Vitamin D receptor haplotypes affect lead levels during pregnancy

Vania B. Rezende, Jefferson H. Amaral, Silvana M. Quintana, Raquel F. Gerlach, Fernando Barbosa Jr., Jose E. Tanus-Santos

Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 13081-970, Campinas, SP, Brazil
Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Av. Bandeirantes, 3900, Monte Alegre, CEP 14049-900, Ribeirao Preto, SP, Brazil
Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Av. Bandeirantes, 3900, Monte Alegre, CEP 14049-900, Ribeirao Preto, SP, Brazil
Department of Morphology, Estomatology and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo, Av. do Cafe, S/N, 14040-904, Ribeirao Preto, SP, Brazil
Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences of Ribeirao Preto, Av. do Cafe s/n, S.P. 14040-903, Ribeirao Preto, Brazil

ARTICLE INFO

Article history:
Received 18 June 2010
Accepted 14 July 2010
Available online 6 August 2010

Keywords:
Haplotypes
Lead
Pregnancy
Polymorphism
Vitamin D receptor

ABSTRACT

Pregnant women are particularly susceptible to toxic effects associated with lead (Pb) exposure. Pb accumulates in bone tissue and is rapidly mobilized from bones during pregnancy, thus resulting in fetal contamination. While vitamin D receptor (VDR) polymorphisms modify bone mineralization and affect Pb biomarkers including blood (Pb-B) and serum (Pb-S) Pb concentrations, and %Pb-S/Pb-B ratio, the effects of these polymorphisms on Pb levels in pregnant women are unknown. This study aimed at examining the effects of three (FokI, BsmI and Apal) VDR polymorphisms (and VDR haplotypes) on Pb levels in pregnant women. Pb-B and Pb-S were determined by inductively coupled plasma mass spectrometry in samples from 256 healthy pregnant women and their respective umbilical cords. Genotypes for the VDR polymorphisms were determined by PCR and restriction fragment length digestion. While the three VDR polymorphisms had no significant effects on Pb-B, Pb-S or %Pb-S/Pb-B ratio, the haplotype combining the f, a, and b alleles for the FokI, Apal and BsmI polymorphisms, respectively, was associated with significantly lower Pb-S and %Pb-S/Pb-B (P<0.05). However, maternal VDR haplotypes had no effects on Pb levels in the umbilical cords. To our knowledge, this is the first study showing that a combination of genetic polymorphisms (haplotype) commonly found in the VDR gene affects Pb-S and %Pb-S/Pb-B ratios in pregnant women. These findings may have major implications for Pb toxicity because they may help to predict the existence of a group of subjects that is genetically less prone to Pb toxicity during pregnancy.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Pregnant women are particularly susceptible to toxic effects resulting from lead (Pb) exposure. This is because increased demands for calcium during pregnancy increase bone turnover, thus increasing the circulating Pb levels by removing Pb from bones (Gulson et al., 1997; Tellez-Rojo et al., 2004). Pb from the mother can easily cross the placenta and expose the fetus to Pb (Goyer, 1990). Indeed, Pb accumulates in bones and has a half-life of years or decades, so that Pb transference to the fetus may take place even years after maternal exposure (Rothenberg et al., 2000; Tellez-Rojo et al., 2004). This exposure is known to affect the embryonic development of multiple organ systems and cause retardation of cognitive development (Banks et al., 1997). Recent results clearly indicate reduced intellectual development in children with history of prenatal lead exposure (Schnaas et al., 2006). Therefore assessing Pb levels during pregnancy may help to predict these harmful effects associated with Pb, especially in pregnant women with some predisposing factors (Montenegro et al., 2008).

While Pb levels are usually measured in blood (Pb-B), plasma (Pb-P), or serum Pb (Pb-S) concentrations, or %Pb-S/Pb-B ratios are considered very relevant to assess Pb toxicity. This is because the most toxic Pb fraction is reflected by these biomarkers, which correspond to the diffusible Pb fraction in the body (Barbosa et al., 2005; Smith et al., 2002). Importantly, pregnancy is associated with significant increases in these biomarkers (Amaral et al., 2010; Montenegro et al., 2008), which are clearly affected by genetic polymorphisms (Montenegro et al., 2006; Onalaja and Claudio, 2000; Rezende et al., 2008).

