Accepted Manuscript

The effect of omega-3 supplementation on pregnancy outcomes by smoking status

Spencer G. Kuper, MD, Adi R. Abramovici, MD. Ms., Victoria C. Jauk, MPH, MSN, ANP-BC., Lorie M. Harper, MD, MSCI., Joseph R. Biggio, MD., Alan T. Tita, MD, PhD

PII: S0002-9378(17)30644-0

DOI: 10.1016/j.ajog.2017.05.033

Reference: YMOB 11680

To appear in: American Journal of Obstetrics and Gynecology

Received Date: 22 February 2017

Revised Date: 27 April 2017

Accepted Date: 15 May 2017

Please cite this article as: Kuper SG, Abramovici AR, Jauk VC, Harper LM, Biggio JR, Tita AT, The effect of omega-3 supplementation on pregnancy outcomes by smoking status, *American Journal of Obstetrics and Gynecology* (2017), doi: 10.1016/j.ajog.2017.05.033.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 TITLE Page

2	The effect of omega-3 supplementation on pregnancy outcomes by smoking status
3 4	Spencer G. KUPER, MD. Adi R. ABRAMOVICI, MD. Ms. Victoria C. JAUK, MPH, MSN, ANP-BC. Lorie M. HARPER, MD, MSCI. Joseph R. BIGGIO, MD. Alan T. TITA, MD, PhD.
5	
6 7	University of Alabama at Birmingham, Center for Women's Reproductive Health, Birmingham, Alabama
8	CONFLICTS OF INTEREST: The authors report no conflicts of interest.
9	FINANCIAL DISCLOSURE: The authors report no financial disclosures.
10	
11 12 13	PRESENTATION AT MEETING: This original research was presented in poster format at the Society for Maternal-Fetal Medicine's 37 th Annual Pregnancy Meeting, Las Vegas, NV, in January 23-28, 2017.
14 15	ACKNOWLEDGEMENT OF FINANCIAL SUPPORT: Dr. Harper is supported by K12HD001258, PI WW Andrews, which partially supports this work.
16	
17	CORRESPONDING AUTHOR:
18 19 20 21 22 23 24 25 26 27 28 29	Spencer G. Kuper, M.D. Department of Obstetrics and Gynecology Division of Maternal-Fetal Medicine University of Alabama at Birmingham 176F 10270 619 19 th Street South Birmingham, AL 35249 Phone: 205-934-9188 Fax: 205-975-9858 Email: <u>sgkuper@uabmc.edu</u> WORD COUNTS:
30	ABSTRACT: 406
31 32 33	MAIN TEXT: 2455
34	If accepted for publication, please use table 2 for the print version

35	Condensation: Omega-3 supplementation may have a protective effect against spontaneous
36	preterm delivery and low birth weight in pregnant smokers but not in nonsmokers.
37	Short title: Omega-3 supplementation and pregnancy outcomes in smokers and nonsmokers
38	
39	S
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	

52 **ABSTRACT:**

53 **BACKGROUND:** Smoking during pregnancy is associated with adverse maternal and neonatal 54 outcomes such as preterm delivery, intrauterine growth restriction, stillbirth, and low birth 55 weight. Since smoking causes oxidative stress, some have suggested using antioxidants to 56 counteract the effects of oxidative stress. Smokers have lower serum levels of omega-3 fatty 57 acids, an important antioxidant, and thus, investigating whether omega-3 supplementation in 58 smokers reduces adverse maternal and neonatal outcomes represents an important area of 59 research.

OBJECTIVE: To investigate whether the antioxidant effect of omega-3 fatty acid
 supplementation on the incidence of adverse pregnancy outcomes differs between smokers
 and nonsmokers.

STUDY DESIGN: Secondary analysis of a multicenter randomized controlled trial of omega-3 63 64 supplementation for preterm delivery prevention in women with a singleton pregnancy and a 65 history of a prior singleton spontaneous preterm delivery. Subjects were randomized to begin omega-3 or placebo prior to 22 weeks which was continued until delivery. All women received 66 17 alpha-hydroxyprogesterone caproate intramuscularly weekly beginning between 16 to 20 67 weeks of gestation and continued until 36 weeks of gestation or delivery, whichever occurred 68 69 first. The primary outcome was spontaneous preterm delivery. Secondary outcomes were indicated preterm delivery, any preterm delivery (spontaneous and indicated), pregnancy-70 71 associated hypertension (gestational hypertension and preeclampsia), a neonatal composite (retinopathy of prematurity, intraventricular hemorrhage grade III or IV, patent ductus 72

