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Pregnant women are particularly susceptible to toxic effects associated with lead (Pb) exposure. Pb
accumulates in bone tissue and is rapidly mobilized from bones during pregnancy, thus resulting in fetal
contamination. While vitamin D receptor (VDR) polymorphisms modify bone mineralization and affect Pb
biomarkers including blood (Pb-B) and serum (Pb-S) Pb concentrations, and %Pb-S/Pb-B ratio, the effects of
these polymorphisms on Pb levels in pregnant women are unknown. This study aimed at examining the
effects of three (FokI, BsmI and ApaI) VDR polymorphisms (and VDR haplotypes) on Pb levels in pregnant
women. Pb-B and Pb-S were determined by inductively coupled plasma mass spectrometry in samples from
256 healthy pregnant women and their respective umbilical cords. Genotypes for the VDR polymorphisms
were determined by PCR and restriction fragment length digestion. While the three VDR polymorphisms had
no significant effects on Pb-B, Pb-S or %Pb-S/Pb-B ratio, the haplotype combining the f, a, and b alleles for the
FokI, ApaI and BsmI polymorphisms, respectively, was associated with significantly lower Pb-S and %Pb-S/Pb-
B (Pb0.05). However, maternal VDR haplotypes had no effects on Pb levels in the umbilical cords. To our
knowledge, this is the first study showing that a combination of genetic polymorphisms (haplotype)
commonly found in the VDR gene affects Pb-S and %Pb-S/Pb-B ratios in pregnant women. These findings may
have major implications for Pb toxicity because they may help to predict the existence of a group of subjects
that is genetically less prone to Pb toxicity during pregnancy.
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1. Introduction

Pregnant women are particularly susceptible to the toxic effects
resulting from lead (Pb) exposure. This is because increased demands for
calcium during pregnancy increase bone turnover, thus increasing the
circulating Pb levels by removing Pb from bones (Gulson et al., 1997;
Tellez-Rojo et al., 2004). Pb from themother can easily cross the placenta
andexpose the fetus to Pb (Goyer, 1990). Indeed, Pb accumulates in bones
and has a half-life of years or decades, so that Pb transference to the fetus
may take place even years after maternal exposure (Rothenberg et al.,
2000; Tellez-Rojo et al., 2004). This exposure is known to affect the
embryonic development ofmultiple organ systems and cause retardation
of cognitive development (Banks et al., 1997). Recent results clearly
indicate reduced intellectual development in children with history of
prenatal leadexposure (Schnaas et al., 2006). ThereforeassessingPb levels
during pregnancy may help to predict these harmful effects associated
with Pb, especially in pregnant women with some predisposing factors
(Montenegro et al., 2008).

While Pb levels are usually measured in blood (Pb-B), plasma (Pb-P),
or serum Pb (Pb-S) concentrations, or %Pb-S/Pb-B ratios are considered
very relevant to assess Pb toxicity. This is because the most toxic Pb
fraction is reflected by these biomarkers, which correspond to the
diffusible Pb fraction in the body (Barbosa et al., 2005; Smith et al., 2002).
Importantly, pregnancy is associated with significant increases in these
biomarkers (Amaral et al., 2010; Montenegro et al., 2008), which are
clearly affected by genetic polymorphisms (Montenegro et al., 2006;
Onalaja and Claudio, 2000; Rezende et al., 2008).

Vitamin D and its active metabolites (especially 1,25-dihidrox-
yvitamin D, or calcitriol) are primarily involved in maintaining
calcium homeostasis (Uitterlinden et al., 2004), and vitamin D
receptor (VDR) polymorphisms affect bone mineralization and
resorption (Morrison et al., 1994; Valdivielso and Fernandez,
2006). However, although VDR polymorphisms apparently modify
Pb toxicity (Onalaja and Claudio, 2000; Rezende et al., 2008;
Schwartz et al., 2000a,b), no previous study has examined whether
VDR polymorphisms affect the circulating levels of Pb in pregnant
women.

http://dx.doi.org/10.1016/j.scitotenv.2010.07.039
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Fig. 1. Genotyping for the FokI, ApaI, and BsmI, VDR gene polymorphisms. The PCR
products were digested with restriction enzymes producing different fragments
leading to specific genotypes.
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In the present study, we examined the effects of three single
nucleotide polymorphisms (BsmI, ApaI and FokI) in the VDR gene on
Pb-B, Pb-S, and %Pb-S/Pb-B ratio in pregnant women. We then
examined whether there is a relationship between VDR gene
haplotypes and Pb-B, Pb-S, and %Pb-S/Pb-B ratios in pregnant
women, and between maternal VDR gene haplotypes and these
biomarkers of Pb exposuremeasured in the respective umbilical cords.

