release 
[55]. This leads to a vicious circle where endothelial dysfunction alters the capacity of capillary 
network to expand, attenuates microcirculatory blood flow to metabolically active tissues and 
prevents insulin to reach target tissues,  while vascular damage that occurs from oxidative 
stress and lipid deposition on the vessel wall induces an inflammatory response which further 
deteriorates insulin resistance and endothelial dysfunction [48, 52, 55, 56]. Altered endothelial 
integrity leads to cerebral hypoperfusion either through small vessel disease and altered 
vasoregulation [56] or through arterial stiffness, macrovascular disease and infarcts [57].  

 

4.2 MetS and MRI findings 
 

MetS components are known to exert an individual effect on brain structure and function as it 

will be discussed later in detail, but evidence on the effect of MetS as a whole remain 

inconclusive. The MRI findings describing the impact of MetS and MetS individual components 

are outlined in the Table 1 and are discussed in detail below. MetS was associated with lower 

global brain volume [36], silent lacunar infarcts [37, 38], periventricular WM hyperintensities 

(WMH), subcortical WM lessions [39] and increased cerebrospinal fluid (CSF) [40] . On the other 
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hand, others failed to demonstrate a reduced brain volume or focal ischemic lessions in 

patients with MetS even though worse cognitive performance was observed compared to 

controls [41]. MRI findings of individual MetS components show an independent association of 

impaired glucose metabolism, abdominal obesity, and elevated triglycerides with global brain 

atrophy, while elevated body mass index (BMI), BP, and fasting glucose were independently 

associated with silent lacunar infarcts [36-38]. Elevated BP and/or fasting glucose and/or 

dyslipidemia were also associated with large vessel infarcts, WMH and subcortical WM lesions 

[36, 39].  

4.3 MetS and DTI findings  

Evidence that suggest the association between MetS and impairment of WM integrity and  

microstructural damage is growing (Table 2). A reduced FA was found in the corpus callosum, 

right external capsule, and deep WM of the right frontal lobe of MetS patients compared to 

controls [42, 43]. Changes in FA of the corpus callosum in the frontal lobe were associated with 

cognitive impairment and more specifically with reduced processing speed [44]. Furthermore, 

lower FA and higher RD values in angular gyri and higher AD values in the left post-central gyrus 

in patients with MetS were associated with worse verbal learning and memory performance   

[45]. The negative effect of MetS on WM microstructure was present in adolescents with MetS 

as well, who presented with reduced FA in the corpus callosum, optic radiations, and medial 

longitudinal fasciculi compared to controls [40]. These findings suggest that impairments in 

metabolism even at a young age could negatively impact brain health and could potentially lead 

to cognitive decline later in life. All these studies had a case-control design and only one study 

examined the effect of MetS on WM microstructure prospectively finding reduced FA and 

increased RD in the corpus callosum and dorsal cingulum bundle with increasing severity of 

MetS [46]. The study demonstrated that in normally appearing WM, the rate of change during a 

two year period varies across WM regions and among individuals contrary to cross-sectional 

studies that present a rather uniform age-related WM deterioration across brain regions and 

this change was exacerbated by metabolic risk [46]. Therefore, MetS could negatively impact 

WM microstructure regardless of age, and may contribute to worse cognitive outcomes and 

accelerated brain aging.  

All MetS components contribute to microstructural WM damage but is still under question if 

there is any component that has a greater effect over the others. Bender and Raz showed in 96 

healthy adults 17-78 years old that subclinical elevation in metabolic risk indicators predicted 

greater microstructural integrity damage indicating an additive/synergistic effect of the MetS 

components [46]. However, it is still questionable whether all MetS components contribute the 

same. Sala et al. found that all MetS components i.e. serum HDL cholesterol, triglycerides, BMI, 

and diastolic BP were independent factors of microstructural brain tissue integrity [73]. Alfaro 
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et al., has shown that hyperglycemia was the component mediating the WM abnormalities in 

patients with MetS [45]. However,  other studies have examined some of the MetS components 

without analyzing or considering the additive/synergistic effects of other componenents (e.g. 

T2DM studies  where diabetic patients are also obese or overweight and frequenly have 

dyslipidemia and hypertension) [74] thus not being able to indicate one component over the 

other. Specifically, high BP in midlife and late life and high glucose levels in midlife but not late 

life, were associated with worse late-life WM microstructural integrity, but no adverse 

association between lipids and WM microstructural integrity was supported by these data [75]. 

T2DM was found to have an additive/synergistic effect to hypertension on WM microstructural 

alterations in the frontal lobe [76]. Others showed that the reduced WM integrity observed in 

obese patients with T2DM compared to lean normoglycemic individuals was mostly explained 

by the elevated BMI (21% of the variance) and not by T2DM per se [77]. Verstynen et al. studied 

the mediating pathways between elevated adiposity and WM integrity abnormalities and 

showed that BP regulation explained most of the variance (12.58%), followed by dyslipidemia 

(7.93%), inflammation (6.59%) and glucose regulation (1.71%) all of them accounting for 

49.69% of the total variance [78]. Furthermore, they showed that these factors could have 

antagonist effects on the diffusion signal i.e. a globally distributed immunity-linked negative 

component (inflammation and glucose regulation) and a more localized vascular-linked positive 

component (BP and dyslipidemia) [78]. In addition, dyslipidemia was found to mediate WM 

integrity abnormalities in obesity in prefrontal areas involved in executive functioning and 

decision-making [79] while vascular and inflammatory markers were found to explain the effect 

of BMI on WM integrity in fornix and middle/posterior regions of the corpus callosum [80]. 