73	arteriosus, necrotizing enterocolitis, sepsis, respiratory morbidity, or perinatal death), low birth
74	weight (<2500 grams), small for gestational age (less than the 10 th percentile), and neonatal
75	intensive care unit or intermediate nursery admission. The study population was stratified into
76	smokers and nonsmokers, and the incidence of each outcome was compared by omega-3
77	supplementation versus placebo in each subgroup. Zelen tests were performed to test for
78	homogeneity of effect in smokers and nonsmokers.
79	RESULTS : Of 851 subjects included in the analysis, 136 (16%) smoked. Baseline characteristics
80	between omega-3 and placebo groups did not differ in smokers or nonsmokers. Omega-3
81	supplementation was associated with a lower risk of spontaneous preterm delivery in smokers
82	(RR 0.56, 95% Cl 0.36-0.87) but not in nonsmokers (RR 1.04, 95% Cl 0.84-1.29); p-value for
83	interaction = 0.013. Low birth weight was also less frequent in smokers receiving omega-3
84	supplementation (RR 0.57, 95% CI 0.36-0.90) compared to nonsmokers (RR 0.93, 95% CI 0.71-
85	1.24); p-value for interaction = 0.047. The effect on other secondary outcomes did not differ
86	significantly between smokers and nonsmokers.
87	CONCLUSION: Omega-3 supplementation in smokers may have a protective effect against
88	recurrent spontaneous preterm delivery and low birth weight.
89	KEYWORDS: Preterm birth, preterm delivery, low birth weight, omega-3 supplementation,
90	smoking, spontaneous preterm delivery, tobacco abuse

93 INTRODUCTION:

94 Smoking during pregnancy is associated with adverse maternal and neonatal outcomes. 95 Simpson¹ reported in 1957 that women who smoked were at an increased risk of spontaneous preterm delivery. Since then, numerous studies have confirmed this relationship.²⁻⁴ Further 96 studies have led to the widely accepted principle that smoking during pregnancy causes an 97 increased risk of spontaneous preterm labor, placental insufficiency, intrauterine growth 98 restriction, stillbirth, low birth weight, and a higher rate of perinatal mortality.²⁻⁷ Despite this, 99 8% of women in the United States continue to smoke during pregnancy.⁸ Thus, significant 100 efforts and resources have focused on strategies to mitigate adverse pregnancy outcomes in 101 pregnant smokers. Studies of antioxidants to reduce preterm birth, regardless of smoking 102 status, have yielded mixed results.⁹⁻¹⁵ Some have suggested potential benefits for smokers, and 103 hence, this represents an area requiring further investigation. 104 105 Omega-3 fatty acids are polyunsaturated fatty acids that have an important role in anti-

oxidation. Omega-3 fatty acid supplementation has been reported to have cardioprotective 106 effects, is safe, and has a narrow side effect panel with the most common being nausea (4% 107 when the daily dose is < 2 grams).^{16, 17} Smoking leads to peroxidation of omega-3 fatty acids and 108 further oxidative stress,¹⁸ and women who smoke have lower serum levels of omega-3 fatty 109 110 acids compared to nonsmokers because smoking has an inhibitory effect on the metabolism, bioavailability, and absorption of omega-3 fatty acids.^{9, 19, 20} Therefore, we sought to determine 111 112 if omega-3 supplementation in smokers confers a protective effect against adverse pregnancy outcomes. We hypothesize omega-3 supplementation has a protective effect against adverse 113

114 pregnancy outcomes, including spontaneous preterm delivery, in smokers but not in nonsmokers.

116 **MATERIALS AND METHODS:**

115

We performed a secondary analysis of the Eunice Kennedy Shriver National Institute of 117 Child Health and Human Development (NICHD) Maternal-Fetal Medicine Units Network 118 randomized controlled trial, "Omega-3 Fatty Acid Supplementation to Prevent Recurrent 119 Preterm Birth."¹⁴ The multicenter study was performed between January 2005 and October 120 2006 across 13 Maternal-Fetal Medicine Units Network sites. Patients between 16^{0/7} and 21^{6/7} 121 weeks of gestation with a singleton gestation who had a prior history of at least one singleton 122 spontaneous preterm delivery between $20^{0/7}$ to $36^{6/7}$ weeks of gestation were eligible for 123 enrollment. Exclusion criteria included a major fetal anomaly, fish oil consumption (≥ 500 124 mg/day) in the month prior to enrollment, anticoagulation use, chronic hypertension, 125 126 pregestational diabetes White's classification ≥ class D, substance abuse, epilepsy, uncontrolled thyroid disorder, clotting disorder, current or planned cerclage, or a medical indication for 127 delivery to occur prior to 37 weeks of gestation. Gestational age was assigned by either last 128 menstrual period or earliest ultrasound as described by Dombrowski et al.²¹ All patients had an 129 130 ultrasound prior to randomization to rule out a major fetal anomaly. Patients in both arms 131 received weekly intramuscular 17 alpha-hydroxyprogesterone caproate for the prevention of recurrent spontaneous preterm delivery, and this was continued until 36 weeks of gestation or 132 delivery, whichever occurred first.²² Patients were randomized to either omega-3 133 supplementation or identical appearing placebo capsules. The omega-3 supplementation 134

