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ABSTRACT
OBJECTIVE
To determine which potentially modifiable risk 
factors, including socioeconomic, lifestyle/dietary, 
cardiometabolic, and inflammatory factors, are 
associated with Alzheimer’s disease.
DESIGN
Mendelian randomisation study using genetic 
variants associated with the modifiable risk factors as 
instrumental variables.
SETTING
International Genomics of Alzheimer’s Project.
PARTICIPANTS
17 008 cases of Alzheimer’s disease and 37 154 
controls.
MAIN OUTCOME MEASURES
Odds ratio of Alzheimer’s per genetically predicted 
increase in each modifiable risk factor estimated with 
Mendelian randomisation analysis.
RESULTS
This study included analyses of 24 potentially 
modifiable risk factors. A Bonferroni corrected 
threshold of P=0.002 was considered to be 
significant, and P<0.05 was considered suggestive 
of evidence for a potential association. Genetically 
predicted educational attainment was significantly 
associated with Alzheimer’s. The odds ratios 
were 0.89 (95% confidence interval 0.84 to 0.93; 
P=2.4×10−6) per year of education completed and 
0.74 (0.63 to 0.86; P=8.0×10−5) per unit increase 
in log odds of having completed college/university. 
The correlated trait intelligence had a suggestive 
association with Alzheimer’s (per genetically 

predicted 1 SD higher intelligence: 0.73, 0.57 to 
0.93; P=0.01). There was suggestive evidence for 
potential associations between genetically predicted 
higher quantity of smoking (per 10 cigarettes a day: 
0.69, 0.49 to 0.99; P=0.04) and 25-hydroxyvitamin 
D concentrations (per 20% higher levels: 0.92, 0.85 
to 0.98; P=0.01) and lower odds of Alzheimer’s 
and between higher coffee consumption (per one 
cup a day: 1.26, 1.05 to 1.51; P=0.01) and higher 
odds of Alzheimer’s. Genetically predicted alcohol 
consumption, serum folate, serum vitamin B12, 
homocysteine, cardiometabolic factors, and C reactive 
protein were not associated with Alzheimer’s disease.
CONCLUSION
These results provide support that higher educational 
attainment is associated with a reduced risk of 
Alzheimer’s disease.

Introduction
Alzheimer’s disease is the leading cause of 
dementia. The chief hallmarks are amyloid plaques 
and neurofibrillary tangles.1 The amyloid cascade 
hypothesis implies that accumulation of amyloid 
β triggers neuronal dysfunction and cell death in 
the brain.1 An alternative theory—the vascular 
hypothesis—implicates cerebral hypoperfusion 
as the primary trigger; this drives oxidative stress, 
deposition of amyloid β, neuroinflammation, blood-
brain barrier breakdown, cognitive decline, and 
neurodegeneration.2 3

Apart from increasing age and the apolipoprotein E 
(APOE) e4 allele, the causes of Alzheimer’s disease 
are largely unknown, and treatment trials have been 
disappointing.4 This has led to increasing interest in 
the potential for reducing Alzheimer’s by targeting 
modifiable risk factors. Conventional observational 
studies have consistently shown that low educational 
attainment is associated with an increased risk,5 and it 
has been estimated that 19% of cases are potentially 
attributable to low education.6 Inconclusive evidence 
from conventional observational studies indicates that 
obesity, hypertension, and hypercholesterolaemia 
in midlife and diabetes, smoking, low vitamin D and 
folate concentrations, hyperhomocysteinaemia, and 
high C reactive protein concentrations are associated 
with increased risk, whereas physical activity, a 
healthy diet, moderate alcohol drinking, and coffee 
consumption are associated with decreased risk (table 
A in appendix 1).5-11 A 2010 State of the Science 
report concluded that there was insufficient evidence 
to support the association with any modifiable 
factors with risk.7 Available evidence is in large part 
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What is already known on this topic
Conventional observational studies have shown that educational attainment is 
associated with the risk of Alzheimer’s disease
Evidence for the associations between lifestyle behaviours and cardiometabolic 
factors and risk of Alzheimer’s disease is inconclusive
Available data on modifiable risk factors in relation to Alzheimer’s disease are 
primarily from conventional observational studies, which are vulnerable to 
confounding and reverse causation bias

What this study adds
A Mendelian randomisation approach shows that a genetic predisposition 
towards longer education is associated with lower odds of Alzheimer’s disease
This study found suggestive evidence of possible associations between higher 
intelligence, smoking, and concentrations of 25-hydroxyvitamin D and lower 
odds of Alzheimer’s disease and between higher coffee consumption and higher 
odds of Alzheimer’s disease
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inadequate as observational studies generally rely 
on self reported information and are susceptible to 
confounding and reverse causation bias, and data from 
randomised trials12-16 are scarce and inconclusive.