Vitamin D and its active metabolites (especially 1,25-dihydroxyvitamin D, or calcitriol) are primarily involved in maintaining calcium homeostasis (Uitterlinden et al., 2004), and vitamin D receptor (VDR) polymorphisms affect bone mineralization and resorption (Morrison et al., 1994; Valdivielso and Fernandez, 2006). However, although VDR polymorphisms apparently modify Pb toxicity (Onalaja and Claudio, 2000; Rezende et al., 2008; Schwartz et al., 2000a,b), no previous study has examined whether VDR polymorphisms affect the circulating levels of Pb in pregnant women.
In the present study, we examined the effects of three single nucleotide polymorphisms (BsmI, Apal and FokI) in the VDR gene on Pb-B, Pb-S, and \(3\frac{\text{Pb-S}}{\text{Pb-B}}\) ratio in pregnant women. We then examined whether there is a relationship between VDR gene haplotypes and Pb-B, Pb-S, and \(3\frac{\text{Pb-S}}{\text{Pb-B}}\) ratios in pregnant women, and between maternal VDR gene haplotypes and these biomarkers of Pb exposure measured in the respective umbilical cords.

2. Materials and methods

2.1. Subjects

Approval for the use of human subjects was obtained from the Institutional Review Board of the Faculty of Medicine of Ribeirao Preto and each subject provided written informed consent. We studied 256 peripartum healthy pregnant with at least 38 weeks of gestation, living in the city of Ribeirao Preto, State of Sao Paulo, Brazil, and their respective umbilical cord samples. Although previous studies showed evidence indicating that some exposure to lead would be detected in Ribeirao Preto (Costa de Almeida et al., 2010; Costa de Almeida et al., 2009; Gomes et al., 2004), the peripartum women included in the present study came from different regions.

Maternal blood samples were drawn from each volunteer before delivery. Umbilical cord blood samples were drawn from the umbilical vein immediately after delivery. Maternal and umbilical cord samples were collected into evacuated trace metal free tubes containing EDTA (Vacutainer, Becton-Dickinson, Brazil) to obtain whole blood, and into trace metal free tubes containing no anticagulants and centrifuged (800 × g, 6 min) to obtain serum. Each blood sample or serum fraction was then pipetted into ultra-cleaned Eppendorfs tubes (2 mL) and immediately frozen at −80 °C until used for analysis (Rezende et al., 2010).

Genomic DNA was extracted from the cellular component of 1 mL of whole blood by a salting-out method and stored at −20 °C until analyzed.

2.2. Instrumentation

Analysis were carried out with an inductively coupled plasma mass spectrometer equipped with a reaction cell (DRC-ICP-MS ELAN DRCTII, PerkinElmer, SCIEX, Norwalk, CT, USA) operating with high-purity argon (99.999%, Praxair, Brazil). Sample introduction system included a quartz cyclonic spray chamber and a Meinhardt® nebulizer connected by Tygon® tubes to the ICP-MS’s peristaltic pump (set at 20 rpm). The ICP-MS was operated with Pt sampler and skimmer cones purchased by Tygon® tubes to the ICP-MS’s peristaltic pump (set at 20 rpm). The running conditions were: holding at 94 °C for 5 min, followed by 35 cycles of denaturation at 94 °C for 1 min, annealing at 65 °C for 30 s, and extension at 72 °C for 30 s. Finally, extension was conducted at 72 °C for 3 min. The amplified products were digested with FokI (Fermentas Life Sciences) for 3 h at 55 °C, producing fragments of 272 bp for wild-type allele (allele “F”), or 198 and 74 bp in the case of a polymorphic variant (allele “F”). The fragments were separated by electrophoresis in 8% polyacrylamide gels and visualized by silver staining (Fig. 1).

2.4. Genotyping

2.4.1. Fok I polymorphism (rs 10735810)

Genotypes for the Fok I polymorphisms in exon 2 were determined by PCR using the primers 5′-GATGGACGTCGCCCTTGCACTG-3′ and 5′-ATGGAAAACACCTTGCTTCCTCCTCCTC-3′ (Rezende et al., 2007). The PCR was performed in a 25 μl reaction volume containing 0.20 μM of each primer, 200 μM of each dNTP, 1 X PCR buffer supplied by Invitrogen Corp. (10 mM Tris–HCl, pH 8.8, 50 mM KCl), 2.0 mM MgCl2, and 2.5 U of DNA Taq polymerase (Biosystems). The running conditions were: pre-denaturation at 95 °C for 5 min, followed by 35 cycles of denaturation at 94 °C for 1 min, annealing at 60 °C for 30 s, and extension at 72 °C for 30 s. Finally, extension was conducted at 72 °C for 3 min. The amplified products were digested with FokI (Fermentas Life Sciences) for 3 h at 55 °C, producing fragments of 272 bp for wild-type allele (allele “F”), or 198 and 74 bp in the case of a polymorphic variant (allele “F”). The fragments were separated by electrophoresis in 8% polyacrylamide gels and visualized by silver staining (Fig. 1).