consisted of 1200 mg eicosapentaenoic acid (EPA, 20:5n-3) and 800 mg docosahexaenoic acid
(DHA, 22:6n-3) for a total of 2000 mg of omega-3 long-chain polyunsaturated fatty acids daily.
Patients received study medication until 36^{6/7} weeks of gestation or delivery, whichever came
earlier. Institutional review board approval was obtained at each clinical center and the data
coordinating center. The current analysis is performed on the publicly released dataset of the
trial under IRB-waiver by our institution (N160429005).

For this secondary analysis, patients who participated in the trial and had their smoking status recorded were included. Patients were divided into two subgroups, smokers and nonsmokers, and the effect of omega-3 supplementation versus placebo on the outcomes of interest was compared. Smoking status was classified as "any use" during pregnancy and was recorded at the conclusion of the pregnancy by patient interview and chart review. Exposure amount (e.g. number of cigarettes per day), duration of exposure, and whether the patient stopped smoking during pregnancy were not recorded in the original trial.

The main outcomes of interest were maternal and neonatal outcomes that may be 148 influenced by smoking and omega-3 supplementation during pregnancy. Preterm delivery was 149 defined as delivery occurring prior to 37^{0/7} weeks of gestation. The maternal outcomes included 150 spontaneous preterm delivery (primary outcome), indicated preterm delivery, any preterm 151 152 delivery (indicated and spontaneous), and pregnancy-associated hypertension (gestational hypertension or preeclampsia). Spontaneous preterm delivery was defined as patients who 153 154 delivered spontaneously after entering preterm labor or prematurely rupturing membranes and those who underwent induction of labor between 34^{0/7} and 36^{6/7} for preterm premature 155

156	rupture of membranes without contractions. Indicated preterm delivery included maternal and
157	fetal indications for delivery. Examples of maternal indications included severe preeclampsia,
158	placental abruption, placenta previa, and poorly controlled diabetes mellitus. Examples of fetal
159	indications included abnormal antenatal testing, oligohydramnios, and intrauterine growth
160	restriction. Pregnancy-associated hypertension was diagnosed in women who had two blood
161	pressure measurements \geq 140 mmHg systolic and/or \geq 90 mmHg diastolic on two separate
162	occasions at least four hours apart and were diagnosed with gestational hypertension or
163	preeclampsia by the managing physician. Neonatal outcomes of interest included a neonatal
164	composite, low birth weight (< 2500 grams), small for gestational age (less than the 10 th
165	percentile), ²³ and neonatal intensive care unit or intermediate nursery admission. Only live-
166	born infants were included in the analysis of neonatal outcomes with the exception of the
167	composite outcome, which included perinatal death. The neonatal composite included
168	retinopathy of prematurity, intraventricular hemorrhage grade III or IV, patent ductus
169	arteriosus, necrotizing enterocolitis, culture proven sepsis, respiratory morbidity, and perinatal
170	death. Respiratory morbidity included the diagnosis of respiratory distress syndrome,
171	bronchopulmonary dysplasia, transient tachypnea of the newborn, or the requirement of
172	surfactant administration at any point during the neonatal admission. The diagnostic
173	requirements for each neonatal condition comprising the neonatal composite outcome were
174	explained in the original study. ¹⁴

Baseline characteristics between patients receiving omega-3 supplementation or
placebo were compared in the smokers and nonsmokers groups using the Student t-test,
Wilcoxon rank-sum test or *Chi-squared* test as appropriate. Univariate analyses were then used