Allen et al. suggested that at least two mechanisms could explain the association between 

elevated adiposity and WM miscrostructural damage and more specifically they proposed one 

pathway that involves elevated BP that negatively affects global WM integrity and reduces 

integrity of the myelin sheath, and at least one other adiposity-specific pathway that leads to 

axonal integrity damage [81]. Considering the above it is hard to conclude which MetS 

component could lead to a greater WM mictrostructural damage and the role of combined and 

cumulative effects of individual components, therefore larger  prospective randomized-control 

studies are needed. In the following sections we will discuss the impact of each individual MetS 

components on WM integrity.  

4.4 Pathophysiology of micro- and macrovascular dysfunction in MetS 
 
Another potential pathophysiological mechanism that has been reported linked to MetS and 

cognitive dysfunction is the presence of microvascular alterations that lead to WM destruction. 

Through a process of intracranial atherosclerosis [58], microcirculatory alteration can 

potentially induce a state of chronic hypoperfusion that contribute to the development of 

axonal and glial changes [59]. Postmortem studies, have indicated that intracranial 
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microvasculature are specially sensitive to the ROS present in MetS and respond to oxidative 

stress with the accelerated atherogenesis [60]. Moreover, these pathological changes have 

been linked to the formation of leukoaraiosis, which has been identified as a risk factor for the 

development of cognitive dysfunction and AD [61]. Although further studies are required, it has 

been found that MetS is associated with the formation of silent brain infarction, periventricular 

white matter hyperintesitives and subcortical white matter lesions [39], which are all linked to 

cognitive dysfunction [62] 

Hypertension further contributes to vascular damage and cognitive impairment by its effects on 

the structure and function of cerebral blood vessels through atherosclerosis and lipohyalinosis, 

rearrangement of the cellular architecture and changes in the composition of the vascular wall, 

alterations in functional hyperemia, autoregulation and endothelial function, reduced 

compensatory capacity of the cerebral circulation and increased susceptibility of the brain to 

vascular insufficiency [63]. ROS are involved in the structural remodeling of cerebral blood 

vessels and in the functional alterations induced by hypertension, while some of these effects 

are mediated by vascular nitrosative stress induced by peroxynitrite derived from nicotinamide 

adenine dinucleotide phosphate oxidase-derived superoxide and NO [63]. Obesity-induced 

hyperleptinemia could lead to cognitive decline through the phosphatidylinositol-3 

kinase/protein kinase B and mitogen-activated protein kinases/extracellular signal-regulated 

kinases signaling pathways [64, 65]. Furthermore, the obesity related dysregulation of the 

hypothalamic-pituitary-adrenal axis and hypercortisolemia could lead to hippocampal dentritic 

atrophy and cognitive deficits [66, 67]. Lastly, dyslipedimia could lead to cognitive decline 

through atherosclerosis [68]. Hypertriglyceridemia could promote cognitive impairment 

possibly by impairing maintenance of the N-methyl-d-aspartate component of hippocampal 

long-term potentiation and by contributiong to leptin resistance [69]. Reduced HDL levels could 

also deteriorate cognition as HDL and apolipoprotein A-I/HDL prevents hippocampal atrophy, 

improves synaptic growth and plasticity and reduces inflammation and oxidative stress [70, 71]. 

HDL carries the antioxidative enzyme paraoxonase 1, the low levels of which have been linked 

to cognitive function impairment [70, 72]. The outcome of these individual or synergistic 

actions may manifest as structural brain changes, WM microstructural damage and functional 

decline of degenerative or vascular origin. As a result, brain aging and cognitive decline are 

accelerated. Figure 1 provides an overview of these mechanisms that are also discussed in the 

individual parts of the MetS components below. 

5. Obesity 

Obesity is considered an epidemic of the modern era as its worldwide prevalence was doubled 

between 1980 and 2014 and in 2014 more than 1.9 billion adults were overweight and over 600 

million (13% of world’s adult population) of those were obese [82]. By 2025 it is estimated that  
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global obesity prevalence will reach 18% in men and surpass 21% in women while severe 

obesity will surpass 6% in men and 9% in women [83]. Obesity was estimated to account for 

0.7-2.8% of a country's total healthcare expenditures and obese people were found to have 

about 30% greater medical costs than normal-weight individuals [84]. Overweight and obesity 

have been linked to several comorbidities including T2DM, several types of cancer and 

cardiovascular disease, asthma, gallbladder disease, osteoarthritis and chronic back pain [85]. 

Furthermore, obesity may lead to exacerbate cognitive decline and it has been related to 

several progressive and age-related neurodegenerative diseases such and Alzheimer’s disease 

[86]. Obesity, mostly abdominal, is the most prevalent manifestation of MetS [87] and although 

most of its health consequences have been broadly examined, less is known about its effects on 

the brain.  

5.1 Obesity and MRI findings 

Modern neuroimaging is widely used to study and understand the brain pathology in obesity. 

BMI has been associated with brain structural and functional abnormalities [88] (Table 1). 

