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Abstract: Although observational studies suggest positive vitamin D-lung function associations,
randomized trials are inconsistent. We examined effects of vitamin D supplementation on lung
function. We recruited 442 adults (50–84 years, 58% male) into a randomized, double-blinded,
placebo-controlled trial. Participants received, for 1.1 years (median; range = 0.9–1.5 years), either
(1) vitamin D3 200,000 IU, followed by monthly 100,000 IU doses (n = 226); or (2) placebo monthly
(n = 216). At baseline and follow-up, spirometry yielded forced expiratory volume in 1 s (FEV1;
primary outcome). Mean (standard deviation) 25-hydroxyvitamin D increased from 61 (24) nmol/L
at baseline to 119 (45) nmol/L at follow-up in the vitamin D group, but was unchanged in the placebo
group. There were no significant lung function improvements (vitamin D versus placebo) in the total
sample, vitamin D-deficient participants or asthma/chronic obstructive pulmonary disease (COPD)
participants. However, among ever-smokers (n = 217), the mean (95% confidence interval) FEV1
increase in the vitamin D versus placebo was 57 (4, 109) mL (p = 0.03). FEV1 increases were larger
among vitamin D-deficient ever-smokers (n = 54): 122 (8, 236) mL (p = 0.04). FEV1 improvements were
largest among ever-smokers with asthma/COPD (n = 60): 160 (53, 268) mL (p = 0.004). Thus, vitamin
D supplementation did not improve lung function among everyone, but benefited ever-smokers,
especially those with vitamin D deficiency or asthma/COPD.

Keywords: vitamin D; lung function; forced expiratory volume in 1 s; spirometry; randomized
controlled trial

1. Introduction

Population-based observational studies have found that low serum 25-hyroxyvitamin D
(25(OH)D) concentration is associated with poor lung function [1,2]. However, the observational
design prevents one from knowing whether these relationships are causal, or whether they could be
reversed by increasing 25(OH)D. To investigate the causality and reversibility of these associations,
randomized controlled trials (RCTs) of vitamin D supplementation are required.

A limited number of RCTs have investigated the effect of vitamin D supplementation on lung
function in adults [3–10]. However, vitamin D efficacy remains unclear, due to the conflicting
findings of these trials: some reported beneficial changes [7,8,11,12], others found no effects [3,4,10],
and another reported mixed results [9]. Most of these studies had relatively small sample sizes
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(n ≤ 130) [3,4,7–9] and short follow-up periods (<1 year), which limited their ability to assess long-term
efficacy [3,4,6–9]. Nearly all of these studies were restricted to patients with respiratory conditions such
as asthma [6,8–10] or chronic obstructive pulmonary disease (COPD) [4,5,7]. However, vitamin D trials
should include other groups of people, too, in order to study the role of vitamin D supplementation
on lung health in general [13]. Trials should also investigate vitamin D-deficient people and smokers,
as vitamin D supplementation could potentially be more effective in these people. This is because
non-linear relationships between 25(OH)D and health outcomes suggest that adverse effects associated
with low vitamin D status are greatest in vitamin D-deficient people [14–16], while observational
studies suggest that the relationship between 25(OH)D and lung function could be stronger in smokers
than in non-smokers [1,17–19].

Given the above knowledge gaps, we used an RCT design to investigate the effect of long-term
(≥1 year on average), high-dose vitamin D supplementation on lung function in a population-based
sample of >400 adults. We performed pre-specified subgroup analyses among participants who had
vitamin D deficiency or asthma/COPD, or were smokers.