178	to compare the outcomes of interest and exposure to omega-3 supplementation in the smokers
179	and nonsmoker groups. Incidence and relative risks (RR) with 95% confidence intervals (CI)
180	were then computed to determine the treatment effect of omega-3 supplementation in the
181	smoker and nonsmoker groups. Zelen tests for homogeneity of odds ratios were used to
182	compare the smoker and nonsmoker groups to determine if a treatment effect of omega-3
183	supplementation differed between smokers and nonsmokers. A p-value less than 0.05 was
184	considered statistically significant.
185	RESULTS:
186	All 851 patients randomized in the original trial had their smoking status recorded and
187	were included in the analysis; 136 (16.0%) were smokers. Of the women receiving omega-3
188	supplementation, 64 were smokers and 370 were nonsmokers. In the placebo group there were
189	72 smokers and 345 nonsmokers (Figure 1).
190	Baseline characteristics of patients assigned to omega-3 supplementation versus
191	placebo were similar in smokers and nonsmokers (Table 1). Thus, multivariate analyses were
192	not performed. Study medication and 17 alpha-hydroxyprogesterone caproate compliance
193	rates were similar between women receiving omega-3 supplementation and placebo in the
194	smoker and nonsmoker groups.
195	In smokers, omega-3 supplementation compared to placebo was associated with a 44%
196	reduction in spontaneous preterm delivery (29.7% compared to 52.8%, RR 0.56, 95% CI 0.36-
197	0.87); whereas, there was no difference in nonsmokers (33.5% compared to 32.2%, RR 1.04,
198	95% 0.84-1.29). The smoker and nonsmoker groups differed due to heterogeneity as identified

by the Zelen test (p=0.0.013). Thus, omega-3 supplementation in smokers had a protective
effect against spontaneous preterm delivery but not in nonsmokers. Omega-3 supplementation
did not have a differential treatment effect in smokers and nonsmokers for the other maternal
outcomes (indicated preterm birth, any preterm delivery, and pregnancy-associated
hypertension) (Table 2).

204	In regards to neonatal outcomes, smokers receiving omega-3 supplementation had a
205	43% reduction in delivering a low birth weight infant compared to placebo (28.3% compared to
206	50.0%, RR 0.57, 95% CI 0.36-0.90) whereas there was no difference in nonsmokers (21.0%
207	compared to 22.5%, RR 0.93, 95% CI 0.71-1.24). The smoker and nonsmoker groups differed
208	due to heterogeneity as identified by the Zelen test (p=0.047). The remaining neonatal
209	outcomes did not statistically differ between the smoker and nonsmoker groups (Table 2).

210 **COMMENT:**

In our cohort of women at high risk of a recurrent spontaneous preterm delivery, 211 212 omega-3 supplementation was associated with a reduction in recurrent spontaneous preterm 213 delivery in smokers but not in nonsmokers. Similarly, omega-3 supplementation reduced the risk of low birth weight in smokers but not in nonsmokers, which was most likely related to the 214 215 reduced risk of spontaneous preterm delivery. Smokers and nonsmokers taking omega-3 supplementation were at similar risks of experiencing an indicated preterm delivery, any 216 217 preterm delivery, pregnancy-associated hypertension, small for gestational age, neonatal intensive care unit admission or intermediate care nursery, and the composite adverse 218 219 neonatal outcome.

220	A proposed mechanism of action of omega-3 fatty acids reducing the risk of
221	spontaneous preterm birth and therefore low birth weight is by altering the balance of
222	prostaglandins PGE ₂ and PGF _{2α} and prostacyclin (PGI ₂). ^{11, 12, 24} Omega-3 fatty acids decrease the
223	production of prostaglandins PGE_2 and $PGF_{2\alpha}$, which are important for initiating labor, while
224	they increase the production of prostacyclin (PGI ₂), which is important for uterine quiescence. ²⁵
225	Since smokers have lower serum levels of omega-3 fatty acids, ¹⁹ the physiology of
226	supplementation leading to uterine quiescence makes biological plausibility.
227	Our study is a secondary analysis of the largest randomized controlled trial performed in
228	the United States investigating the effects of omega-3 supplementation on the prevention of
229	recurrent preterm delivery. The authors of the original trial concluded omega-3
230	supplementation did not reduce the risk of recurrent preterm delivery (RR 0.91, 95% CI 0.77-
231	1.07). ¹⁴ To the contrary, a similar study performed in Denmark found omega-3 supplementation
232	reduced the risk of recurrent preterm delivery by 46% (RR 0.54, 95% CI 0.30-0.98), $^{ m 10}$ which was
233	similar to our findings in smokers (RR 0.56, 95% CI 0.36-0.87). Interestingly, the smoking rates
234	between the United States and Denmark studies were vastly different. The smoking rate in the
235	United States study was nearly 1/3 of that in the Denmark study (16 versus 43%). The Denmark
236	study was published three years before the Meis trial ²² established 17 alpha-
237	hydroxyprogesterone caproate as the standard of care for the prevention of recurrent preterm
238	delivery. Thus, it would have been unethical to withhold 17 alpha-hydroxyprogesterone
239	caproate from participants in the United States study, and therefore, all patients received
240	weekly 17 alpha-hydroxyprogesterone caproate. The authors of the United States study
241	suggested 17 alpha-hydroxyprogesterone caproate may have blunted the effect of omega-3

supplementation on recurrent preterm delivery. Our findings, instead, suggest omega-3
supplementation has different effects in smokers and nonsmokers.