Obesity is associated with global brain atrophy [36, 89-93] and regional atrophy in both gray 

matter (GM) and WM,  and although a consistent reduction in GM volume with increasing BMI 

has been observed [91, 93-99], alterations in WM are more complex and less conclusive [91, 

93-95, 97, 100-103]. Furthermore, there is evidence that increased BMI is accociated with 

increased WMH [104], decreased cerebral blood flow [105], increased CSF [106] and silent brain 

infarcts [39] and  silent lacunar infarcts [37]. Since MRI cannot assess WM integrity, DTI has 

been used to explore microstructural changes in WM microstructure in obesity, and this 

research field has just begun to grow.  

5.2 Obesity and DTI findings 

An increasing BMI has been associated with a decrease in WM integrity as assessed by reduced 

FA and/or altered AD, MD and RD in both genders in several brain regions like corticospinal 

tracts, brainstem, anterior and posterior thalamic radiation, inferior fronto-occipital fasciculus, 

inferior and superior longitudinal fasciculus, corpus callosum, uncinated fasciculus, internal 

capsule, cingulum, mammillary bodies, optic radiation and corona radiate, middle and superior 

cerebellar peduncles, medial lemniscus regions of the midbrain, infundibulum, perithalamic 

WM and perihippocampal WM in the temporal lobe (Table 2), areas related to numerous 

functions including motor control, coordination, reward seeking, motivation/drive, inhibition, 

emotional regulation, learning, cognitive control, memory, decision making and impulsive 

control  [107-114]. Women may  be more prone to the obesity-related WM microstructural 

alterations as a negative association between FA and BMI and a positive association between 

RD and BMI in corpus callosum was found only in women, while a negative association between 

AD and BMI was noticed in the corpus callosum of both genders [115]. This might be either 
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because males have higher myelination than females [116] or modest demyelination might be 

not detectable enough in males [115]. Howewer, the sample size of the study was small [115] 

and conclusions should be interpreted with causion. It seems that obesity does not affect WM 

integrity only in adults but also in their offspring as a negative association between maternal 

adiposity and FA of the offspring has been found [117]. Furthermore, it was shown that healthy 

obese children have reduced regional GM, increased WM and differences in WM 

microstructures in several brain regions compared to their healthy normal-weight counterparts 

[118]. Consideraing the above, obesity negatively impacts WM microstructure regardless of age 

and this is linked to non-beneficial alterations in a wide range of functions including cognitive 

health and memory that may increase the risk for cognitive decline and memory loss later in 

life. 

Most DTI studies in obesity have examined differences in diffusion characteristics that give 

insight into localized changes in WM microstructure. Other DTI studies have focused on fiber 

tracts in order to evaluate the relative connectivity between brain regions and networks. 

Specifically, obesity-related alterations of GM density in brain regions involved in executive 

control and habit learning were found to be associated with alterations of WM fiber bundles 

within the corpus callosum [119]. Furthermore, alterations in MD and AD with increasing BMI in 

the corticospinal tract, anterior thalamic radiation and superior longitudinal fasciculus indicate 

changes in fiber tracts linking limbic structures with prefrontal regions that could accelerate 

aging and cognitive decline in obese individuals [120]. This was also supported by lower FA 

values with increasing BMI in brain regions connecting frontal and temporal lobes [121], as well 

as with shorter fiber bundle length in the temporal lobe [122] in older adults, changes that 

precede cognitive dysfunction. In adolescents, BMI was inversely associated with verbal and 

spatial working memory accuracy which was mediated by reduced FA in superior longitudinal 

fasciculus and left inferior longitudinal fasciculus, WM fiber tracts that link cortical regions 

important for cognitive and executive functions [123]. On the other hand, other researchers 

have not found similar effects in normal weight children and adolescents [124]. In any case, 

available evidence points to the fact that obesity is associated with brain damage that could 

accelerate brain aging.  

Obesity is also linked with deteriorating chances in the brain reward system making the loss of 

weight much more challenging and its health consequencies, including brain damage, more 

difficult to be reversed. Fiber density differences have been observed in several brain areas of 

the reward system between normal-weight and overweight/obese individuals [125], showing 

an altered connectivity and probably communication between key regions of the reward 

network and other related networks [126]. A disruption of a larger taste reward circuitry has 

been suggested by Shott et al., who found decreased GM across the taste reward system and 

reduced WM integrity in the corona radiata, sagittal stratum, and external capsule, fiber tracts 
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that connect frontal with limbic and subcortical brain regions [127]. A significant negative 

correlation was also found between BMI and the number of WM tracks connecting 

midcingulate cortex and subcortical regions involved in decision making and impulsive control 

[114]. In chronic dieters, a reduced structural integrity in the WM tract connecting the inferior 

frontal gyrus that is related to cognitive control and the orbitofrontal cortex that is related to 

reward was found with higher body fat percentage [128]. This marked negative impact of 

excess adiposity on the reward circuit indicate the great difficulty of reversing obesity and thus 

its metabolic disturbunces, the increased risk for chronic diseases as well as the earlier 

cognitive and memory impairment. 

The majority of these studies have a cross-sectional design and no cause-effect relationship 

could be established between increasing BMI and reduced WM integrity and connectivity. 