2.4.2. BsmI polymorphism (rs 1544410)

Genotypes for the BsmI polymorphism in intron 8 were determined by polymerase chain reaction (PCR) using the primers 5′-CAACCAAGACTACAAGTACCGCGTCAGTGA-3′ and 5′-GATGCCAGCTGGCCCTGGCACTG-3′ as previous described (Rezende et al., 2007). The PCR reaction was performed in a 25 μl reaction volume that included approximately 500 ng of template genomic DNA, 0.5 μM of each primer, 200 μM of each dNTP, 1 X PCR buffer supplied by Invitrogen Corp. (10 mM Tris–HCl, pH 8.8, 50 mM KCl), 2.0 mM MgCl2, and 2.5 U of DNA Taq polymerase (Biosystems, Curitiba, Brazil). The running conditions were: holding at 94 °C for 5 min, then 35 cycles of denaturation at 94 °C for 30 s, annealing at 67 °C for 30 s and extension at 72 °C for 1 min. The resulting 825-bp fragment was digested with BsmI (New England Biolabs) for 2 h at 65 °C, producing fragments of 825 bp for wild-type allele (allele “B”), or 650 and 175 bp in the case of a polymorphic variant (allele “B”). The fragments were separated by electrophoresis in 8% polyacrylamide gels and visualized by silver staining (Fig. 1).

![Fig. 1. Genotyping for the FokI, Apal, and BsmI VDR gene polymorphisms. The PCR products were digested with restriction enzymes producing different fragments leading to specific genotypes.](image-url)
2.4.3. Apal polymorphism (rs 7975232)

For the detection of the Apal polymorphism in intron 8, the primers 5'-CAGACCATGGACAGGACAGA-3' and 5'-CAACTCTTCATGCGATTCTCTC-3' were used in a PCR (Rezende et al., 2007). The PCR was performed in a 25 μl reaction volume containing 0.25 μM of each primer, 200 μM of each dNTP, 1X PCR buffer supplied by Invitrogen Corp. (10 mM Tris–HCl, pH 8.8, 50 mM KCl), 2.0 mM MgCl2, and 2.5 U of DNA Taq polymerase (Biosystems). The running conditions were: predenaturation at 94 °C for 5 min, followed by 35 cycles of denaturation at 94 °C for 1 min, annealing at 68 °C for 1 min, and extension at 72 °C for 1 min. Finally, extension was conducted at 72 °C for 7 min. The amplified products were digested with Apal (Fermentas Life Sciences) for 2 h at 37 °C, producing fragments of 740 bp for wild-type allele (allele “A”), or 515 and 225 bp in the case of a polymorphic variant (allele “a”). The fragments were separated by electrophoresis in 8% polyacrylamide gels and visualized by silver staining (Fig. 1).

2.5. Haplotype inference

Haplotypes were inferred using the Bayesian statistical based program PHASE version 2.1 (http://www.stat.washington.edu/stephens/software.html) (Stephens et al., 2001) to estimate the haplotype frequencies in the population and the two haplotypes for each subject (Metzger et al., 2007; Palei et al., 2010). These results were used to evaluate a possible relationship between haplotypes and Pb-B or Pb-S, and %PbS/Pb-B ratio. The possible haplotypes including genetic variants of three VDR polymorphisms studied (FokI, Apal, BsmI) were: H1(Fab), H2(Fab), H3(Fab), H4(Fab), H5(fab), H6(fab), H7(fab), and H8 (fab).

2.6. Statistical analysis

The distribution of genotype for each polymorphism was assessed by chi-squared tests (StatView, Cary, NC, USA). To assess the potential relationship between each polymorphism or haplotype and Pb-B or Pb-S, %PbS/Pb-B and %PbS/Pb-B ratio, we used the Kruskal–Wallis test followed by Dunn’s multiple comparison tests. To reduce the degrees of freedom and increase the power of our haplotype-based analysis, we excluded a priori uncommon haplotype (haplotype frequency <10%) from the analysis. Data were reported as the mean ± SEM. A P-value less than 0.05 was considered to be statistically significant.