2. Material and Methods

2.1. Participants

The present study involved a pre-specified analysis of a sub-sample of participants in the ViDA
(Vitamin D Assessment) study, who underwent follow-up measurements for ~1 year. The ViDA study
was a randomized, double-blinded, placebo-controlled trial of the effect of vitamin D supplementation
on health outcomes, with cardiovascular disease as the primary endpoint. Participants were identified
mostly from patient lists of family practices, and the remainder from ethnic minority community
groups, and we recruited them to our study by post and subsequent follow-up telephone calls.
Inclusion criteria were men and women from these family practice registers and community groups,
aged 50–84 years and resident in Auckland at recruitment. Exclusion criteria included: (1) diagnosis of
a terminal illness and/or in hospice care; (2) intending to leave New Zealand during the follow-up
period; (3) taking vitamin D supplements (including cod liver oil) of >600 IU daily if aged 50–70 years
or >800 IU daily if aged 71–84 years; (4) history of renal stones, hypercalcemia, or medical conditions
that can cause hypercalcemia; and (5) baseline serum calcium >2.50 mmol/L. Screening and baseline
measurements took place at the School of Population Health (University of Auckland) between 2011
and 2012, with 5110 being randomized using computer generation to receive either vitamin D or
placebo. Random assignment to one of the two treatment groups was made with random block
sizes of 8, 10 or 12, within ethnic and 5-year age groups. As each participant became eligible for
randomization, the next sequential treatment within their ethnic and age stratum was allocated.
The randomization process was supervised by the study biostatistician to ensure that participants and
staff who collected the data were blinded to allocation. Ethics approval was provided by the New
Zealand Multi-region Ethics Committee (MEC/09/08/082). Written, informed consent was obtained
from each participant. This study was registered with the Australian New Zealand Clinical Trials
Registry (http://www.anzctr.org.au; ACTRN12611000402943). Full study-design details have been
published elsewhere [20]. The results are reported according to Consolidated Standards of Reporting
Trials (CONSORT) guidelines [21].

2.2. Vitamin D Intervention

Vitamin D3 (100,000 IU (2.5 mg)) or placebo softgel oral capsules, sourced from Tishcon
Corporation (Westbury, NY, USA), were mailed to participants’ homes. Two capsules were sent
in the first mail-out after randomization (that is, a 200,000 IU bolus, or placebo, at the start of the
intervention period), followed by a monthly 100,000 IU (daily dose equivalent ~3300 IU/day) capsule
of vitamin D3 (or placebo) throughout the remainder of the trial. To achieve masking, the vitamin D
and placebo capsules were identical in appearance.

http://www.anzctr.org.au
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2.3. Non-Lung Function Measures

All measurements were carried out by trained staff using a standardized protocol. Questionnaires
administered by interviewers were used to collect data on age, sex, ethnicity (defined by self-identification),
smoking, sun exposure, history of asthma (including the Asthma Control Test (ACT) [22]), use of vitamin
D supplements, and medications for asthma, chronic bronchitis or emphysema. An ACT score of
≥20 denoted well-controlled asthma [23]. An ever-smoker was defined as a current or former smoker.
Participants were also asked the number of years since quitting (for ex-smokers) and the number of
cigarettes smoked per day (for current smokers). Lung-related medications were determined from the
questionnaire (described above) and national medicine-dispensing database. Without shoes and in light
clothing, height (±0.1 cm) was measured with a stadiometer, and weight (±0.1 kg) with digital scales.
Body mass index was calculated as weight (kg)/height (m2).

Blood samples were collected at baseline, and at 6 and 12 months of follow-up to measure calcium
for hypercalcemia (corrected calcium > 10.4 mg/dL). Remaining plasma aliquots were stored frozen
at −80 ◦C. Serum 25(OH)D (combining D2 and D3) concentration was measured in these aliquots
(baseline and follow-up samples were measured in the same batch for each participant) by liquid
chromatography-tandem mass spectrometry (ABSciex API 4000, Framingham, MA, USA) at a laboratory
participating in the Vitamin D External Quality Assessment Scheme (DEQAS) program (www.deqas.org).

2.4. Lung Function Measures

Lung function was assessed with a KoKo Trek spirometer (nSpire Health, Longmont, CO, USA)
in a seated position. All published recommendations for spirometry measurement [24] were adhered
to, except attaining three acceptable measures from a maximum of 8 efforts. In our study, which was
ancillary to a much larger trial of 5110 participants who all had the same standard baseline assessment,
only three efforts were performed due to time constraints and to avoid exhaustion in elderly participants.
Participants were educated about the spirometric technique verbally and via demonstration, and while
watching a clock on the computer screen were encouraged to inhale and exhale as maximally and
forcibly as possible for at least 6 s. Maximum values of forced expiratory volume in 1 s (FEV1; in mL),
forced vital capacity (FVC; in mL) and FEV1 as a percentage of FVC (FEV1/FVC) from three efforts
(not necessarily from the same effort) were used for analyses. FEV1 was the primary outcome [12],
with FVC and FEV1/FVC as secondary outcomes. The quality of the spirometry measurements was
graded (from A to F) and classified into two groups: measurements with grades A or B (representing
higher-quality measurements) and those with grades C to F (representing lower-quality measurements).
A and B grades included participants with acceptable spirometry, with at least two measurements out of
three within 150 mL of one another and exhalation time of more than 6 s [24].