2. Materials and methods

2.1. Subjects

Approval for the use of human subjects was obtained from the
Institutional Review Board of the Faculty of Medicine of Ribeirao Preto
and each subject provided written informed consent. We studied 256
peripartum healthy pregnant with at least 38 weeks of gestation,
living in the city of Ribeirao Preto, State of Sao Paulo, Brazil, and their
respective umbilical cord samples. Although previous studies showed
evidence indicating that some exposure to lead would be detected in
Ribeirao Preto (Costa de Almeida et al., 2010; Costa de Almeida et al.,
2009; Gomes et al., 2004), the peripartum women included in the
present study came from different regions.

Maternal blood samples were drawn from each volunteer before
delivery. Umbilical cord blood samples were drawn from the
umbilical vein immediately after delivery. Maternal and umbilical
cord samples were collected into evacuated trace metal free tubes
containing EDTA (Vacutainer, Becton-Dickinson, Brazil) to obtain
whole blood, and into trace metal free tubes containing no antic-
oagulants and centrifuged (800×g, 6 min) to obtain serum. Each
blood sample or serum fraction was then pipetted into ultra-cleaned
Eppendorfs tubes (2 mL) and immediately frozen at−80 °C until used
for analysis (Rezende et al., 2010).

Genomic DNA was extracted from the cellular component of 1 mL of
whole blood by a salting-outmethod and stored at−20 °C until analyzed.

2.2. Instrumentation

Analysis were carried out with an inductively coupled plasma mass
spectrometer equipped with a reaction cell (DRC-ICP-MS ELAN DRCII,
PerkinElmer, SCIEX, Norwalk, CT, USA) operating with high-purity
argon (99.999%, Praxaair, Brazil). Sample introduction system included
a quartz cyclonic spray chamber and a Meinhard® nebulizer connected
by Tygon® tubes to the ICP-MS's peristaltic pump (set at 20 rpm). The
ICP-MS was operated with Pt sampler and skimmer cones purchased
either from Perkin Elmer. A radiofrequency (rf) of 1100 watts power
was selected in pulse mode with autolens one. Sample data were
acquired by using 20 sweeps/reading, 1 reading/replicate and a 50 ms
dwell time. Argon nebulizer gas flow rate was optimized daily from 0.5
to 0.9 Lmin−1. Datawere acquired in counts per second (cps). The 208Pb
isotope was selected. The detection limit for lead was 0.0001 μg/dL.

2.3. Materials and reagents

High-purity de-ionized water (resistivity 18.2 MΩ cm−1) used for
the preparation of samples and solutions was obtained using a Milli-Q
water purification system (Millipore RiOs-DITM, Bedford, MA, USA).
All used reagents were of analytical-reagent grade, except HNO3,
which was previously purified in a quartz sub-boiling stills (Kürner
Analysentechnik) before use. A clean laboratory and laminar-flow
hood capable of producing class 100 was used to prepare solutions.
Rhodium (1000 mg L−1) and a multi-element (10 mg L−1) solution
were obtained from PerkinElmer (Shelton, CT, USA). Triton® X-100
was purchased from Sigma-Aldrich (St. Louis, USA), and gaseous 5%
hydrogen/95% argon (99.999%, Praxair, Brazil). Plastic bottles and
cryogenic vials were cleaned by soaking in 10% (v/v) HNO3 for 24 h,
rinsing five times with Milli-Q water, and dried in a class 100 laminar-
flow hood before use. Sample preparation and analysis were
performed in a clean class 1000 room.

Serum and blood samples were stored in 2 mL tubes at−80 °C. All
tubes, plastic bottles, autosampler cups, and glassware materials were
cleaned by soaking in 10% v/v HNO3 for 24 h, rinsing five times with
Milli-Q water, and dried in a class 100 laminar-flow hood located
within the class 10,000 clean room.