3. Results

We studied two hundred and fifty-six peripartum healthy pregnant with at least 38 weeks of gestation. The distribution of genotypes for the three polymorphisms studied here showed no deviation from the Hardy–Weinberg equilibrium. The allele frequencies for F, A, and B alleles for the FokI, Apal, and BsmI polymorphisms were 0.66, 0.53 and 0.37 respectively. Correspondingly, the allele frequencies for the f, a, and b

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Demographic characteristics of the participants.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Total (n = 256)</td>
</tr>
<tr>
<td>Pregnant mothers</td>
<td>Mean ± S.E.M. (or %)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>24.0 ± 4.1</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>12.7 ± 1.4</td>
</tr>
<tr>
<td>Use of ferrous sulfate</td>
<td>371.7 ± 1.1</td>
</tr>
<tr>
<td>Never smoked (%)</td>
<td>202.7 (79.0)</td>
</tr>
<tr>
<td>Smoke or smoked during the pregnancy (%)</td>
<td>54.2 (21.0)</td>
</tr>
<tr>
<td>Blood lead concentration (μg/dL)</td>
<td>1.889 ± 0.079</td>
</tr>
<tr>
<td>Serum lead concentration (μg/dL)</td>
<td>0.041 ± 0.009</td>
</tr>
<tr>
<td>Serum/blood lead ratio (%)</td>
<td>2.490 ± 0.091</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Whole blood lead concentrations (Pb-B), serum lead concentrations (Pb-S) and %Pb-S/Pb-B ratios in pregnant mothers and in the respective umbilical cords grouped by pregnant mothers genotype.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FokI (VDR)</td>
<td>Pregnant FF (N = 106)</td>
</tr>
<tr>
<td>Pb-B (μg/dL)</td>
<td>1.91 ± 0.11</td>
</tr>
<tr>
<td>Pb-S (μg/dL)</td>
<td>0.041 ± 0.002</td>
</tr>
<tr>
<td>PB-FF-B (%)</td>
<td>2.68 ± 0.19</td>
</tr>
</tbody>
</table>

Apal (VDR)	Pregnant AA (N = 70)	Pregnant Ab (N = 130)	Pregnant ab (N = 56)
Pb-B (μg/dL)	1.85 ± 0.10	1.87 ± 0.09	2.04 ± 0.16
Pb-S (μg/dL)	0.045 ± 0.003	0.040 ± 0.002	0.036 ± 0.003
PB-FF-B (%)	2.78 ± 0.20	2.68 ± 0.17	2.14 ± 0.22

BsmI (VDR)	Pregnant BB (N = 30)	Pregnant Bb (N = 129)	Pregnant bb (N = 97)
Pb-B (μg/dL)	1.81 ± 0.18	1.81 ± 0.09	2.03 ± 0.13
Pb-S (μg/dL)	0.047 ± 0.003	0.040 ± 0.002	0.040 ± 0.002
PB-FF-B (%)	3.38 ± 0.41	2.67 ± 0.16	2.49 ± 0.21

P: Kruskal–Wallis test followed by the Dunn’s multiple comparison tests to compare the three genotype groups.
alleles were 0.34, 0.47, and 0.63, respectively. Table 1 shows the characteristics of the pregnant women and the respective umbilical cord samples. No significant difference was found in age, hematological parameters, and smoking status when the genotype groups were compared (data not shown; all \(P > 0.05 \)).

Table 2 shows the values of Pb-B, Pb-S and \(\% \text{Pb-S/Pb-B} \) ratio in pregnant women and the respective umbilical cord according to the genotype for the three VDR gene polymorphisms in pregnant mothers. We found that VDR polymorphisms had no effects on Pb-B, Pb-S, or \(\% \text{Pb-S/Pb-B} \) ratios (all \(P > 0.05 \)) in pregnant women or in the respective umbilical cord samples (Table 2; all \(P > 0.05 \)).

The estimated haplotype frequencies for this group of pregnant women are shown in Table 3. Three haplotypes (H3, H6 and H7) were relatively uncommon (frequency < 10%) and therefore were excluded from the analysis.

4. Discussion

To our knowledge, this is the first study showing that genetic polymorphisms commonly found in the VDR gene affect Pb-S and \(\% \text{Pb-S/Pb-B} \) ratios in pregnant women. These findings may have major implications for lead toxicity.

While B-Pb has been the primary fluid to diagnose lead exposure, largely because blood lead sampling is recognized as a relatively easy procedure, other biomarkers of internal dose have been proposed (Barbosa et al., 2005). Pb-P may be a more relevant index of exposure, distribution, and health risks associated with Pb because the toxic effects of Pb are primarily associated to the most rapidly exchangeable fraction of Pb in the bloodstream (Barbosa et al., 2005; Schutz et al., 1996). Indeed, previous studies have shown the importance of plasma (or serum) Pb concentrations, especially during pregnancy, because Pb in plasma promptly allows endogenous contamination of the fetus (Gulson et al., 2003; Hu et al., 2006; Lamadrid-Figueroa et al., 2006; Tellez-Rojo et al., 2004). In the present study, we found similar \(\% \text{Pb-S/Pb-B} \) ratios in the maternal blood and in the umbilical cords. These findings support previous results from our group (Amaral et al., 2010).