A FEV1/FVC value of <70% was used to define COPD, as recommended by the 2017 Global
Initiative on Obstructive Lung Disease (GOLD) classification of COPD [25]. COPD severity was graded
using GOLD stages, which are based on percentage of predicted FEV1 values (where predicted FEV1
values were calculated from published equations [26]): stage 1 (mild): ≥80%; stage 2 (moderate):
50–79%; stage 3 (severe): 30–49%; and stage 4 (very severe): <30% [25]. These equations were also used
to calculate spirometric z-scores [26].

2.5. Statistical Analysis

Data were analysed using SAS version 9.3 (SAS Institute, Cary, NC, USA). On an intention-to-treat
basis, PROC MIXED general linear mixed models were used to assess the effect of vitamin D
supplementation (exposure) on the outcomes, 25(OH)D and lung function parameters (adjusted
for age, sex, ethnicity and height), with repeated time incorporated using an unstructured correlation
structure. This analysis method handles missing data by fitting a statistical model over all available
observations without introducing bias. Potential three-way interactions between spirometry grade
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acceptability (grades A or B versus other grades), treatment group and time were examined, but as
they were not statistically significant, we did not report results by spirometry grade acceptability.

Deseasonalised (season-adjusted) baseline 25(OH)D levels were calculated for each participant
from the mid-point between the estimated maximum and minimum 25(OH)D levels over a calendar
year, from their individual measured baseline 25(OH)D and date of blood collection, using a sinusoidal
model with parameters derived from baseline values for all participants in the main ViDA study [27].
Vitamin D deficiency was defined as having a deseasonalised 25(OH)D of <50 nmol/L [27].

Aside from performing analysis among all eligible participants (total sample), we decided
a priori to conduct subgroup analyses among participants with baseline vitamin D deficiency,
asthma/COPD, and a smoking history (ever-smokers), given the abovementioned rationale for
these. These analyses included combinations of these subgroups to explore potentially cumulative
effects. Due to small sample sizes, especially in these mixed-subgroup analyses, we combined asthma
cases with COPD cases and ex-smokers with current smokers. In further analyses, we examined
three-way interactions—between smoking status (ever-smoker or not), treatment group, and time—to
test whether the effects of vitamin D were different in ever-smokers than in never-smokers.

The ViDA study was originally powered to detect a clinically relevant reduction in cardiovascular
events (primary outcome), as described elsewhere [20]. For the current sub-study, with a standard
deviation of FEV1 change of 180 mL, 80% power and at the 5% significance level (two-tailed), the
minimum detectable differences in FEV1 were about 48 mL in the total sample, 89 mL in all vitamin
D-deficient people, 96 mL in everyone with asthma/COPD, and 69 mL in all ever-smokers.

Correlations between changes in observed 25(OH)D and changes in lung function parameters
were summarized with Pearson correlation coefficients (r). Robust estimates (95% confidence intervals)
of these correlation coefficients were calculated using 1000 bootstrap samples. p-values were not
corrected to account for multiple hypothesis tests, as we did not want to miss any potentially important
findings [28]. A two-sided p < 0.05 was considered statistically significant.

3. Results

The study flowchart is shown in Figure 1. From the 5110 participants randomized in the main
ViDA study, 517 (10%) were randomly selected and invited to partake in the current sub-study.
Of these, 74 declined and 1 withdrew consent (data analysis prohibited), and were thus not included
in subsequent analyses. Out of the remaining 442, a complete set of both baseline and 1-year follow-up
measurements was available in 366 participants (83%). The 76 participants with missing data comprised
49 who did not attend the follow-up interview (could not attend, uncontactable or moved overseas)
and 27 who had unobtainable spirometry data (could not obtain a reading). Per intention-to-treat,
all 442 people were included in the total-sample analysis. The proportion of the total sample with
missing follow-up data did not differ across the two treatment groups (p = 0.96, χ2 test). Further,
baseline lung function of those with missing follow-up data did not differ from those without missing
follow-up data (p-values ranging from 0.47 to 0.57; analysis of variance.)