Mendelian randomisation is a genetic 
epidemiological method for assessing causal 
inference by exploiting genetic variants influencing 
the modifiable risk factor to estimate the unbiased 
association between the risk factor and risk of 
disease. Genetic alleles are randomly assorted during 
conception and thus are less likely to be affected by 
confounding factors that could bias the observational 
findings. Furthermore, reverse causation bias is 
avoided because genotype is not affected by disease. 
This method is being increasingly used to investigate 
the potential of different treatment approaches by 
determining which risk factors are causally associated 
with disease and therefore might be worth targeting 
therapeutically.17 To decipher potentially causal 
and modifiable risk factors we applied a Mendelian 
randomisation approach to examine the associations 
between multiple potentially modifiable risk factors 
and Alzheimer’s disease.

Methods
Modifiable risk factors
We considered potentially modifiable risk factors 
that can be grouped under the following categories: 
socioeconomic, lifestyle/dietary, cardiometabolic, 
and inflammatory. Within these categories we focused 
on factors that were identified as having the most 
consistent evidence for an association with Alzheimer’s 
disease in meta-analyses of prospective observational 
studies (table A in appendix 1).5 8-11 We also included 
intelligence on the basis of its strong genetic correlation 
with educational attainment18 and to increase the 
number of proxies of cognitive reserve.19 20

Data sources
We performed this analysis with summarised data 
(effect size estimates and their standard errors) from 
published genome-wide association studies (fig A in 
appendix 2). We searched PubMed for genome-wide 
association studies of the modifiable risk factors 
and identified genetic variants with genome-wide 
significant (P<5×10−8) associations for educational 
attainment (years of education completed and college/
university completion),21 intelligence,18 smoking 
(quantity, initiation, and cessation),22 23 alcohol24 and 
coffee25 consumption, 25-hydroxyvitamin D (25(OH)
D; the primary biomarker of vitamin D status),26 
serum folate and vitamin B12 concentrations,27 
total homocysteine,28 overall obesity (body mass 
index (BMI)),29 abdominal obesity (waist to hip ratio 
adjusted for BMI),30 type 2 diabetes,31 fasting glucose 
and insulin,32 systolic and diastolic blood pressure,33 
blood lipids (high density lipoprotein cholesterol, 
low density lipoprotein cholesterol, total cholesterol, 
and triglycerides),34 and C reactive protein (a general 
marker of systemic inflammation).35 We did not 
identify genetic variants with genome-wide significant 

association with occupation or income (measures of 
socioeconomic status), physical activity, healthy eating 
patterns, or vitamins C or E. Details on the risk factor 
studies from which we obtained summarised data for 
the current analyses from are presented in table B in 
appendix 1.

Summarised data for the associations between 
the genetic variants (that is, the single nucleotide 
polymorphisms) related to risk factors and Alzheimer’s 
disease were obtained from the International 
Genomics of Alzheimer’s Project (IGAP), which has 
been described elsewhere.36 Briefly, this project 
includes data from 17 008 cases of Alzheimer’s disease 
and 37 154 controls of European ancestry from four 
genome-wide association study datasets, including 
the Alzheimer’s Disease Genetics Consortium (ADGC), 
the Cohorts for Heart and Aging Research in Genomic 
Epidemiology consortium (CHARGE), the European 
Alzheimer’s disease Initiative (EADI), and the Genetic 
and Environmental Risk in Alzheimer’s disease 
consortium (GERAD). Details on the original genetic 
analyses and diagnostic criteria for Alzheimer’s 
disease are provided in appendix 3. Summarised data 
for the associations of the genetic variants with the risk 
factors and Alzheimer’s disease are presented in table 
C in appendix 1.

Patient involvement
No patients were involved in the design of the study, 
recruitment, or conduct of the study. No patients 
were asked to advise on interpretation or writing up 
of results. There are no plans to involve patients in 
dissemination of the results, but results will, after 
scientific publication, be disseminated to the public in 
general.