Several mechanisms have been proposed though to explain the association between increased 

BMI and WM microstructural alterations (Figure 1). Obesity is associated with chronic low-

grade inflammation [129] and inflammation in the hypothalamus [130] which may affect energy 

balance regulation and contribute to the obesity-associated insulin resistance and consequently 

to WM metabolism and integrity alterations [131]. Patients with abnormal DTI metrics within 

hypothalamus had higher values of BMI, fat mass, inflammatory markers, carotid-intima media 

thickness, hepatic steatosis and lower scores on cognitive tests [132]. Cholesterol profile 

abnormalities could be another mechanism to partly explain the reduced WM microstructural 

integrity in obesity as a negative association between abnormal cholesterol profiles and FA was 

found in the left and right prefrontal lobes in obese but not lean individuals [133]. The early 

elevated plasma low density lipoprotein (LDL) levels might, also, affect the WM  integrity in the 

right frontal region, mostly in men [107]. Other proposed mechanisms are hypertension, 

hypothalamic–pituitary–adrenal  axis dysregulation, oxidative stress, hyperleptinemia, reduced 

endothelian integrity and vascular reactivity, reduced cerebral blood flow, leading to cerebral 

hypoperfusion and cognitive and neurodegenerative changes [64, 67, 88, 134]. Genetic factors 

cannot be excluded as obesity and reduced WM integrity may share common genetic risk 

factors [135] such as the obesity risk gene neuronal growth regulator 1 that was found to be 

associated with lower WM integrity (2.2% lower average FA per allele) [136]. Longitudinal 

studies are of outmost importance to shed more light into the field and understand the cause 

and effect relationship between increased BMI and WM microstructural changes. Exercise 

seems to be neuroprotective and improve WM integrity in obese individuals [137].  WM 

integrity is greater with higher aerobic fitness and lower BMI, associations noticed in different 

hemispheres showing that hemispheric dominance patterns for aerobic fitness and obesity in 

relation to cognitive decline might exist [113]. Furthermore, exercise induced weight-loss in 

obese individuals increased structural brain plasticity in brain areas functionally related to 

gustation and cognitive processing such as the insular cortex, the hippocampus, and the left 
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cerebellar regions [138] indicating that the adverse effects of excess weight in the brain could 

be partly reversible with exercise.  

6. Hyperglycemia 

Glucose metabolism is a complex process that involves numerous regulatory pathways 

including central autonomic neural networks, hormonal and cardiovascular system activities 

[139, 140]. Being glucose the primary source of energy to the brain, alterations in glycemic 

metabolic processes can lead to impairment in brain structure and functionality (Figure 1). The 

presence of chronic hyperglycemia has been linked to the formation of ROS and 

proinflammatory cytokines [52, 141] that generate oxidative stress and inflammatory changes 

throughout the body which have been linked to micro- and microvascular alterations [142, 

143]. Abundance evidence shows that there is a strong correlation between hyperglycemia and 

cerebral microvascular disease, alterations of the blood brain barrier, neuronal injury and brain 

tissue loss [48, 56]. Chronic hyperglycemia has also been implicated in the development of 

advanced glycation end products, that further contribute to vascular damage and cognitive 

deterioration through neuroinflammation pathways [49, 143]. Brain insulin resistance which is 

another important risk factor for cognitive deterioration which has been associated with 

alterations in regional cerebral glucose metabolism and brain atrophy in adults [144, 145]. Brain 

insulin is essential for neuroprotection, neurovascular coupling, and normal cerebral 

metabolism [146, 147], and any alteration in insulin signaling may further contribute to 

funcational and cognitive decline.  

6.1 Hyperglycemia and MRI findings 

Numerous research studies in the past decade have reported changes in cerebral structure 

[148], endothelial dysfunction and impaired cerebral vasoreactivity [149], that have been 

associated with an acceleration of functional decline and severe cognitive deficits in patients 

with T2DM [150]. The longer the disease duration and the higher levels of hemoglobin A1c, a 

marker of glycemic control, were linked with worse cognitive performance in T2DM patients 

[151]. This evidence is supported by longitudinal studies showing that higher levels of 

hemoglobin A1c are linked to a faster decrease in cognitive function in T2DM compared to non-

T2DM populations [152, 153]. Neuroimaging studies using MRI have shown that in patients 

with T2DM a higher prevalence of lacunar infarcts and GM atrophy [154, 155] exists in 

comparison to controls without T2DM (Table 1). Few other studies have reported a generalized 

global atrophy [156, 157], increased CSF [148] as well as regional reductions in brain structures 

particularly in the hippocampus and amygdala [158, 159] (Table 1). However, evidence of the 

relationship between T2DM and WM is not consistent in the literature [160-162]. This lack of 

consensus between T2DM and abnormalities in WM structure has been attributed to a 

decrease in the sensitivity of MRI to detect microstructural WM changes or WMH [163].  DTI 
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has given new insights to the deleterious effects T2DM has on the WM network. The following 

section gives an overview of the existing evidence linking T2DM and changes in the 

microstructural WM integrity, and how these effects are associated with subtle cognitive 

decrements in T2DM.  

6.2 Hyperglycemia and DTI findings 

Several cross-sectional studies have reported significant differences in the microstructural WM 

in T2DM as compared to controls [23, 163] (Table 2). These results suggest  that T2DM is 

associated with an increased risk factor for WM microstructural alterations, detectable before 

the structural conventional MRI abnormalities.Alterations in the WM integrity  may represent 

early stages on WM disease and  lead to disruptions in the communication between different 

brain regions  and subsequently to cognitive deterioration. One of the first studies using DTI in 

T2DM found a negative association between declarative memory impairment and left temporal 

stem FA [164]. A negative correlation between the left external capsule FA and left anterior 

limb of the internal capsule FA correlated with executive function in T2DM [165]. Expanding 

these results, negative associations were reported between information-processing speed and 

MD of the uncinate fasciculus, inferior longitudinal fasciculus and splenium of corpus calosum 

and between memory and MD of the inferior longitudinal fasciculus in patient with T2DM, but 

not control subjects [23]. These associations were independent of WMH, and lacunar infarcts. 