Of the total sample, 226 received vitamin D and 216 received the placebo. Table 1 shows
the baseline characteristics of these participants by treatment group. The follow-up period
(randomization—follow-up) averaged 1.1 years (mean and median) and ranged from 0.9 to 1.5 years.
The mean age was 65 years (range: 50–84 years), 58% were male and just over three-quarters were
of European/Other ethnicity (with 96% having European ancestry). Fourteen percent had asthma
(77% well-controlled—ATS score ≥ 20) and 17% had COPD (mostly mild or moderate—GOLD stages
1 and 2). Nearly 30% had a deseasonalised 25(OH)D of <50 nmol/L (vitamin D deficiency). Almost
one-half (49%) had smoked (82% of whom were ex-smokers). Supplementary analyses (not tabulated)
showed that ex-smokers had quit a median of 30 years earlier (interquartile range: 13 to 40 years),
and the median number of cigarettes smoked per day among current smokers was approximately just
under 10 (54% smoked ≤10 per day). Further supplementary analyses showed that the proportion
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of participants with spirometry grades A or B were similar in the vitamin D (30%) and placebo
(28%) groups.
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Table 1. Baseline characteristics of all participants across treatment groups. 

Variable Vitamin D Placebo 
n 226 216 

Days from randomization to follow-up 1 401 ± 29 402 ± 30 
Age (years) 1 64.6 ± 8.4 65.4 ± 9.0 

Male sex (n (%)) 140 (62) 117 (54) 
Ethnicity   

European/Other (n (%)) 172 (76) 169 (78) 
Maori (n (%)) 15 (7) 13 (6) 
Pacific (n (%)) 22 (10) 16 (7) 

South Asian (n (%)) 17 (8) 18 (8) 
Asthma (n (%)) 28 (12) 36 (17) 

ACT score, median ± IQR 23.5 ± 4.5 21.5 ± 5.5 
COPD (n (%)) 40 (18) 37 (17) 

GOLD stage 1 (n (%)) 15 (7) 14 (6) 
GOLD stage 2 (n (%)) 19 (8) 18 (8) 
GOLD stage 3 (n (%)) 4 (2) 2 (1) 
GOLD stage 4 (n (%)) 2 (1) 3 (1) 

Body mass index (kg/m2) 1 28.6 ± 5.2 28.5 ± 4.9 
25-hydroxyvitamin D   

Observed 1 61.5 ± 24.4 61.4 ± 23.7 
Deseasonalised 1 66.0 ± 23.7 65.5 ± 23.3 

Deseasonalised < 50 nmol/L (n (%)) 61 (27) 68 (31) 
Lung function medication (n (%)) 21 (9) 27 (13) 

On vitamin D supplements at baseline (n (%)) 27 (12) 22 (10) 
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Figure 1. Flowchart showing the number of randomized participants who were excluded and those
with a complete set of both baseline and 1-year follow-up measurements.

Table 1. Baseline characteristics of all participants across treatment groups.

Variable Vitamin D Placebo

n 226 216
Days from randomization to follow-up 1 401 ± 29 402 ± 30

Age (years) 1 64.6 ± 8.4 65.4 ± 9.0
Male sex (n (%)) 140 (62) 117 (54)

Ethnicity

European/Other (n (%)) 172 (76) 169 (78)
Maori (n (%)) 15 (7) 13 (6)
Pacific (n (%)) 22 (10) 16 (7)

South Asian (n (%)) 17 (8) 18 (8)

Asthma (n (%)) 28 (12) 36 (17)

ACT score, median ± IQR 23.5 ± 4.5 21.5 ± 5.5

COPD (n (%)) 40 (18) 37 (17)

GOLD stage 1 (n (%)) 15 (7) 14 (6)
GOLD stage 2 (n (%)) 19 (8) 18 (8)
GOLD stage 3 (n (%)) 4 (2) 2 (1)
GOLD stage 4 (n (%)) 2 (1) 3 (1)

Body mass index (kg/m2) 1 28.6 ± 5.2 28.5 ± 4.9

25-hydroxyvitamin D
Observed 1 61.5 ± 24.4 61.4 ± 23.7

Deseasonalised 1 66.0 ± 23.7 65.5 ± 23.3
Deseasonalised < 50 nmol/L (n (%)) 61 (27) 68 (31)

Lung function medication (n (%)) 21 (9) 27 (13)
On vitamin D supplements at baseline (n (%)) 27 (12) 22 (10)
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Table 1. Cont.