Genetic variants
For each modifiable risk factor, we selected genetic 
variants (single nucleotide polymorphisms) associated 
with the risk factor at thresholds for genome-wide 
significance (P<5×10−8) in the sex combined meta-
analysis of the discovery and replication samples 
of the published genome-wide association studies 
(table B in appendix 1). We selected only independent 
genetic variants—that is, not in linkage disequilibrium 
(defined as r2<0.2) with other genetic variants for 
the same risk factor. When we encountered genetic 
variants in linkage disequilibrium, we chose the 
variant with the lowest P value for association with the 
risk factor. For genetic variants that were not present in 
IGAP, we used proxies (r2>0.9) where available (table B 
in appendix 1).

Mendelian randomisation analysis
The Mendelian randomisation approach we used 
was based on the following assumptions: the 
genetic variants used as instrumental variables for 
the modifiable risk factor are associated with the 
risk factor; the genetic variants are not associated 
with any confounders; and the genetic variants are 
associated with Alzheimer’s through the risk factor 
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only and not through any alternative causal pathway 
(fig 1).37 It also assumed that associations between 
risk factors and Alzheimer’s are linear with no 
statistical interactions.

We included analyses of 24 potentially modifiable 
risk factors. To take into account multiple testing, we 
used a conservative approach and applied a Bonferroni 
corrected significance level computed as 0.05 divided 
by 24 (that is, 0.002). P<0.05 but above the Bonferroni 
corrected significance threshold was considered as 
suggestive of evidence for a potential association.

For each genetic variant, we calculated an 
instrumental variable ratio estimate by dividing the 
effect size estimate (β coefficient) for the association 
of the variant with risk of Alzheimer’s by the 
corresponding estimate for the association of the 
variant with the modifiable risk factor. In the main 
analyses, we summarised the ratio estimates for the 
individual genetic variants using the conventional 
fixed effect inverse variance weighted method.38 For 
risk factors with a significant or suggestive association 
with Alzheimer’s, we additionally conducted 
sensitivity analyses using the weighted median, 
penalised weighted median, and MR-Egger regression 
methods.38 Pleiotropy was evaluated based on the 
intercept obtained from the MR-Egger analysis.37 38 To 
investigate the influence of outlying and/or pleiotropic 
genetic variants, we performed a leave one out analysis 
in which we omitted one genetic variant in turn.37 The 
strength of the genetic instruments was tested with the 
F statistic.39

Results are presented as odds ratios (95% confidence 
intervals) per genetically predicted increase in 
each risk factor. The estimates are scaled by year of 
education completed, 10 cigarettes a day of smoking, 
additional drink a week of alcohol consumption, cup 
a day of coffee consumption, 20% change of 25(OH)
D concentrations, and approximate standard deviation 
(SD) for the other continuous risk factors. For the 
binary risk factors, the estimates represent the odds 
ratio per 1 unit higher log odds of the risk factor. All 
analyses were performed with Stata version 14.2 
(StataCorp, College Station, TX) and R version 3.3.3 (R 
foundation).

Results
Education and intelligence
Genetically predicted higher educational attainment 
was associated with significantly lower odds of 
Alzheimer’s disease. The odds ratios were 0.89 (95% 
confidence interval 0.84 to 0.93; P=2.4×10−6) per 
year of education completed (fig 2) and 0.74 (0.63 
to 0.86; P=8.0×10−5) per unit higher log odds of 
having completed college/university (fig 2 and fig B 
in appendix 2). We found a suggestive association 
between intelligence and Alzheimer’s. The odds ratio 
per genetically predicted 1 SD higher intelligence was 
0.73 (0.57 to 0.93; P=0.01) (fig 2 and fig C in appendix 
2). In leave one out analyses, we found that no single 
genetic variant had an influential influence on the 
results for education or intelligence. In addition, the 
associations were consistent in sensitivity analyses 
that used the weighted median and penalised weighted 
median methods but with less precision (fig D in 
appendix 2). In the MR-Egger analysis, while there was 
no evidence of directional pleiotropy (all P≥0.11), the 
precisions of the causal estimates and intercepts were 
low (fig D in appendix 2). This was mainly because 
the genetic variants had similar associations with the 
risk factors and the instrument strength was low for 
education (F=5.7) but adequate for intelligence (F≥60).