Recently,  DTI measures were evaluaed in a population of T2DM with mild cognitive 

impairment, T2DM with normal cognition and healthy controls [166]. It was found that not only 

T2DM- mild cognitive impairment group but also T2DM with normal cognition showed changes 

in RD parameters in several regions, including external capsule, temporal lobe, right frontal 

lobe and corona radiate [166]. These results suggest that changes in brain microstructural WM 

integrity are already present in early stages of the disease and can contribute to increase the 

risk of cognitive impairment. Although the cross-sectional design of these studies limits the 

causality of the results, the consistency of the findings across populations makes evident that 

chronic hyperglycemia is linked with WM microstructural integrity, and that these changes are 

associated with cognition even when no evidence of other MRI findings are present.  

To summarize, evidence has shown that chronic hyperglycemia is associated with 

microsctructural WM abnormalities, with most of these changes present in the frontotemporal 

region [164-166]. DTI changes were also associated with cognitive performance in the T2DM 

population, but not in the controls [23, 164-166]. These subtle cognitive deficits were especially 

observed in information-processing speed, executive function and memory [164-166]. Given 

the relatively new nature of these evidence, and the lack of longitudinal studies, it is difficult to 

determine a causality between the changes described in DTI parameters and the presence of 

chronic hyperglycemia. However, the amount of evidence gathered from the previous studies 
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allows us to determine that there’s a clear association between microstructural WM changes, 

hyperglycemia and cognitive functionality.      

7. Hypertension 

Hypertension affects approximately one third of the global population and is considered the 

leading preventable cause of premature death worldwide [167]. Hypertension has been part of 

the MetS definition since its first description in 1923 [15] and seems to impact brain structure 

and function.  

 

7.1 Hypertension and MRI findings  

The relationship between hypertension and cognitive decline has been studied numerously as 

hypertension leads to small vessel disease and plaque formation, arterial hypertrophy and 

cerebral vasoconstriction, all of them leading directly or indirectly through cerebral circulation 

dysregulation and reduced cerebral blood flow to atrophy or WM lessions, silent lacunar 

infarcts [37, 38], increased CSF volume [168] and finally to dementia, vascular dementia and 

Alzheimer's disease [169].  Hypertension is considered a major risk factor for the development 

of WMH, WM lessions, lacunes and cerebral microbleeds [170, 171] and is related 

to brain volume reductions, specifically in hippocampus, which may play a significant role to 

neurodegeneration in Alzheimer's disease [172, 173] (Figure 1; Table 1).  

7.2 Hypertension and DTI findings 

Hypertension seems to negatively impact WM mictrostructure and cognitive function (Table 2). 

Hypertension was associated with lower FA in both normal appearing WM and WM lessions 

and with higher MD in WM lessions in patients with small vessel disease [174]. Specifically, the 

odds ratios for the risk of impaired microstructural integrity assessed by FA in hypertensive 

patients were 3.1 and 2.1 in normal appearing WM and WM lessions, respectively, compared to 

normotensive patients [174]. Hypertensive patients presented  decreased FA and increased MD 

in the left superior longitudinal fasciculus that connects areas of fronto-parietal networks 

involved in executive function, attention, control and working-memory processing and had 

decreased executive functions and attention compared to normotensive patients [175]. This 

was supported by the study of Maillard et al., who found increased systolic BP to be linearly 

associated with decreased regional FA and increased MD in the anterior corpus callosum, the 

inferior fronto-occipital fasciculi, and the fibres that project from the thalamus to the superior 

frontal gyrus in yound adults [176]. Hypertensive patients, and mostly those with uncontrolled 

hypertension, had a lower FA in the splenium and a significantly higher MD in both the anterior 

body and the splenium of the corpus callosum compared to controls indicating impaired 

microstructural integrity associated with lower cognitive function [177]. The authors of this 
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study also found that 14 to 60% of the relation between reduced callosal microstructural 

integrity and global cognitive function was explained by small vessel disease elsewhere in the 

WM [177]. In another study, lower integrity of the splenium of the corpus callosum predicted 

elevated systolic BP which in turn was associated with brain connectivity variations in 

cognitively healthy adults and slower information processing; associations mediated by the 

functional connectivity of the right superior temporal gyrus with the resting-state ventral 

attention network [178]. The duration of the disease and control of hypertension were not 

fould to significantly affect the hypertension effect on WM integrity but the genetic makeup 

played an important role as decreased FA and increased MD were found in the uncinate 

fasciculus and inferior fronto-occipital fasciculi of hypertensive patients, with even lower FA 

and higher MD values in Apolipoprotein E4 carriers [179]. According to longitudinal studies 

greater and variable systolic BP levels were associated with lower WM integrity of 

frontoparietal and medial temporal tracts (uncinate and superior lateral fasciculi bilaterally) 

over a ten year follow-up period, independent of markers of arterial stiffness or 

cardiometabolic conditions (age, race, stroke history, antihypertensive medication use) [180]. 