244 Seven meta-analyses have reported conflicting results on the effects of omega-3 supplementation on pregnancy outcomes; ^{13, 24, 26-30} however, none of the included 245 randomized-controlled studies or the meta-analyses evaluated the differences in outcomes 246 between smokers and nonsmokers receiving omega-3 supplementation. We propose the 247 differences are explained by the antioxidant effects of omega-3 supplementation combating 248 249 the oxidative stress caused by cigarette toxins. This is further supported by the similar findings of Abramovici et al.³¹ who showed supplementation with vitamins C and E, which are 250 antioxidants, reduced the risk of preterm birth in smokers but not nonsmokers. Since smokers 251 have lower serum levels of omega-3 fatty acids and vitamins C and E, ^{19, 32} this may explain why 252 supplementation has a preferential effect in smokers compared to nonsmokers. 253

Our study is not without limitations. First, due to the way data were collected on 254 smoking status, we were unable to account for whether patients quit smoking during 255 256 pregnancy or the amount of exposure (e.g. number of cigarettes per day). We would expect if a larger proportion of women quit during pregnancy, our results would have been biased towards 257 the null; however, it is possible the dosage and duration of exposure may influence our results 258 259 in ways that we are unable to define given the limitations. Further, the number of smokers in each group was overall too small to delineate the subgroups for some of the outcomes. 260 261 Secondly, most interactions are likely due to chance, and we performed multiple comparisons which increase the likelihood of chance findings. For example, while not statistically significant, 262

the relative risk of having pregnancy-associated hypertension and an indicated preterm delivery
appears more than doubled in smokers receiving omega-3 supplementation compared to those
receiving placebo. These findings are likely due to chance and not attributable to omega-3
supplementation. Also, our results may not be generalizable to the wider population since our
study population was a high risk group of women who had previously experienced a
spontaneous preterm delivery.

Our study has a number of strengths. First, it was a multicenter trial that included a racially diverse group of women from throughout the United States. Secondly, study medication compliance rate in the original study was high and did not differ between the treatment and placebo groups (omega-3: 85.1% compared to placebo: 84.8%, p=0.33).¹⁴ Finally, the data was collected by trained research staff, and thus, we are confident in the accuracy of the collected data.

In sum, our findings suggest omega-3 supplementation may be protective against
recurrent spontaneous preterm delivery and low birth weight in smokers but not in
nonsmokers. Further studies should replicate and validate our findings. If these studies confirm
our findings, we suggest evaluating the relationship between cotinine (an objective measure of
quantity of smoking exposure) and serum omega-3 fatty acid concentrations in women who
smoke to better explain the mechanisms of the protective effects of omega-3 supplementation.

281 ACKNOWLEDGEMENTS: None

282 **REFERENCES**:

283	1.	SIMPSON WJ. A preliminary report on cigarette smoking and the incidence of prematurity. Am J
284	2	Obstet Gynecol 1957;73:807-15.
285	2.	MAINOUS AG, 3RD, HUESTON WJ. The effect of smoking cessation during pregnancy on preterm
286	2	delivery and low birthweight. J Fam Pract 1994;38:262-6.
287	3.	KYRKLUND-BLOMBERG NB, CNATTINGIUS S. Preterm birth and maternal smoking: risks related to
288 289	4.	gestational age and onset of delivery. Am J Obstet Gynecol 1998;179:1051-5. KYRKLUND-BLOMBERG NB, GRANATH F, CNATTINGIUS S. Maternal smoking and causes of very preterm
289	4.	birth. Acta Obstet Gynecol Scand 2005;84:572-7.
290 291	5.	BUTLER NR, GOLDSTEIN H, ROSS EM. Cigarette smoking in pregnancy: its influence on birth weight
291	Э.	and perinatal mortality. Br Med J 1972;2:127-30.
293	6.	HAMMOUD AO, BUJOLD E, SOROKIN Y, SCHILD C, KRAPP M, BAUMANN P. Smoking in pregnancy revisited:
294	0.	findings from a large population-based study. Am J Obstet Gynecol 2005;192:1856-62;
295		discussion 62-3.
296	7.	CNATTINGIUS S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal
297		characteristics, and pregnancy outcomes. Nicotine Tob Res 2004;6 Suppl 2:S125-40.
298	8.	CURTIN SC, MATTHEWS TJ. Smoking Prevalence and Cessation Before and During Pregnancy: Data
299		From the Birth Certificate, 2014. Natl Vital Stat Rep 2016;65:1-14.
300	9.	RABINOVITZ S. Effects of omega-3 fatty acids on tobacco craving in cigarette smokers: A double-
301		blind, randomized, placebo-controlled pilot study. J Psychopharmacol 2014;28:804-9.
302	10.	OLSEN SF, SECHER NJ, TABOR A, WEBER T, WALKER JJ, GLUUD C. Randomised clinical trials of fish oil
303		supplementation in high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP) Team. Bjog
304		2000;107:382-95.
305	11.	OLSEN SF, OLSEN J, FRISCHE G. Does fish consumption during pregnancy increase fetal growth? A
306		study of the size of the newborn, placental weight and gestational age in relation to fish
307		consumption during pregnancy. Int J Epidemiol 1990;19:971-7.
308	12.	OLSEN SF. Consumption of marine n-3 fatty acids during pregnancy as a possible determinant of
309		birth weight. A review of the current epidemiologic evidence. Epidemiol Rev 1993;15:399-413.
310	13.	KAR S, WONG M, ROGOZINSKA E, THANGARATINAM S. Effects of omega-3 fatty acids in prevention of
311		early preterm delivery: a systematic review and meta-analysis of randomized studies. Eur J
312		Obstet Gynecol Reprod Biol 2016;198:40-6.
313	14.	HARPER M, THOM E, KLEBANOFF MA, et al. Omega-3 fatty acid supplementation to prevent
314		recurrent preterm birth: a randomized controlled trial. Obstet Gynecol 2010;115:234-42.
315	15.	FREEMAN MP, COHEN LS, MCINERNEY K. Omega-3 Fatty acids and gestational length in a high-risk
316		psychiatric population due to psychiatric morbidity and medication exposure during pregnancy.
317	10	J Clin Psychopharmacol 2014;34:627-32. SACKS FM, STONE PH, GIBSON CM, SILVERMAN DI, ROSNER B, PASTERNAK RC. Controlled trial of fish oil
318 319	16.	for regression of human coronary atherosclerosis. HARP Research Group. J Am Coll Cardiol
320		1995;25:1492-8.
320	17.	WANG C, HARRIS WS, CHUNG M, et al. n-3 Fatty acids from fish or fish-oil supplements, but not
321	17.	alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-
323		prevention studies: a systematic review. Am J Clin Nutr 2006;84:5-17.
324	18.	MAHFOUZ MM, HULEA SA, KUMMEROW FA. Cigarette smoke increases cholesterol oxidation and
325	10.	lipid peroxidation of human low-density lipoprotein and decreases its binding to the hepatic
326		receptor in vitro. J Environ Pathol Toxicol Oncol 1995;14:181-92.
327	19.	SIMON JA, FONG J, BERNERT JT, JR., BROWNER WS. Relation of smoking and alcohol consumption to
328		serum fatty acids. Am J Epidemiol 1996;144:325-34.
329	20.	PAWLOSKY RJ, HIBBELN JR, SALEM N, JR. Compartmental analyses of plasma n-3 essential fatty acids
330		among male and female smokers and nonsmokers. J Lipid Res 2007;48:935-43.