In conventional MR analyses, genetic predisposition 
towards longer education was associated with lower 
odds of smoking, fewer cigarettes smoked a day, higher 
high density lipoprotein cholesterol, lower triglycerides, 
lower fasting insulin, and lower BMI (P<0.01 for each of 
these outcomes) (table D in appendix 1). We found no 
association with systolic or diastolic blood pressure, 
low density lipoprotein cholesterol, or glucose (all 
P≥0.35) (table D in appendix 1).

Lifestyle and dietary factors
There was a suggestive association between genetically 
predicted higher quantity of smoking and lower odds of 
Alzheimer’s disease (per 10 cigarettes/day: odds ratio 
0.69, 95% confidence interval 0.49 to 0.99; P=0.04) (fig 
2 and fig E in appendix 2). The association was driven 
by a genetic variant (rs1051730) near the nicotinic 
acetylcholine receptor genes and did not remain when 
we excluded this variant (1.21, 0.56 to 2.61) (fig 2). 
Neither initiation (0.71, 0.37 to 1.33; P=0.28) nor 
cessation (1.16, 0.75 to 1.78; P=0.52) of smoking was 
associated with Alzheimer’s, but the results were based 
on a single genetic variant leading to low precision. 
Genetically predicted alcohol consumption was not 
associated with Alzheimer’s (fig 2).

We found a suggestive association between 
genetically predicted higher consumption of coffee 
and higher odds of Alzheimer’s disease (per cup/day: 
odds ratio 1.26, 95% confidence interval 1.05 to 1.51; 
P=0.01) (fig 2 and fig F in appendix 2). In leave one 
out analysis, the odds ratio ranged from 1.22 (0.95 to 
1.56; P=0.11) when we excluded the genetic variant 
near the CYP1A1 and CYP1A2 gene regions to 1.38 
(1.13 to 1.68; P=0.001) when we excluded the variant 
in POR.

Modi�able risk factor

SNP1 SNP2

Assumption 1
Genetic variants are associated

with modi�able risk factor

Assumption 3
Genetic variants 

influence risk only
through risk factor

and not through
any alternative

pathways

Assumption 2
Genetic variants 

are not
associated

with any
confounders

SNPj

Confounders Alzheimer’s disease

Fig 1 | Principles of Mendelian randomisation analysis for modifiable risk factor and 
risk of Alzheimer’s disease and assumptions that need to be met to obtain unbiased 
estimates of causal effects. Broken lines represent potential pleiotropic or direct causal 
effects between variables that would violate Mendelian randomisation assumptions. 
SNP1, SNP2, SNPj=single nucleotide polymorphisms
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There was a suggestive association between 
genetically predicted higher 25(OH)D concentrations 
and lower odds of Alzheimer’s disease (per 20% 
higher levels: odds ratio 0.92, 95% confidence interval 
0.85 to 0.98; P=0.01) (fig 2), and no outlying genetic 
variant was identified (fig G in appendix 2). Genetically 
predicted serum folate, serum vitamin B12, and total 
homocysteine concentrations were not associated with 
AD (fig 2); no single genetic variant had an influential 
effect on the results.

Results for smoking, coffee consumption, and 
25(OH)D were similar in sensitivity analyses that used 
the weighted median and penalised weighted median 
methods (fig H in appendix 2). The MR-Egger method 
showed directional pleiotropy in the smoking analysis 
(P=0.002) but not in the analyses of coffee (P=0.72) 
and 25(OH)D (P=0.17). Causal estimates from the 
method were imprecise in all cases, but there was a 
suggestive inverse association between smoking and 
AD (P=0.01) (fig H in appendix 2).