On the other hand, another study found no association between hypertension and WM 

variability either at baseline or at the seven year follow-up [181]. The mechanisms of how 

hypertension affects WM integrity have not been not fully elucidated (Figure 1). Axonal loss or 

dysfunction assessed by N-acetylaspartate reductions seems to be a principal process of WM 

mictrostructural damage in hypertension [182]. Increased aortic arch stiffness has been also 

proposed to explain the relationship between hypertension and DTI measures of brain injury as 

it is associated with incipient brain injury before overt brain abnormalities become apparent 

[183]. This probably happens through increased aortic arch stiffness involvement in the 

pathogenesis of WMH, vascular dysautoregulation due to arterial remodeling leading to 

reduced WM blood flow, hypoxemia and myelin break-down or through exaggerated flow 

reversal and plaque embolism or greater pressure and/or flow transmission from the aorta to 

the cerebral circulation or disproportionate stiffening of the aortic arch with little change in 

carotid artery stiffness that may facilitate transmission of excessive pulsatile energy into the 

cerebral microcirculation [183]. In addition hypertension seems to disrupt endothelial cell 

integrity and increase blood-brain barrier leakage, oxidative stress, brain cell toxicity and small 

vessel disease-related brain damage [184, 185].  

In conclusion, available evidence indicate hypertension, particularly increased systolic BP, as an 

important factor for WM microstructural damage and cognitive decline. Antihypertensive 

therapy has been suggested to reduce the risk of impaired microstructural integrity and delay 

cognitive decline [174, 177], although this is not supported by other studies [176, 179]. More 

research is needed to fully understand the underlying mechanisms and the effect of 
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hypertension treatment as well as more longitudinal studies to determine the cause and effect 

relationship between hypertension and WM microstructure alterations.   

 

8.  Dyslipidemia 

Dyslipidemia has been recognized as a major cause of cerebrovascular and cardiovascular 

disease (170). However, the relationship between dyslipidemia and cognition is more complex 

and contradictory.  

A large cross sectional study of 1037 post-menopausal women revealed an association between 

high LDL and total cholesterol levels and cognitive impairment [186].  A longitudinal study of 

1159 elderly Chinese individuals found an association between elevated total cholesterol and 

LDL and accelerated cognitive decline [187]. On the contrary, other large studies of older adults 

have found an association between higher triglycerides [188] and LDL and better cognitive 

performance [189]. Furthermore, a recent longitudinal study of 192 adults with Alzheimer's 

disease, rising LDL levels were associated with a trend towards improvement in functional 

performance [190]. Given the well established role of lipid lowering therapy with statins in 

cardiovascular disease secondary prevention, the potential of statins in the treatment and 

prevention of dementia has been explored in several randomized controlled trials. A recent re-

analysis of data from a prior, negative trial of simvastatin in Alzheimer's disease after 

completion of a longer follow-up revealed a  non significant trend towards slowing of disease 

progression from mild to moderate stage [191]. This effect was seen only in Apolipoprotein E4 

carriers. 

 

These findings, however, are contradicted by a meta-analysis of two large trials including a total 

of 26340 patients 40 years and older with cardiovascular risk factors, which found no evidence 

that statin therapy prevents cognitive decline or dementia [192]. Similarly, a meta-analysis of 4 

large randomized trials of statin treatment in patients with Alzheimer's disease found no effect 

on cognitive performance[193]. There is a marked paucity of studies focused on vascular 

dementia which conceptually would be more likely to be related to dyslipidemia.  

 

8.1 Dyslipidemia and MRI findings 

The major limitation of dyslipidemia studies on brain structure is  that dyslipidemia  rarely 

occurs in isolation and it is usually  accompanied by hypertension and impaired glucose 

metabolism. In that regard, patients with familial hypercholesterolemia (FH) present a unique 

opportunity to examine the effect of isolated dyslipidemia on brain structure. A study of 39 

young individuals (aged 6-48) with heterozygous FH on statin treatment found no difference in 

the number of silent brain infarcts and WMH compared to 25 age-matched healthy controls 
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despite significantly higher cholesterol levels in the FH group [194]. A smaller case control study 

of young adults with homozygous FH yielded similar results despite markedly higher cholesterol 

concentrations in the FH group [195]. Two similar case-control studies middle-aged, 

hypertension-free adults with heterozygous FH and age-matched controls found no difference 

in WM lesions despite significantly higher serum cholesterol levels [196, 197]. Lastly, a larger 

study explored the occurrence of WMH in 33 older than 65 years with heterozygous FH [198]. 

They were compared to middle aged counterparts with FH and healthy controls of similar age. 

Among these 33 older adults with FH, those who were older had more WMH. However there 

was no difference in the number of WMH when compared to younger, middle aged adults with 

FH or healthy adults of similar age [198]. Lastly, a study of 82 healthy and cognitively intact 

adults revealed a robust association between elevated LDL levels and lower GM volume, but no 

association with WM volume[199]. 

 

8.2 Dyslipidemia and DTI findings 

Data on the effect of dyslpidemia on WM microstructural integrity are very sparse. In one cross-

sectional study of 125 older adults having underwent MRI with DTI, an association between 

higher cholesterol levels and lower FA was found for several areas within the right hemisphere 

[200]. When adjusting for age, gender and mean arterial BP, the associations remained 

significant for the superior longitudinal fasciculus, right hemisphere precentral WM, right 

hemisphere caudal middle frontal WM and the right precuneus. The reason for the right 

hemisphere predilection is uncertain. This relationship between cholesterol and FA was driven 

almost exclusively by LDL, whereas triglyceride levels had the least potent association with WM 

integrity. Elevated LDL was associated with higher RD and AD values in the aforementioned 

areas. The effect was more potent on RD in anterior regions and AD in posterior regions. 