Variable Vitamin D Placebo

Smoking

Never-smoker (n (%)) 122 (54) 103 (48)
Ex-smoker (n (%)) 83 (37) 95 (44)

Current smoker (n (%)) 21 (9) 18 (8)

Sun exposure (hours/day)

<1 (n (%)) 34 (15) 29 (13)
1–2 (n (%)) 113 (50) 118 (55)
>2 (n (%)) 79 (35) 69 (32)

Abbreviations: ACT = Asthma Control Test; COPD = chronic obstructive pulmonary disease; GOLD = 2017
Global Initiative on Obstructive Lung Disease classification; IQR = interquartile range. 1 Values are mean ±
standard deviation.

The deseasonalised 25(OH)D concentrations at baseline and follow-up visits by treatment group
are illustrated in Figure 2. In the total sample, the change (95% confidence interval) from baseline in
the vitamin D group compared to placebo at 6 and 12 months follow-up, respectively, was +51 (45, 58)
and +57 (51, 64) nmol/L (p < 0.001). No cases of hypercalcemia were detected.
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ever-smokers, FEV1 significantly increased in the vitamin D group with respect to placebo (p = 0.03), 
with a mean (95% confidence interval) change of 57 (4, 109) mL. This effect more than doubled when 
restricted to ever-smokers who also had vitamin D deficiency (β = 122 mL, p = 0.04) or asthma/COPD 
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scores among all ever-smokers and ever-smokers with asthma/COPD, respectively (Table S1). 

Figure 2. Line graph showing deseasonalised 25(OH)D concentration (mean ± 95% confidence
intervals; in nmol/L) at baseline and follow-up (6 and 12 months) in the vitamin D and placebo
groups, for non-vitamin D-deficient and vitamin D-deficient people. Baseline 25(OH)D was missing
for 1 person (vitamin D group).

FEV1 at baseline and follow-up by intervention group is shown in Table 2. All effects were
in the positive direction for the vitamin D supplemented group compared to placebo. The effects
were non-significant in the total (n = 442), vitamin D-deficient (n = 130) and asthma/COPD (n = 113)
samples. This was true, too, among participants with both asthma/COPD and vitamin D-deficiency,
despite the effect being large (109 mL) and borderline significant (p = 0.08). Conversely, among all
ever-smokers, FEV1 significantly increased in the vitamin D group with respect to placebo (p = 0.03),
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with a mean (95% confidence interval) change of 57 (4, 109) mL. This effect more than doubled when
restricted to ever-smokers who also had vitamin D deficiency (β = 122 mL, p = 0.04) or asthma/COPD
(β = 160 mL, p = 0.004). Similar patterns were observed when we modelled FEV1 as a z-score, with
net (placebo-controlled) vitamin D effects of 0.13 (0.01, 0.24; p = 0.03) and 0.35 (0.11, 0.59; p = 0.005)
z-scores among all ever-smokers and ever-smokers with asthma/COPD, respectively (Table S1).

When these analyses were repeated with FVC as the response variable (Table 3), all effects were
smaller (compared to FEV1 effects). The effect of vitamin D compared to placebo was minimal and
non-significant (p > 0.05) in the total sample. Across subgroup samples, the effect was larger (in nearly
all cases) and consistently in the positive direction, although still not statistically significant. Similar
patterns were observed with FVC as a z-score (Table S2).

When these analyses were repeated with FEV1/FVC as the dependent variable, all effects (vitamin
D compared to placebo) were in the positive direction (Table 4). The effect among all ever-smokers
was 1.1% (p = 0.05) and almost tripled when confined to ever-smokers who also had asthma/COPD
(β = 3.0%, p = 0.01). Similarly, all FEV1/FVC z-score effects were in the positive direction, with the
largest being among ever-smokers with asthma/COPD (β = 0.37, p = 0.01; Table S3).

Further analysis showed that vitamin D (with respect to placebo) significantly improved FEV1
more in ever-smokers than in never-smokers (p = 0.02 for three-way interaction between smoking,
treatment group, and time). We confirmed this interaction when we restricted this analysis to people
with vitamin D deficiency (p = 0.048) and asthma/COPD (p = 0.0005).