331	21.	DOMBROWSKI MP, SCHATZ M, WISE R, et al. Asthma during pregnancy. Obstet Gynecol 2004;103:5-
332	22	
333 334	22.	MEIS PJ, KLEBANOFF M, THOM E, et al. Prevention of recurrent preterm delivery by 17 alpha- hydroxyprogesterone caproate. N Engl J Med 2003;348:2379-85.
335	23.	ALEXANDER GR, HIMES JH, KAUFMAN RB, MOR J, KOGAN M. A United States national reference for
336	~ ~	fetal growth. Obstet Gynecol 1996;87:163-8.
337	24.	SZAJEWSKA H, HORVATH A, KOLETZKO B. Effect of n-3 long-chain polyunsaturated fatty acid
338		supplementation of women with low-risk pregnancies on pregnancy outcomes and growth
339		measures at birth: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2006;83:1337-
340		44.
341	25.	OLSEN SF, HANSEN HS, SORENSEN TI, et al. Intake of marine fat, rich in (n-3)-polyunsaturated fatty
342		acids, may increase birthweight by prolonging gestation. Lancet 1986;2:367-9.
343	26.	HORVATH A, KOLETZKO B, SZAJEWSKA H. Effect of supplementation of women in high-risk
344		pregnancies with long-chain polyunsaturated fatty acids on pregnancy outcomes and growth
345		measures at birth: a meta-analysis of randomized controlled trials. Br J Nutr 2007;98:253-9.
346	27.	SACCONE G, BERGHELLA V. Omega-3 supplementation to prevent recurrent preterm birth: a
347		systematic review and metaanalysis of randomized controlled trials. Am J Obstet Gynecol
348		2015;213:135-40.
349	28.	SACCONE G, BERGHELLA V. Omega-3 long chain polyunsaturated fatty acids to prevent preterm
350		birth: a systematic review and meta-analysis. Obstet Gynecol 2015;125:663-72.
351	29.	IMHOFF-KUNSCH B, BRIGGS V, GOLDENBERG T, RAMAKRISHNAN U. Effect of n-3 long-chain
352		polyunsaturated fatty acid intake during pregnancy on maternal, infant, and child health
353		outcomes: a systematic review. Paediatr Perinat Epidemiol 2012;26 Suppl 1:91-107.
354	30.	SALVIG JD, LAMONT RF. Evidence regarding an effect of marine n-3 fatty acids on preterm birth: a
355		systematic review and meta-analysis. Acta Obstet Gynecol Scand 2011;90:825-38.
356	31.	ABRAMOVICI A, GANDLEY RE, CLIFTON RG, et al. Prenatal vitamin C and E supplementation in
357		smokers is associated with reduced placental abruption and preterm birth: a secondary analysis.
358		Bjog 2015;122:1740-7.
359	32.	GIRAUD DW, MARTIN HD, DRISKELL JA. Plasma and dietary vitamin C and E levels of tobacco
360		chewers, smokers, and nonusers. J Am Diet Assoc 1995;95:798-800.
361		
362		
363		
364		
365		
366		\mathbf{Y}
367		
368		

369 Table 1: Baseline characteristics of smokers and nonsmokers who received omega-3

370 supplementation or placebo

		Smokers (n = 136)	Nonsmokers (n=715)			
Characteristics	Omega-3 (n = 64)	Placebo (n = 72)	P value	Omega 3 (n = 370)	Placebo (n = 345)	P value
Maternal age (years)*	26.0 ± 5.3	25.4 ± 3.9	0.48	28.1 ± 5.4	28.0 ± 5.3	0.88
Gestational age at randomization (weeks)	19.9 (18-21)	19.3 (18.4-20.8)	0.39	19.4 (17.9-20.9)	19.6 (18-21)	0.48
Race						
Black	36 (56.3)	34 (47.2)		108 (29.2)	109 (31.6)	
White	21 (32.8)	30 (41.7)	0.76	190 (51.4)	178 (51.6)	0.63
Hispanic	6 (9.4)	7 (9.7)		58 (15.7)	50 (14.5)	
Other	1 (1.6)	1 (1.4)		14 (3.8)	8 (2.3)	
Marital status			X			
Married	32 (50.0)	29 (40.3)		277 (74.9)	248 (71.9)	
Divorced, separated, or widowed	6 (9.4)	7 (9.7)	0.50	10 (2.7)	18 (5.2)	0.22
Never Married	26 (40.6)	36 (50.0)		83 (22.4)	79 (22.9)	
Education level (years)	12 (11-13)	12 (11-12)	0.61	13 (12-16)	13 (12-16)	0.64
17 alpha-OHP compliance	93 (85-100)	100 (88-100)	0.23	100 (93-100)	100 (93-100)	0.90
Study drug compliance	89.5 (79-98.5)	86 (78-94.5)	0.11	93 (80-99)	93 (81-99)	0.89
Consumption of fish at baseline (servings/week)	0.5 (0-1.5)	0.5 (0-1.5)	0.93	1 (0-1.5)	0.5 (0-1.5)	0.17
Consumed at least one serving of fish/week during pregnancy	41 (64.1)	47 (65.3)	0.88	269 (72.7)	241 (69.9)	0.40
Number of previous PTDs	1 (1-2)	1 (1-2)	0.72	1 (1-2)	1 (1-2)	0.30
History of more than one PTD	22 (34.4%)	25 (34.7%)	0.97	109 (29.5%)	91 (26.1%)	0.31
History of more than one full-term births	17 (26.6%)	14 (19.4%)	0.32	41 (11.1%)	35 (10.1%)	0.68

OHP, hydroxyprogesterone; PTD, preterm delivery

Data are mean ± standard deviation, median (interquartile range), and n(%)

*Eighteen maternal ages removed due to exact ages not known.