Taken together, these findings suggest no independent association between dyslipidemia and 

traditional imaging markers of WM disease such as silent infarcts, WM volume atrophy and 

WMH. The isolated effect of dyslipidemia on WM microstructure is inadequately studied. 

 

9. Limitations  

The studies on the effects of MetS and its components on WM mictrostructure, cognition and 

aging have several limitations. One of the major limitations is that most of the studies have a 

cross-sectional design that does not allow causal inference and prospective studies for 

understanding the cause and effect relationship of MetS and the reduced microstructural brain 

tissue integrity are of outmost importance. Another limitation is that in most studies the 

examination of the individual MetS components is not always feasible, because in most cases 
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the components co-exist i.e. T2DM with obesity, obesity with hypertenstion, etc, thus it is not 

always easy to draw clear conclusions on the individual effects of MetS components. Therefore, 

larger prospective studies that would allow to separate the individual  components into the 

separate groups and also study the interactions  among them prospectively are needed.   

 

10. Summary 

A growing body of evidence indicates that MetS is associated with increased brain 

microstructural damage, worse cognitive performance and increased risk for dementia and 

Alzheimer's disease. All MetS components have an individual negative impact on WM integrity, 

but their itneractions and cumulative effects are not well known. Hyperglycemia with brain 

inuslin resistance, hypertention and obesity have been studied the most and the results suggest 

the most robust negative effects on WM integrity and brain structure. Research is still lacking in 

understanding the additive and cumulative effects of each MetS component as most of the 

studies have examined either the individual components by themselves or some but not all of 

them. This piece of knowledge would be very important for the future direction of 

interventions for the prevention and treatment of cognitive decline and dementia. 

Furthermore, the mechanisms that lead to WM microstructural damage need to be further 

elucidated as all MetS components have distinct but also share similar mechanisms and 

pathways but the picture is still not very clear about which mechanisms are the most prevalent 

ones and how everything is linked. MetS is an important condition with several impacts on 

brain health, affects all age groups and should not be underestimated when it comes to 

cognitive and memory decline and brain aging. More studies of prospective design are needed 

as well studies on the mechanisms, therapy and additive/cumulative effects of the separate 

MetS components.   
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Figure 1 Legend 

Figure 1:  Conceptual model that describes the main mechanisms by which metabolic syndrome 

and its components lead to structural and functional brain abnormalities, accelerate brain aging 

and cognitive decline. Cellular, vascular and genetic factors as well as inflammation and 

oxidative stress are the main contributors to this complicated process.  

Abbreviations: neuronal growth regulator 1 (NEDR1); apolipoprotein E4 (ApoE4); reactive 

oxygen species (ROS); blood brain barrier (BBB); small vessel disease (SVD); macrovascular 

disease (MVD); gray matter (GM); white matter (WM); white matterhyperintensities (WMH); 

fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); radial diffusivity (RD) 
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Table 1. Brain anatomical and functional abnormalities for Metabolic Syndrome and individual 

Metabolic Syndrome components  

 Brain Anatomical and Functional Alterations Cognitive 
Alterations 

Metabolic Syndrome GM ↓ 
- 

↓↑ 

Lower global brain volume [36] 
No focal ischemic lesions [41] 
No changes [41] 

Cognitive 
impairment [47], 
slower processing 
speed [44] WM ↑ 

↑ 
Periventricular WMH [39], 
Subcortical WM lesions [39] 

Infarcts ↑ 
↑ 

Infarcts [39] 
Silent lacunar infarcts [37, 38] 

CSF ↑ Increased CSF [45] 

Obesity 
↑Waist 
Circumference [15] 
 

GM ↓ 
 

↓ 

Lower global brain volume [36, 
89-93]  
Lower GM volumes [91, 93-99]  

Worse cognitive 
decline [86] 

WM ↓ 
↑ 

↓↑ 
↑ 
- 

Lower WM volume [94, 101, 
102]  
Increased WM volume [95, 97] 
No change [91, 93],  
Increased WMH [104]  
Multiple findings [103] 

Infarcts ↑ 
↑ 

Infarcts [39] 
Silent lacunar infarcts [37] 

CSF ↑ Increased CSF [106] 

Hyperglycemia 
>100 mg/dl Fasting 
glucose [15] 
 

GM ↓ 
 
↓ 

 

Lower global brain volume [36, 
148, 151, 154, 155, 161, 201] 
Hippocampal atrophy [158, 
159] 

Worse cognitive 
decline [152, 153] 

WM ↑ 
↑ 

↓↑ 

WMH [151, 162] 
Periventricular WMH [39] 
No change [148, 155, 159],  

Infarcts ↑ 
↑ 

 
↑ 

 

Infarcts [39]  
Silent lacunar infarcts [37, 38, 
159, 202] 
Cortical/subcortical infarcts 
[151] 

CSF ↑ 
↓↑ 

Increased CSF [148] 
No changes [163, 203] 

Hypertension 
≥130 mmHg SBP 
≥85 mmHg DBP [15] 

GM ↑ 
 
↓↑ 

Hippocampal atrophy [172, 
173] 
No atrophy [180] 

Worse executive 
function, [175, 177] 

WM ↑ WMHs [36, 180, 204-208] 
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↑ 
 

↑ 
 

Periventricular hyperintensity 
[39] 
Subcortical WM lesions [39, 
171] 

Infarcts ↑ 
↓ 
↑ 

Infarcts [39] 
Silent lacunar infarcts [36-38] 
Microbleeds [170, 171] 