Correlations between changes in observed 25(OH)D concentration and changes in lung function
measures are shown in supplementary Table S4. All FEV1 and FEV1/FVC correlations were in
the positive direction. Among ever-smokers and their subgroups, 25(OH)D change was positively
correlated (r = 0.17 to 0.34) with change in FEV1, which mirrors the FEV1 increases in these samples
shown in Table 2.
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Table 2. Forced expiratory volume in 1 s (mL) at baseline and follow-up (adjusted for age, sex, ethnicity and height) by treatment group.

Sample

n Mean (Standard Deviation) Change from Baseline,
Vitamin D Minus PlaceboVitamin D

Group
Placebo
Group

Vitamin D Group Placebo Group

Baseline Follow-Up Baseline Follow-Up Mean (95% CI) p-Value

Total 226 216 2242 (684) 2313 (687) 2370 (754) 2325 (737) 16 (−19, 51) 0.38
Vitamin D-deficient 1 61 68 2363 (597) 2363 (620) 2201 (777) 2162 (774) 39 (−28, 107) 0.25

Asthma/COPD 54 59 1869 (600) 1861 (623) 1951 (735) 1903 (691) 40 (−33, 112) 0.28
Vitamin D-deficient 1 + asthma/COPD 16 27 2023 (563) 2079 (574) 1914 (896) 1861 (844) 109 (−15, 233) 0.08

Ever-smoker 104 113 2241 (725) 2232 (750) 2262 (733) 2197 (693) 57 (4, 109) 0.03
Ever-smoker + vitamin D-deficient 1 26 28 2348 (641) 2378 (781) 1912 (616) 1821 (514) 122 (8, 236) 0.04

Ever-smoker + asthma/COPD 25 35 1538 (532) 1632 (565) 1775 (657) 1709 (582) 160 (53, 268) 0.004
1 Baseline deseasonalised 25(OH)D < 50 nmol/L.

Table 3. Forced vital capacity (mL) at baseline and follow-up (adjusted for age, sex, ethnicity and height) by treatment group.

Sample

n Mean (Standard Deviation) Change from Baseline,
Vitamin D Minus PlaceboVitamin D

Group
Placebo
Group

Vitamin D Group Placebo Group

Baseline Follow-UP Baseline Follow-Up Mean (95% CI) p-Value

Total 226 216 3078 (858) 3060 (861) 3107 (945) 3093 (910) −5 (−49, 39) 0.83
Vitamin D-deficient 1 61 68 3098 (774) 3085 (783) 2961 (992) 2941 (949) 7 (−82, 95) 0.88

Asthma/COPD 54 59 2885 (833) 2863 (891) 2889 (976) 2868 (918) 0 (−96, 96) 0.99
Vitamin D-deficient 1 + asthma/COPD 16 27 2917 (757) 2967 (770) 2836 (1172) 2817 (1110) 69 (−109, 246) 0.44

Ever-smoker 104 113 2777 (846) 2979 (882) 3015 (901) 2976 (840) 42 (−19, 102) 0.17
Ever-smoker + vitamin D-deficient 1 26 28 3062 (805) 3091 (942) 2659 (780) 2573 (617) 115 (−14, 243) 0.08

Ever-smoker + asthma/COPD 25 35 2423 (718) 2486 (639) 2621 (840) 2598 (770) 86 (−52, 225) 0.22
1 Baseline deseasonalized 25(OH)D < 50 nmol/L.



Nutrients 2017, 9, 1353 9 of 14

Table 4. FEV1/FVC (%) at baseline and follow-up (adjusted for age, sex, ethnicity and height) by treatment group.

Sample

n Mean (Standard Deviation) Change from Baseline,
Vitamin D Minus PlaceboVitamin D

Group
Placebo
Group

Vitamin D Group Placebo Group

Baseline Follow-UP Baseline Follow-Up Mean (95% CI) p-Value

Total 226 216 76.4 (7.7) 76.0 (7.6) 76.6 (7.4) 75.4 (7.0) 0.7 (−0.1, 1.5) 0.07
Vitamin D-deficient 1 61 68 76.6 (6.5) 76.8 (7.0) 74.3 (8.6) 73.4 (8.0) 1.2 (−0.5, 2.9) 0.16