Cardiometabolic and inflammatory factors
Using information on all genetic variants associated 
with the cardiometabolic factors and C reactive 
protein, we observed that BMI, high density lipoprotein 
cholesterol, and C reactive protein were inversely 
associated with Alzheimer’s disease, whereas low 
density lipoprotein cholesterol and total cholesterol 
were positively associated (fig I in appendix 2). 
A genetic variant near the APOE gene, however, 
was associated with these risk factors and strongly 
associated with Alzheimer’s disease (P<5×10−464), and 
none of the associations remained after we excluded 
the pleiotropic variant (fig 3). Genetically predicted 
waist to hip ratio adjusted for BMI, type 2 diabetes, 
fasting glucose, fasting insulin, systolic and diastolic 

blood pressure, and triglycerides were not associated 
with AD (fig 3). The lack of association with systolic 
blood pressure remained in sensitivity analyses that 
excluded a genetic variant (rs7107356) that was 
strongly associated with AD (odds ratio 0.88, 95% 
confidence interval 0.72 to 1.07; P=0.20), after we 
excluded 11 genetic variants associated with AD at 
P<0.05 (0.92, 0.74 to 1.13; P=0.41), and when we 
restricted the analysis to the 50 variants with the 
strongest association with systolic blood pressure 
(1.03, 0.80 to 1.33; P=0.84).

Discussion
With genetic variants as proxies for the modifiable 
risk factors, this Mendelian randomisation analysis 
supports the evidence from conventional analyses 
that higher educational attainment is associated with 
reduced risk of Alzheimer’s disease. We also found 
suggestive evidence for an inverse association between 
genetically predicted intelligence and risk. There was 
also suggestive evidence for possible associations 
of genetically predicted quantity of smoking, coffee 
consumption, and 25(OH)D concentrations, but the 
associations with smoking and coffee were in opposite 
direction to those observed in conventional analyses 
(table A in appendix 1). There was no evidence to 
support associations with alcohol consumption, 
serum folate, serum vitamin B12, total homocysteine, 
cardiometabolic factors, and C reactive protein.

Strengths and limitations of study
Strengths of this study include the assessment of 
multiple potentially modifiable risk factors in relation 
to Alzheimer’s disease, the use of data from large 
genome-wide association studies of the risk factors, 
and the Mendelian randomisation design. This design 
technique avoids bias from reverse causation and 
generally reduces confounding by other modifiable 
environmental exposures. Inference of causality in 
such analyses, however, relies on the assumptions that 
the genetic variants used as instruments are strongly 
associated with the risk factor (assumption 1 in fig 1) 
and that a pleiotropic or direct causal pathway does 
not explain the association (assumptions 2 and 3 
in fig 1). We cannot exclude that our findings might 
have been affected by weak instrument bias, which 
depends on the strength of the genetic instrument 
through the F statistic.39 Instrument strength was low 
for years of education completed but was considered to 
be adequate for intelligence and the other risk factors 
(table B in appendix 1). As the investigations were 
undertaken in a two sample setting (in which genetic 
associations with the risk factor and with the disease 
were estimated in separate datasets), however, any 
bias from weak instruments is in the direction of the 
null.40 Thus, weak instrument bias cannot explain the 
observed association between educational attainment 
and Alzheimer’s. Completely ruling out pleiotropy 
(where a genetic variant is associated with more than 
one risk factor) or an alternative direct causal pathway 
is a challenge for all Mendelian randomisation 

Years of education
College/university
Intelligence
Smoking quantity
Smoking quantity
Alcohol consumption
Co�ee consumption
25-hydroxyvitamin D
Serum folate
Serum vitamin B12
Total homocysteine

0.89 (0.84 to 0.93)
0.74 (0.63 to 0.86)
0.73 (0.57 to 0.93)
0.69 (0.49 to 0.99)
1.21 (0.56 to 2.61)
0.72 (0.50 to 1.04)
1.26 (1.05 to 1.51)
0.92 (0.85 to 0.98)
0.98 (0.72 to 1.33)
1.11 (0.95 to 1.30)
0.99 (0.88 to 1.11)

2.4x10-6

8.0x10-5

0.01
0.04
0.62
0.08
0.01
0.01
0.89
0.18
0.86

0.5 0.8 1 1.2 1.6

Risk factor Odds ratio (95% CI)Odds ratio (95% CI)