Interestingly, significant correlations exist between biomarkers of Pb (Pb-S, Pb-B, and \(\% \text{Pb-S/Pb-B} \) ratios) exposure measured in the umbilical cords and in the respective mothers (Amaral et al., 2010). Therefore, it is highly probable that the VDR haplotype associated with lower Pb levels protects the fetus against the toxic effects associated with Pb exposure.

It is now known that VDR polymorphisms affect bone mineralization and resorption (Morrison et al., 1994; Valdivielso and Fernandez, 2006), and that Pb-S and \(\% \text{Pb-S/Pb-B} \) ratio depend on the release of lead from the bone (Barbosa et al., 2005; Cake et al., 2009). Table 3 Estimated haplotype frequency in pregnant women.

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 - F A B</td>
<td>12.1</td>
</tr>
<tr>
<td>H2 - F A b</td>
<td>21.9</td>
</tr>
<tr>
<td>H3 - F a B</td>
<td>9.3</td>
</tr>
<tr>
<td>H4 - F a b</td>
<td>17.6</td>
</tr>
<tr>
<td>H5 - f A b</td>
<td>12.0</td>
</tr>
<tr>
<td>H6 - f A B</td>
<td>8.1</td>
</tr>
<tr>
<td>H7 - f a B</td>
<td>5.2</td>
</tr>
<tr>
<td>H8 - f a b</td>
<td>13.8</td>
</tr>
</tbody>
</table>

Fig. 2. Whole blood lead (Pb-B; panel A), serum lead (Pb-S; panel B), and \(\% \text{Pb-S/Pb-B} \) ratio (panel C) in pregnant women according to VDR haplotype groups H1, H2, H3, H7, and H8. The bar shows the median value. *\(P < 0.05 \) for H8 haplotype versus H1 and H2 haplotype groups (Panel B) and H1 versus H4 and H8 haplotype groups (Panel C).
consequences of lead exposure in the present study, it is possible that pregnant women with high Pb-S and %Pb-S/Pb-B expose their children to increased health risks associated with Pb exposure. Conversely, mothers carrying the H8 haplotype may protect their children against this risk.

In the present study, we have not addressed the molecular mechanisms explaining the possible functionality of VDR polymorphisms. However, while there is evidence that the FokI polymorphism leads to less active VDR in the presence of the f allele (Gross et al., 1998), the mechanism implicated in the effects of the other VDR polymorphisms on Pb levels is unknown. In addition, while we found no effects associated with individual VDR polymorphisms, we found significant effects associated with VDR haplotypes. This is probably explained by the fact that analysis of haplotypes has been valued as a more powerful approach in genetic studies, especially because this analysis takes into consideration the combined effects associated with genetic variants (Crawford and Nickerson, 2005; Sandrim et al., 2008a,b; Vasconcellos et al., 2010).

Our findings showing that VDR gene polymorphisms affect Pb concentrations in pregnant women may have pathophysiological implications. Since Pb is commonly found all over the world, we could speculate that this metal may increase the susceptibility to the development of hypertensive disorders of pregnancy. For example, we have previously shown that Pb exposure may decrease nitric oxide (NO) bioavailability (Barbosa et al., 2006b,c) and increase the concentrations of matrix metalloproteinases (MMPs) (Barbosa et al., 2006a; Rizzi et al., 2008). Interestingly, either decreased NO bioavailability (Sandrim et al., 2010a,c; 2008b) or increased MMP activities (Paieli et al., 2008) have been implicated in the pathophysiology of hypertensive disorders of pregnancy. However, this suggestion remains to be proved.

The lack of significant effects of maternal VDR genotypes or haplotypes and Pb-B, Pb-S, or %Pb-S/Pb-B ratios in their respective umbilical cords suggests that maternal VDR polymorphisms are not predictive of Pb levels in the umbilical cords. It is possible that fetal genotypes (or haplotypes) may interact with maternal genotypes (or haplotypes) and modulate Pb levels, thus making this a much more complex issue to be studied.

5. Conclusion

In conclusion, we found that the H8 haplotype (which combines the f, a, and b alleles for the Apal, Bsml, and FokI VDR polymorphisms, respectively) is associated with lower Pb-S and %Pb-S/Pb-B ratio than other VDR haplotypes in pregnant women. This toxicogenetics finding may help to predict the existence of a group of subjects that is genetically less prone to lead toxicity during pregnancy.

Acknowledgements

This study was funded by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP-Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil).

References