2.4. Genotyping

2.4.1. Fok I polymorphism (rs 10735810)
Genotypes for the Fok I polymorphisms in exon 2 were determined

by PCR using the primers: 5′-GATGCCAGCTGGCCCTGGCACTG-3′ and
5′-ATGGAAACACCTTG CTTCTTCTCCCTC-3′ (Rezende et al., 2007). The
PCR was performed in a 25 μl reaction volume containing 0.20 μM of
each primer, 200 μM of each dNTP, 1 X PCR buffer supplied by
Invitrogen Corp. (10 mM Tris–HCl, pH 8.8, 50 mM KCl), 2.0 mM
MgCl2, and 2.5 U of DNA Taq polymerase (Biosystems). The running
conditions were: predenaturation at 95 °C for 5 min, followed by 35
cycles of denaturation at 94 °C for 1 min, annealing at 69 °C for 30 s,
and extension at 72 °C for 30 s. Finally, extension was conducted at
72 °C for 3 min. The amplified products were digested with FokI
(Fermentas Life Sciences) for 3 h at 55 °C, producing fragments of
272 bp for wild-type allele (allele “F”), or 198 and 74 bp in the case of
a polymorphic variant (allele “f”). The fragments were separated by
electrophoresis in 8% polyacrylamide gels and visualized by silver
staining (Fig. 1).

2.4.2. BsmI polymorphism (rs 1544410)
Genotypes for the BsmI polymorphism in intron 8 were deter-

mined by polymerase chain reaction (PCR) using the primers 5′-
CAACCAAGACTACAAGTACCGCGTCAGTGA-3′ and 5′-AACCAGCGG-
GAAGAGGTCAAGGG-3′ as previous described (Rezende et al., 2007).
The PCR reaction was performed in a 25 μl reaction volume that
included approximately 500 ng of template genomic DNA, 0.5 μM of
each primer, 200 μM of each dNTP, 1 X PCR buffer supplied by
Invitrogen Corp. (10 mM Tris–HCl, pH 8.8, 50 mM KCl), 2.0 mM
MgCl2, and 2.5 U of DNA Taq polymerase (Biosystems, Curitiba,
Brazil). The running conditions were: holding at 94 °C for 5 min, then
35 cycles of denaturation at 94 °C for 30 s, annealing at 67 °C for 30 s
and extension at 72 °C for 1 min. The resulting 825-bp fragment was
digested with BsmI (New England Biolabs) for 2 h at 65 °C, producing
fragments of 825 bp for wild-type allele (allele “B”), or 650 and 175 bp
in the case of a polymorphic variant (allele “b”). Fragments were
separated by electrophoresis in 8% polyacrylamide gels and visualized
by silver staining (Fig. 1).



Table 1
Demographic characteristics of the participants.

Variables Total (n=256)

Pregnant mothers Mean±S.E.M. (or %)
Age (years) 24.0±4.1
Hemoglobin (g/dL) 12.7±1.4
Hematocrit (%) 37.1±1.1
Use of ferrous sulfate 231 (98.0)
Never smoked (%) 202 (79.0)
Smoke or smoked during the pregnancy (%) 54 (21.0)
Blood lead concentration (μg/dL) 1.889±0.079
Serum lead concentration (μg/dL) 0.041±0.009
Serum/blood lead ratio (%) 2.490±0.091

Umbilical cord
Blood lead concentration (μg/dL) 1.129±0.069
Serum lead concentration (μg/dL) 0.025±0.009
Serum/blood lead ratio (%) 2.390±0.990

Newborns
Birthweigth (g) 3212±0.037
Apgar scores for newborns (at first minute) 8.4±1.0
Apgar scores for newborns (at five minutes) 9.3±0.6
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2.4.3. ApaI polymorphism (rs 7975232)
For the detection of the ApaI polymorphism in intron 8, the

primers 5′-CAGAGCATGGACAGGGAGCAAG-3′ and 5′-CAACTCCT-
CATGGCTGAGGTCTC-3′ were used in a PCR (Rezende et al., 2007).
The PCR was performed in a 25 μl reaction volume containing 0.25 μM
of each primer, 200 μM of each dNTP, 1X PCR buffer supplied by
Invitrogen Corp. (10 mM Tris–HCl, pH 8.8, 50 mMKCl), 2.0 mMMgCl2,
and 2.5 U of DNA Taq polymerase (Biosystems). The running conditions
were: predenaturation at 94 °C for 5 min, followed by 35 cycles of
denaturation at 94 °C for 1 min, annealing at 68 °C for 1 min, and
extension at 72 °C for 1 min. Finally, extension was conducted at 72 °C
for 7 min. The amplified products were digested with ApaI (Fermentas
Life Sciences) for 2 h at 37 °C, producing fragments of 740 bp for wild-
type allele (allele “A”), or 515 and 225 bp in the case of a polymorphic
variant (allele “a”). The fragments were separated by electrophoresis in
8% polyacrylamide gels and visualized by silver staining (Fig. 1).