Asthma/COPD 54 59 65.9 (8.6) 66.1 (9.4) 68.0 (8.6) 66.8 (8.2) 1.4 (−0.2, 3.0) 0.08
Vitamin D-deficient 1 + asthma/COPD 16 27 69.7 (9.4) 70.2 (9.8) 67.3 (9.9) 66.0 (8.0) 1.9 (−0.8, 4.6) 0.16

Ever-smoker 104 113 75.2 (7.8) 75.0 (7.7) 75.3 (8.1) 74.0 (7.7) 1.1 (0.0, 2.5) 0.05
Ever-smoker + vitamin D-deficient 1 26 28 77.6 (6.0) 77.4 (6.6) 72.6 (11.0) 71.5 (8.8) 0.9 (−1.4, 3.2) 0.42

Ever-smoker + asthma/COPD 25 35 63.2 (8.2) 64.5 (10.5) 66.5 (9.6) 64.8 (8.8) 3.0 (0.7, 5.4) 0.01

FEV1 = forced expiratory flow in 1 s; FVC = forced vital capacity. 1 Baseline deseasonalized 25(OH)D < 50 nmol/L.
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4. Discussion

This randomized, double-blinded, placebo-controlled trial showed that monthly, high-dose
vitamin D supplementation for just over 1 year did not affect lung function in the total sample, nor in
subgroups defined by either vitamin D deficiency (<50 nmol/L) or having asthma/COPD. However,
vitamin D supplementation did result in larger, statistically significant increases in FEV1 and FEV1
z-score among ever-smokers, especially those with vitamin D deficiency (FEV1 only) or asthma/COPD.

To our knowledge, this is the first study to show that vitamin D supplementation (compared
to placebo) increases FEV1 and FEV1 z-score in ever-smokers. The restriction of this effect to
ever-smokers only is consistent with observational research, which has shown stronger 25(OH)D-lung
function associations among smokers [1,17–19] and a stronger smoking-FEV1 relationship in vitamin
D-deficient people [2]. Taken together, these findings suggest that vitamin D supplementation may
mitigate smoking-associated lung function damage, although smoking avoidance and cessation remain
paramount for preserving lung health.

Smoking decreases the production of 1,25-dihydroxyvitamin D in lung epithelial cells [29] and
may affect expression levels of the vitamin D receptor [30]. Smoking-related lung destruction is
partly mediated through inflammation, oxidative stress, and increased proteases [31,32], and these
pathophysiological changes may persist even after smoking cessation [33]. However, vitamin D could
mitigate these processes [34–36]. Further, there is increased activity of these processes in asthma [37]
and COPD [31]. Collectively, these observations could explain our finding that vitamin D effects were
limited to ever-smokers and were the largest in ever-smokers with asthma/COPD.

The effects of vitamin D among all asthma/COPD participants were non-significant (although
in the positive direction), which concurs with some prior RCTs of patients with asthma [9,10] or
COPD [4,5]. We build on these past trials both by showing that the effects on asthma/COPD
participants were stronger in ever-smokers (Tables 2 and 3) and because only one of these studies used
the same dosing regimen we administered (monthly ≥100,000 IU dosing for ≥1 year) [5]. That study
differed from ours in that it comprised largely men (80%) with both mostly severe or very severe
COPD and a history of recent exacerbations [5]; in contrast, our COPD cases were primarily mild or
moderate, and were combined with predominantly well-controlled asthma cases.

The intervention effect for FEV1 as a percentage of the average lung function parameter value in
the vitamin D group (both in Table 2) was modest (3%) among all ever-smokers (57 mL as a percentage
of 2241 mL), larger (5%) among vitamin D-deficient ever-smokers (122 mL as a percentage of 2348 mL),
and sizeable (10%) among asthma/COPD ever-smokers (160 mL as a percentage of 1538 mL). A change
in FEV1 of at least 100 mL is considered to be clinically relevant [38,39], suggesting that the net vitamin
D effects on FEV1 among vitamin D-deficient ever-smokers (122 mL) and asthma/COPD ever-smokers
(160 mL) in our study (Table 2) represent, by definition, clinically meaningful improvements. Our FEV1
z-score results, which account for spirometric influences of demographics and height using a different
statistical approach, provide further support of a benefit, with net vitamin D effects of 0.13 among all
ever-smokers and 0.35 among ever-smokers with asthma/COPD (Table S1). Because there is a paucity
of information on the size of the association between FEV1 z-scores and health outcomes [40,41], more
such research is required to quantify the clinical impact of these z-score results. As for FEV1/FVC,
the effects on this parameter were meaningful: given that FEV1/FVC declines by ~0.2% per year [26],
the net vitamin D effects (increases) in FEV1/FVC of 1.1% among all ever-smokers and 3.0% among
ever-smokers with asthma/COPD (Table 4) would correspond to changes that typically occur over
5.5 years and 15 years, respectively. Finally, as vitamin D effects on FEV1 were markedly more positive
when analyses in asthma/COPD or vitamin D-deficient participants were restricted to ever-smokers
than when they were not, this suggests that future RCTs of asthma, COPD or vitamin D-deficient
people should carry out subgroup analyses among smokers to capture a potential difference in
treatment effects.