CSF ↑ Increased CSF volume [168] 

Dyslipidemia 
TGL (≥150 mg/dl) 
HDL ((<40 mg/dl 
men; <50 mg/dl 
women) [15] 

GM ↓ 
 

Lower global brain volume 
[199]  

Cognitive 
impairment [186, 
187] 
 
Improvement 
cognitive 
performance [189] 
 
Improvement 
functional 
performance [188, 
190] 

WM ↑ 
↓↑ 

Subcortical WM lesions [39] 
No changes [194-197] 

Infarcts ↑ 
↓↑ 

Silent lacunar infarcts [37] 
No changes [194, 195] 

CSF - - 

GM: gray matter; WM: white matter; WMH: white matter hyperintensities CSF: Cerebrospinal 

fluid SBP: Systolic Blood Pressure DBP: Diastolic Blood Pressure  
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Table 2. DTI findings for Metabolic Syndrome and individual Metabolic Syndrome components 

 

 DTI Microstructural abnormalities Cognitive Alterations 

Metabolic 
Syndrome 

FA ↓ Reduced FA in corpus callosum 
[40, 46], right external capsule, 
deep white matter of the right 
frontal lobe [42, 43], angular gyri 
[45], optic radiations, medial 
longitudinal fasciculi [40], dorsal 
cingulum bundle [46] 

Cognitive impairment [44, 
47] 

MD ↓↑ No change [45] 

AD ↑ Increased AD values in L post-
central gyrus [45] 

RD ↑ Increased RD in angular gyri [45], 
dorsal cingulum bundle [46] 

Obesity FA ↓ Reduced FA in superior and 
inferior right longitudinal 
fasciculus [108], medial lemniscus 
regions of the midbrain, corona 
radiate [110], mammillary bodies 
[109], right inferior occipito-
frontal fascicle, thalamic radiation 
(including optic radiation) [108, 
109], internal capsule [108, 110], 
corticospinal tracts [107-109], 
corpus callosum [108, 109, 111, 
112, 115], cingulum [108, 110, 
113, 114], middle and superior 
cerebellar peduncles [110, 120], 
uncinate fasciculus [108, 121], 
right brainstem [107], corona 
radiate [110] 

Altered motor control, 
coordination, reward 
seeking, motivation/drive, 
inhibition, emotional 
regulation, learning, 
cognitive control, memory, 
decision making and 
impulsive control  [107-114] 
spatial working memory 
[123] 
 
Accelerates aging and 
cognitive decline [120]  
 
 

MD ↓ 
 
 
 
 
↑ 
 
 
↓↑ 

Reduced MD  in uncinate fascicles 
and inferior occipito-frontal 
fascicles [109], bilateral 
corticospinal tract and anterior 
thalamic radiation [120] 
Increased MD in corpus callosum 
[111] and right superior 
longitudinal fasciculus [120]  
No change [108] 

AD ↓ 
 

Reduced AD in corpus callosum 
[111, 115], bilateral corticospinal 
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↑ 
 
 
↓↑ 

tract and anterior thalamic 
radiation [120] 
Increased AD in right corona 
radiata and superior longitudinal 
fasciculus [111, 120]  
No change [108] 

RD ↑ 
 
↓ 
  
↓↑ 

Increased RD in corpus callosum 
[111, 115] 
Lower RD in the right middle 
cerebellar peduncle [120]  
No change [108] 

Hyperglycemia FA ↓ Reduced FA in cingulate bundle 
and uncinated fasciculus [209], 
frontal and temporal lobes [163, 
164] 

Poor cognitive performance 
(20, 121-123) 
Impaired declarative 
memory [164], information-
processing speed [23] 
executive function [165] 
(121-123)  
 
 

MD ↑ Increased MD in bilateral frontal 
lobe, cerebellum, temporal lobe, 
left parahippocampal gyrus, left 
fusiform gyrus, left cuneus [163], 
superior longitudinal fasciculus, 
uncinated fasciculus, inferior 
longitudinal fasciculus, corpus 
calosum splenium [23] 

AD   

RD ↑ Increased RD in bilateral frontal 
lobes [163] 

Hypertension FA ↓ Reduced FA in right anterior 
thalamic radiation, left cingulum 
cingulated gyrus, forceps major, 
superior longitudinal fasciculus 
[176, 180], corpus callosum 
splenium [177] 

Decreased executive 
function, attention, control 
and working-memory 
processing and attention 
[175] lower cognitive 
function [177] 

MD ↑ Increased MD in bilateral anterior 
thalamic radiation, bilateral 
corticospinal tract, forceps major, 
superior longitudinal fasciculus 
[176], anterior corpus callosum 
body and splenium [177] 

AD ↓↑ No change [181] 

RD ↓↑ No change [181] 

Dyslipidemia FA ↓ Reduced FA in superior 
longitudinal fasciculus, right 
precentral WM, right causal 

Cognitive impairment [186, 
187] 
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middle frontal, right precuneus 
[200] 

 MD - No reports 

 AD ↑ Increased AD in superior 
longitudinal fasciculus, right 
precentral WM, right causal 
middle frontal, right precuneus 
[200] 

 RD ↑ Increased RD in superior 
longitudinal fasciculus, right 
precentral WM, right causal 
middle frontal, right precuneus 
[200] 

FA: fractional anisotropy; MD: medial diffusivity; AD: axial diffusivity; RD: radial diffusivity 
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