2.5. Haplotype inference

Haplotypes were inferred using the Bayesian statistical based
program PHASE version 2.1 (http://www.stat.washington.edu/ste-
phens/software.html) (Stephens et al., 2001) to estimate the haplotype
frequencies in the population and the two haplotypes for each subject
(Metzger et al., 2007; Palei et al., 2010). These results were used to
evaluate a possible relationship between haplotypes and Pb-B or Pb-S,
and %PbS/PbB ratio. The possible haplotypes including genetic variants
of three VDR polymorphisms studied (FokI, ApaI, BsmI) were: H1(FAB),
H2(FAb), H3(FaB), H4(Fab), H5(fAB), H6(fAb), H7(faB), and H8 (fab).

2.6. Statistical analysis

The distribution of genotype for each polymorphism was assessed
for deviation from the Hardy–Weinberg equilibrium by using chi-
squared tests (StatView, Cary, NC, USA). To assess the potential
relationship between each polymorphism or haplotype and Pb-B, Pb-S
and %Pb-S/Pb-B ratio, we used the Kruskal–Wallis test followed by
Table 2
Whole blood lead concentrations (Pb-B), serum lead concentrations (Pb-S) and %Pb-S/Pb-B
mothers genotype.

FokI Pregnant FF Pregnant Ff
(VDR) (N=106) (N=127)

Pregnant Umbilical cord Pregnant

Pb-B 1.91±0.11 1.11±0.06 1.92±0.09
(μg/dL)
Pb-S 0.041±0.002 0.026±0.002 0.041±0.002
(μg/dL)
Pb-S/ Pb-B (%) 2.68±0.19 2.72±0.20 2.52±0.14

ApaI Pregnant AA Pregnant Aa
(VDR) (N=70) (N=130)

Pregnant Umbilical cord Pregnant

Pb-B 1.85±0.10 1.14±0.06 1.87±0.09
(μg/dL)
Pb-S 0.045±0.003 0.027±0.002 0.040±0.002
(μg/dL)
Pb-S/ Pb-B(%) 2.78±0.20 2.60±0.21 2.68±0.17

BsmI Pregnant BB Pregnant Bb
(VDR) (N=30) (N=129)

Pregnant Umbilical cord Pregnants

Pb-B 1.81±0.18 1.20±0.11 1.81±0.09
(μg/dL)
Pb-S 0.047±0.003 0.030±0.003 0.040±0.002
(μg/dL)
Pb-S/ Pb-B(%) 3.38±0.41 3.06±0.38 2.67±0.16

P: Kruskal–Wallis test followed by the Dunn's multiple comparison tests to compare the th
Dunn's multiple comparison tests. To reduce the degrees of freedom
and increase the power of our haplotype-based analysis, we excluded
a priori uncommon haplotype (haplotype frequency b10%) from the
analysis. Data were reported as the mean±SEM. A P-value less than
0.05 was considered to be statistically significant.

3. Results

We studied two hundred and fifty-six peripartum healthy pregnant
with at least 38 weeks of gestation. The distribution of genotypes for the
three polymorphisms studied here showed no deviation from the
Hardy–Weinbergequilibrium. The allele frequencies for F, A andB alleles
for the FokI, ApaI, and BsmI polymorphisms were 0.66, 0.53 and 0.37
respectively. Correspondingly, the allele frequencies for the f, a, and b
ratios in pregnant mothers and in the respective umbilical cords grouped by pregnant

Pregnant ff
(N=23)

Umbilical cord Pregnant Umbilical cord P

1.16±0.05 1.78±0.19 1.19±0.10 NS

0.025±0.001 0.033±0. 005 0.022±0.003 NS

2.48±0.15 2.05±0.33 2.10±0.35 NS

Pregnant aa
(N=56)

Umbilical cord Pregnant Umbilical cord P

1.18±0.05 2.04±0.16 1.07±0.06 NS

0.026±0.001 0.036±0.003 0.022±0.002 NS

2.54±0.16 2.14±0.22 2.48±0.26 NS

Pregnant bb
(N=97)

Umbilical cord Pregnant Umbilical cord P

1.16±0.08 2.03±0.13 1.19±0.06 NS

0.025±0.001 0.040±0.002 0.027±0.002 NS

2.55±0.18 2.49±0.21 2.66±0.20 NS

ree genotype groups.

http://www.stat.washington.edu/stephens/software.html
http://www.stat.washington.edu/stephens/software.html


Table 3
Estimated haplotype frequency in pregnant women.