Odds ratio of Alzheimer’s disease
per genetically predicted

increase in each risk factor

P value

152
32
16
4

3*
3
5
4
2
7

18

No of SNPs

Fig 2 | Odds ratios for associations between genetically predicted higher educational 
attainment, intelligence, and lifestyle and dietary factors and Alzheimer’s disease. 
Estimates are per year of education completed, 1 unit higher log odds of college/
university completion, 1 SD higher intelligence, 10 cigarettes/day, drink of alcohol/
week, cup of coffee/day, 20% increase of 25-hydroxyvitamin D concentration, and 1 
SD serum folate, serum vitamin B12, and total homocysteine. *Excludes one outlying 
genetic variant (rs1051730) in or near neuronal nicotinic acetylcholine receptor genes 
(CHRNA3, CHRNA5, and CHRNB4). SNPs=single nucleotide polymorphisms
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analyses, particularly for risk factors determined by 
multiple genetic variants. In this study, we applied four 
methods: the conventional inverse variance weighted, 
weighted median, penalised weighted median, and MR-
Egger methods. The weighted median approaches give 
more weight to more precise instrumental variables and 
the estimate is consistent even when up to 50% of the 
information comes from invalid or weak instruments.38 
Results were similar in the inverse variance weighted 
and the two weighted median analyses. A limitation 
is that the estimates from the MR-Egger method 
were imprecise, in particular for completion of 
college/university education and intelligence. As a 
consequence, the MR-Egger method could not reliably 
detect either pleiotropic or causal effects. Another 
potential source of bias in Mendelian randomisation 
analyses is population stratification. Nevertheless, this 
was reduced in our study because the IGAP dataset was 
restricted to individuals of European ancestry. A further 
weakness is that power was limited for some of the 
analyses, and therefore we cannot exclude type II error 
as an explanation for the null results.
Another potential limitation is that the studies 
participating in IGAP used somewhat different 
diagnostic criteria for Alzheimer’s disease, but all cases 
met standard criteria for possible, probable, or definite 
Alzheimer’s (appendix 3). Some misclassification, 
however, was inevitable. A clinical diagnosis with 
standard criteria has good sensitivity and specificity 
for discerning between people with and without 
dementia, but the ability to separate Alzheimer’s from 
other causes of dementia is less accurate.1

Comparison with other studies
Among potentially modifiable risk factors, the evidence 
from conventional observational studies consistently 
supports the association between educational 

attainment and Alzheimer’s disease.5 A previous 
Mendelian randomisation analysis found no evidence 
of an association between educational attainment and 
Alzheimer’s, but the analysis was based on a single 
genetic variant for length of education and only two 
variants for university completion.41 In our analysis, 
with data from genome-wide association studies with 
up to about 405 000 individuals,21 length of education 
conferred by 152 genetic variants and completion of 
college/university education conferred by 32 variants 
were significantly associated with Alzheimer’s. 
Moreover, genebased genome-wide analyses have 
shown that educational attainment is strongly 
genetically correlated with intelligence (rg=0.70), 
cognitive performance (rg=0.75), and Alzheimer’s 
(rg=−0.31-−0.36).18 21

Our findings corroborate the results from previous 
Mendelian randomisation analyses showing no 
associations of genetically predicted BMI (based on 
32 single nucleotide polymorphisms),41-43 diabetes,41 
fasting glucose and insulin (based on 10 single nucleotide 
polymorphisms),41 cholesterol (with exclusion of 
genetic variants near APOE),41 44-46 or triglycerides41 44 
with Alzheimer’s disease. We also found no evidence 
of an association between abdominal obesity (waist 
to hip ratio adjusted for BMI) and Alzheimer’s. These 
null findings suggest that the associations between 
metabolic factors and hypercholesterolaemia and risk 
observed in some conventional observational studies5 

9 could reflect reverse causation bias or confounding—
for example, by APOE, which has numerous roles in 
pathogenesis of Alzheimer’s.47

We found no association between systolic blood 
pressure and Alzheimer’s disease when we used about 
100 genetic variants or when we restricted the analysis 
to the 50 single nucleotide polymorphisms that were 
most strongly associated with systolic blood pressure. 
This contrasts with an earlier Mendelian randomisation 
analysis,41 which showed an inverse association based 
on 24 variants. There are several possible explanations 
for this disparity. One explanation is that the earlier 
finding was a false positive and that the present 
analysis, in which the genetic variants associated with 
systolic blood pressure explain a larger proportion of 
variance, shows the true null association. Another 
explanation is that with a larger number of variants, 
the potential for pleiotropy is greater, which could 
have diluted the association in our analysis. A further 
complicating factor is survival bias as individuals with 
a high burden of variants associated with systolic blood 
pressure might have higher mortality and therefore 
be less represented among people with Alzheimer’s. 
Randomised controlled trials investigating the effect 
of antihypertensive treatment on all cause dementia 
have been inconclusive, and no effect on incidence of 
Alzheimer’s specifically has been observed.14