Our study sample was population-based, as the vast majority of New Zealand residents (94%) are
registered with family practices [42]. This augments the external validity of our findings. Regarding
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limitations, the missingness of the intention-to-treat sample (Figure 1) renders our study findings
prone to selection bias. However, as mentioned, this missingness did not differ across the treatment
groups, and did not predict baseline lung function. The data analyst was not blinded to the treatment
group, although we did include pre-specified analyses in our statistical analysis plan (mentioned
above). The equations used to calculate our z-score results [26] may have limited applicability to
our Maori and Pacific participants, as these ethnic groups were not included in the data that these
z-scores are based on. A longer follow-up period may have allowed us to better evaluate the long-term
efficacy of the intervention. Although our total sample size was large, relative to previous RCTs of
vitamin D and lung function [3–10], our statistical power was limited (particularly for the subgroup
analyses), which may explain why at least some treatment effects were not statistically significant.
Finally, the multiplicity of statistical tests we performed raises the possibility that at least some of
our significant findings may have been due to chance. However, we observed positive dose-response
relationships between change in 25(OH)D and change in lung function (Table S4), which supports
a true effect (biological gradient). Further support includes the fact that, as reported, the FEV1 and
FEV1 z-score treatment effects were consistent with observational research, biologically plausible, and
were all unidirectional (across samples; Table 2). Also, if study conclusions are based on the primary
outcome (FEV1) results only, far fewer comparisons are involved.

Our analyses were based on subsamples of an RCT (Figure 1). Although a limitation, we do
not expect there to be marked, systematic differences in baseline participant characteristics, for the
following reasons: Firstly, the selection of our total analysis sample from the main ViDA study was
random. Second, as everybody was randomized in the same way, the selection of subgroups from
the total sample should not differ across treatment groups. Third, since the analyses controlled for
age, sex, ethnicity and height, effects of any imbalances in these demographic variables would have
been minimized. Fourth, stratifying the study randomization by our subgroup variables (vitamin D
deficiency, asthma/COPD and ever-smokers) could have reduced any baseline imbalances within
these subgroups [43]. Although we did not do this, this effect would have been partially captured,
as we stratified randomization by age and ethnicity, which are associated with these subgroup
variables [44,45]. Further, some have proposed that stratification of randomization is not required for
pre-specified subgroup analyses (such as ours) [46].

In summary, monthly high-dose vitamin D supplementation over an average of 1.1 years, which
increased serum 25(OH)D concentration by >50 nmol/L with respect to placebo, did not improve
lung function in the overall study population. In subgroup analyses, we found that vitamin D
supplementation improved lung function (FEV1 and FEV z-score) in ever-smokers, particularly those
with vitamin D deficiency (FEV1 only) or asthma/COPD. We encourage similar RCTs in smokers to
assess the efficacy of different dosing regimens (e.g., daily or weekly supplementation). Additional
RCTs are needed to investigate whether the observed beneficial effects translate into improvements in
lung function-related health, such as improved asthma/COPD control.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/9/12/1353/s1,
Table S1: FEV1 z-scores at baseline and follow-up (adjusted for age, sex, ethnicity and height) by treatment
group; Table S2: FVC z-scores at baseline and follow-up (adjusted for age, sex, ethnicity and height) by treatment
group; Table S3: FEV1/FVC z-scores at baseline and follow-up (adjusted for age, sex, ethnicity and height) by
treatment group; Table S4: Correlations of changes in observed 25(OH)D concentration with changes in lung
function measures.
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