Haplotype Frequency (%)

FokI ApaI BsmI

H1 - F A B 12.1
H2 - F A b 21.9
H3 - F a B 9.3
H4 - F a b 17.6
H5 - f A B 12.0
H6 - f A b 8.1
H7 - f a B 5.2
H8 - f a b 13.8

Fig. 2. Whole blood lead (Pb-B; panel A), serum lead (Pb-S; panel B), and %Pb-S/Pb-B
ratio (panel C) in pregnants according to VDR haplotype groups H1, H2, H3, H7, and H8.
The bar shows the median value. *Pb0.05 for H8 haplotype versus H1 and H2 haplotype
groups (Panel B) and H1 versus H4 and H8 haplotype groups (Panel C).
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alleles were 0.34, 0.47, and 0.63, respectively. Table 1 shows the
characteristics of the pregnantwomenand the respectiveumbilical cord
samples. No significant difference was found in age, hematological
parameters, and smoking status when the genotype groups were
compared (data not shown; all PN0.05).

Table 2 shows the values of Pb-B, Pb-S and %Pb-S/Pb-B ratio in
pregnants and the respective umbilical cord according to the
genotype for the three VDR gene polymorphisms in pregnant
mothers. We found that VDR polymorphisms had no effects on Pb-
B, Pb-S, or %Pb-S/Pb-B ratios (all PN0.05) in pregnant women or in the
respective umbilical cord samples (Table 2; all PN0.05).

The estimated haplotype frequencies for this group of pregnant
women are shown in Table 3. Three haplotypes (H3, H6 and H7) were
relatively uncommon (frequency b10%) and therefore were excluded
from the analysis.

Fig. 2 shows Pb-B, Pb-S and %Pb-S/Pb-B (panels A, B and C,
respectively) levels for each haplotype group. Vitamin D receptor
gene haplotypes had no effects on Pb-B levels (all PN0.05; Fig. 2A).
However, the H8 haplotype (which includes the f, a and b alleles for
the FokI, ApaI and BsmI polymorphisms, respectively) was associated
with lower Pb-S levels than H1 and H2 haplotypes (which include the
F, A, and B, and the F, A and b alles, respectively, for the FokI, ApaI and
BsmI polymorphisms; Fig. 2B; both Pb0.05). In addition, the H8 and
the H4 (which includes the F, a and b alleles for the FokI, ApaI and BsmI
polymorphisms, respectively) haplotypes were associated with lower
%Pb-S/Pb-B ratios than the H1 haplotype (Fig. 2C; both Pb0.05).

We found no significant associations between maternal VDR
genotypes or haplotypes and Pb-B, Pb-S, or %Pb-S/Pb-B ratios in their
respective umbilical cords (Fig. 3; all PN0.05).

4. Discussion

To our knowledge, this is the first study showing that genetic
polymorphisms commonly found in the VDR gene affect Pb-S and %
Pb-S/Pb-B ratios in pregnant women. These findings may have major
implications for lead toxicity.

While B-Pb has been the primary fluid to diagnose lead exposure,
largely because blood lead sampling is recognized as a relatively easy
procedure, other biomarkers of internal dose have been proposed
(Barbosa et al., 2005). Pb-P may be a more relevant index of exposure,
distribution, and health risks associated with Pb because the toxic
effects of Pb are primarily associated to themost rapidly exchangeable
fraction of Pb in the bloodstream (Barbosa et al., 2005; Schutz et al.,
1996). Indeed, previous studies have shown the importance of plasma
(or serum) Pb concentrations, especially during pregnancy, because
Pb in plasma promptly allows endogenous contamination of the fetus
(Gulson et al., 2003; Hu et al., 2006; Lamadrid-Figueroa et al., 2006;
Tellez-Rojo et al., 2004). In the present study, we found similar %Pb-S/
Pb-B ratios in the maternal blood and in the umbilical cords. These
findings support previous results from our group (Amaral et al., 2010).
Interestingly, significant correlations exist between biomarkers of Pb
(Pb-S, Pb-B, and %Pb-S/Pb-B ratios) exposure measured in the
umbilical cords and in the respective mothers (Amaral et al., 2010).
Therefore, it is highly probable that the VDR haplotype associated
with lower Pb levels protects the fetus against the toxic effects
associated with Pb exposure.