Interpretation of findings
There are several plausible pathways that could 
underlie the associations between higher educational 
attainment and intelligence and lower risk of 

BMI
Waist to hip ratio
Type 2 diabetes
Fasting glucose
Fasting insulin
Systolic blood pressure
Diastolic blood pressure
HDL cholesterol
LDL cholesterol
Total cholesterol
Triglycerides
C reactive protein

1.05 (0.91 to 1.21)
1.18 (0.97 to 1.45)
1.02 (0.97 to 1.07)
1.14 (0.99 to 1.32)
1.13 (0.85 to 1.51)
0.94 (0.77 to 1.14)
0.96 (0.79 to 1.16)
0.98 (0.90 to 1.07)
1.07 (0.98 to 1.17)
1.03 (0.94 to 1.12)
0.96 (0.87 to 1.06)
1.04 (0.94 to 1.17)

0.51
0.10
0.49
0.07
0.40
0.51
0.65
0.64
0.14
0.54
0.40
0.44

0.75 0.9 1 1.2 1.5

Risk factor Odds ratio (95% CI)Odds ratio (95% CI)

Odds ratio of Alzheimer’s disease
per genetically predicted

increase in each risk factor

P value

76*
38
50
36
19
93

105
70*
56*
73*
40

17*

No of SNPs

Fig 3 | Odds ratios for associations between genetically predicted cardiometabolic and 
inflammatory factors and Alzheimer’s disease. Estimates are per approximate 1 SD 
increase of continuous risk factors and per 1 unit higher log odds of type 2 diabetes. 
*Excludes one pleiotropic genetic variant near the APOE gene (also near APOC1 
and TOMM40 genes). SNPs=single nucleotide polymorphisms; HDL=high density 
lipoprotein; LDL=low density lipoprotein
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Alzheimer’s disease (fig J in appendix 2). One pathway 
is through increased cognitive reserve, which refers 
to the ability to recruit alternative brain networks 
or cognitive paradigms or to use brain structures or 
networks not normally used to compensate for brain 
ageing.19 20 This implies that an individual with more 
cognitive reserve (for instance from higher education or 
intelligence) uses more efficient processing pathways 
and can sustain more Alzheimer’s pathology before the 
initial clinical signs and symptoms emerge compared 
with an individual with less cognitive reserve.20

The association between education and Alzheimer’s 
might also be mediated by health behaviours and 
downstream metabolic and nutritional factors (fig J 
in appendix 2). Genetically predicted education was 
associated with smoking, high density lipoprotein 
cholesterol, triglycerides, insulin, and BMI (table D 
in appendix 1). These modifiable factors, however, 
were not significantly associated with Alzheimer’s and 
therefore are not likely to be mediators or confounders 
of the association with education. We were unable to 
use Mendelian randomisation to examine associations 
with physical activity and healthy eating patterns, 
which have been found to be associated with lower risk 
of Alzheimer’s in conventional observational studies 
(table A in appendix 1).5 Educational attainment could 
also be associated with occupation, and hence potential 
exposure to occupational hazards, as well as medication 
use, depression, and chronic stress, which could 
influence the risk (fig J in appendix 2). Evidence indicates 
that certain antidepressants (such as selective serotonin 
reuptake inhibitors) could stimulate neurogenesis 
in the hippocampus under certain conditions, while 
prolonged stress might result in hippocampal atrophy,48 
which is a modest predictor of progression of mild 
cognitive impairment to Alzheimer’s.49

Shared biological processes that impact on 
educational attainment and intelligence as well as 
development of Alzheimer’s might explain some of 
the associations. The genetic variants associated with 
educational attainment and intelligence are largely 
found in genes expressed in brain tissue and are 
enriched for biological pathways involved in neural 
and cell development.18 21

Conclusions and future research
Using a genetic approach, we found evidence that 
higher educational attainment is associated with a 
reduced risk of Alzheimer’s disease. Our study also 
provides suggestive evidence that the correlated trait 
of intelligence is inversely associated with Alzheimer’s. 
Further research is necessary to understand the pathways 
underpinning these associations. Furthermore, more 
work is needed to determine the possible role of 
smoking, coffee consumption, and vitamin D.
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