Table 2: Treatment effects of omega-3 supplementation and placebo in smokers and nonsmokers on pregnancy and neonatal

372 outcomes

	Smoker	Smoker	Nonsmoker	Nonsmoker	Smoker	Nonsmoker	P-Value
	Omega-3	Placebo	Omega-3	Placebo	Treatment Effect	Treatment Effect	for
Outcome	(n=64)	(n=72)	(n=370)	(n=345)	RR(95% CI)	RR(95% CI)	Interaction
Spontaneous PTD	19(29.7)	38(52.8)	124(33.5)	111(32.2)	0.56(0.36-0.87)	1.04(0.84-1.29)	0.013
Indicated PTD	6(9.4)	3(4.2)	15(4.1)	22(6.4)	2.25(0.59-8.63)	0.64(0.34-1.21)	0.125
PTD (indicated and	25(20.4)	44(500)	120(27.0)	122/20 ()		0.00(0.01.1.10)	0.001
spontaneous)	25(39.1)	41(56.9)	139(37.6)	133(38.6)	0.69(0.48-0.99)	0.98(0.81-1.18)	0.091
Pregnancy-associated HTN	5(7.8)	2(2.8)	15(4.1)	18(5.2)	2.81(0.57-14.0)	0.78(0.40-1.52)	0.204
Neonatal composite	14(21.9)	17(23.6)	78(21.1)	56(16.2)	0.93(0.50-1.73)	1.30(0.95-1.77	0.375
LBW (< 2500 grams) +	17(28.3)	36(50.0)	77(21.0)	76(22.5)	0.57(0.36-0.90)	0.93(0.71-1.24)	0.047
SGA†	8(13.3)	13(18.1)	27(7.4)	28(8.3)	0.74(0.33-1.66)	0.89(0.53-1.48)	0.783
NICU or intermediate nursery	13(22)	22(32.4)	97(26.5)	77(23)	0.68(0.38-1.23)	1.15(0.89-1.50)	0.130
admission‡							
PTD, preterm delivery; LBW, low birth weight; SGA, small for gestational age; NICU, neonatal intensive care unit							

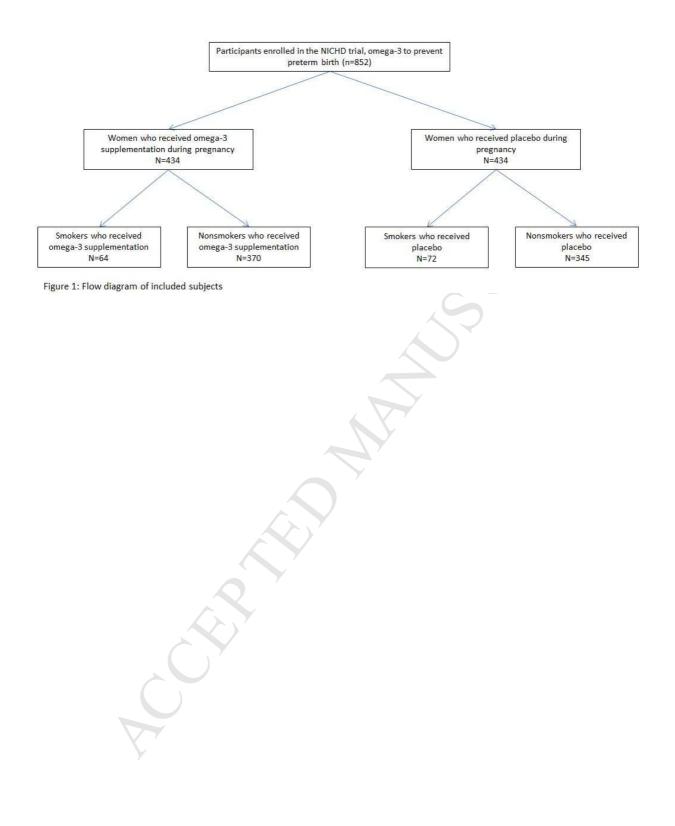
Neonatal composite: retinopathy of prematurity, grade III or IV intraventricular hemorrhage, patent ductus arteriosus, necrotizing enterocolitis, culture proven sepsis,

respiratory morbidity, and perinatal death

Data are n(%); bold signifies statistical significance

* Zelen test for homogeneity of odds ratios comparing smokers to nonsmokers

[†]Only live born neonates included, [‡]Only live born neonates included but excludes 9 infants that died in the delivery room


373

374

376 Figure 1 legend page:

- 377 <u>Title of figure 1</u>: Flow diagram of included subjects
- 378 <u>Description of figure 1</u>: Flow diagram of smokers and nonsmokers who received omega-3
- 379 supplementation or placebo beginning between 16 to 22 weeks of gestation and continuing
- until 36 weeks of gestation.

CHR ANA