It is now known that VDR polymorphisms affect bone minerali-
zation and resorption (Morrison et al., 1994; Valdivielso and
Fernandez, 2006), and that Pb-S and %Pb-S/Pb-B ratio depend on
the release of lead from the bone (Barbosa et al., 2005; Cake et al.,

image of Fig.�2


Fig. 3.Whole blood lead (Pb-B; panel A), serum lead (Pb-S; panel B), and %Pb-S/Pb-B ratio
(panel C) in the umbilical cords according to maternal VDR haplotype groups H1, H2, H3,
H7, and H8. The bars show the means and S.D. No significant differences were found.
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1996; Hernandez-Avila et al., 1998), which accounts for N94% of adult
body burden of Pb (Barbosa et al., 2005). Therefore, it is reasonable to
expect that VDR polymorphisms may affect Pb mobilization (Chuang
et al., 2004; Onalaja and Claudio, 2000; Theppeang et al., 2004;
Weaver et al., 2006), particularly during pregnancy. We have
previously reported that the three VDR polymorphisms studied here
(BsmI, ApaI and FokI polymorphisms) affect Pb-B and Pb-P in subjects
exposed to Pb. Interestingly, we found lower Pb-P, Pb-B, and %Pb-P/
Pb-B levels in the carriers of the H8 haplotype (which combines the a,
b, and f alleles for the ApaI, BsmI, and FokI polymorphisms,
respectively) (Rezende et al., 2008). Our present findings in pregnant
women agree with these previous findings, thus supporting the idea
that VDR haplotypes may modify the levels of relevant markers of Pb
exposure, even though individual VDR polymorphisms had no
significant effects. Although we have not assessed the clinical
consequences of lead exposure in the present study, it is possible
that pregnants with high Pb-S and %Pb-S/Pb-B expose their children
to increased health risks associated with Pb exposure. Conversely,
mothers carrying the H8 haplotype may protect their children against
this risk.

In the present study, we have not addressed the molecular
mechanisms explaining the possible functionality of VDR polymorph-
isms. However, while there is evidence that the FokI polymorphism
leads to less active VDR in the presence of the f allele (Gross et al.,
1998), the mechanism implicated in the effects of the other VDR
polymorphisms on Pb levels are unknown. In addition, while we
found no effects associated with individual VDR polymorphisms, we
found significant effects associated with VDR haplotypes. This is
probably explained by the fact that that analysis of haplotypes has
been valued as a more powerful approach in genetic studies,
especially because this analysis takes into consideration the combined
effects associated with genetic variants (Crawford and Nickerson,
2005; Sandrim et al., 2008a,b; Vasconcellos et al., 2010).

Our findings showing that VDR gene polymorphisms affect Pb
concentrations in pregnant women may have pathophysiological
implications. Since Pb is commonly found all over the world, we could
speculate that this metal may increase the susceptibility to the
development of hypertensive disorders of pregnancy. For example,
we have previously shown that Pb exposuremay decrease nitric oxide
(NO) bioavailability (Barbosa et al., 2006b,c) and increase the
concentrations of matrix metalloproteinases (MMPs) (Barbosa et al.,
2006a; Rizzi et al., 2009). Interestingly, either decreased NO
bioavailability (Sandrim et al., 2010a,c; 2008b) or increased MMP
activities (Palei et al., 2008) have been implicated in the pathophys-
iology of hypertensive disorders of pregnancy. However, this
suggestion remains to be proved.

The lack of significant effects of maternal VDR genotypes or
haplotypes and Pb-B, Pb-S, or %Pb-S/Pb-B ratios in their respective
umbilical cords suggests that maternal VDR polymorphisms are not
predictive of Pb levels in the umbilical cords. It is possible that fetal
genotypes (or haplotypes) may interact with maternal genotypes (or
haplotypes) and modulate Pb levels, thus making this a much more
complex issue to be studied.

5. Conclusion

In conclusion, we found that the H8 haplotype (which combines
the f, a, and b allels for the ApaI, BsmI, and FokI VDR polymorphisms,
respectively) is associated with lower Pb-S and %Pb-S/Pb-B ratio than
other VDR haplotypes in pregnant women. This toxicogenetics finding
may help to predict the existence of a group of subjects that is
genetically less prone to lead toxicity during pregnancy.
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