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ABSTRACT
There has been much recent interest in the role of the
vitamin D axis in lung disease, which includes vitamin D,
vitamin D receptor (VDR) and vitamin D-binding protein
(VDBP; also known as Gc-globulin). VDBP is a serum
protein which has immunomodulatory functions relevant
in the lung, predominantly relating to macrophage
activation and neutrophil chemotaxis. Variations within
its gene are also associated with airways disease,
implying a role for the protein product in pathogenesis.
Thus far the majority of evidence relates to chronic
obstructive pulmonary disease (COPD), but is scant in
other airways diseases, such as asthma and
bronchiectasis. VDBP also acts as a scavenger protein to
clear extracellular G-actin released from necrotic cells,
which may be of relevance in severe lung infections and
acute lung injury. Vitamin D protects against the
development of cancer and tuberculosis, although
optimal levels are unknown. The majority of circulating
vitamin D is bound to VDBP, and its uptake into cells
occurs in both bound and unbound forms, which
suggests the role of VDBP warrants further study in
these conditions as well. This article reviews the
evidence of the role VDBP and its gene (GC) in a range of
lung diseases, including asthma, COPD and tuberculosis.

INTRODUCTION
The potential role of vitamin D in asthma,1 chronic
obstructive pulmonary disease (COPD)2 and
tuberculosis (TB)3 has recently been highlighted in
a series of editorials, and is summarised in table 1.
The majority of vitamin D in the circulation is
bound to vitamin D-binding protein (VDBP, also
known as Gc-globulin), which has anti-inflamma-
tory and immunomodulatory functions indepen-
dent of vitamin D carriage.4 5 These roles, together
with their relationship to serum vitamin D (25-
hydroxyvitamin D (25-OHD)) levels, may therefore
be important in a range of lung diseases.
The human Gc-globulin was originally identified

by Hirschfeld in 1959 as a marker in the l-globulin
of the human serum by serum electrophoresis.6

Initially it was characterised as a group-specific
component or Gc-globulin, but its identity as the
plasma protein that binds vitamin D was not
discovered until 1975,7 when it gained its current
name, vitamin D-binding protein (VDBP). VDBP
was then known to transport 25-OHD, the major
circulating form of vitamin D, and 1,25-
dihydroxyvitamin D (1,25-OHD), the most active
vitamin D metabolite, but over the years it has
been appreciated that it has other roles beyond
effects of the balance between these two forms on
bone metabolism. VDBP is expressed in many

tissues, including liver, kidney, gonads and fat.8 It is
also expressed by neutrophils,9 10 contributes to
macrophage activation,4 augments monocyte and
neutrophil chemotaxis to C5-derived peptides11 12

and acts as a scavenger protein to clear extracellular
G-actin released from necrotic cells.13e15 Any or all
of these functions are likely to be relevant in the
lung.

The human VDBP gene
The human vitamin D-binding protein gene (GC) is
part of a gene cluster that includes the albumin
(ALB) and a-fetoprotein (AFP) genes (termed the
albumin multigene family) and, like the other genes
in the cluster, is robustly expressed in the liver and
other tissues.8 GC is located on chromosome 4, is
w42 kb in size, and is comprised of 13 exons,16 one
of which is entirely untranslated, and two others
only partially translated.17 Transcription of the
gene is regulated by a liver-enriched transcription
factor at binding sites close to GC on chromosome
4.18 The location of the gene cluster, relative gene
positions and the structure of GC are shown in
supplementary figure 1 online. Some genetic
terminology is also defined in the supplementary
material.

GC polymorphisms
GC is highly polymorphic, with three commonly
recognised variants (GC1F, GC1S and GC2) and
>120 rarer variants.19 Single nucleotide poly-
morphisms (SNPs; rs4588 and rs7041) in exon 11 of
the gene result in the common isoforms, termed
GC1 and GC2; GC1 is then subdivided into GC1F
and GC1S. Their protein products differ at posi-
tions 416 and 420, such that GC1F and GC1S
proteins are identical except for a substitution of
glutamic acid for aspartic acid in GC1S at position
416, whilst GC2 differs from GC1F by having
a further substitution of lysine for threonine at
position 42020 (table 2). These polymorphisms
affect protein function, such that GC2 is less able
to be converted to macrophage-activating factor,4

resulting in reduced macrophage function in GC2
carriers.
There is also significant variation in the ability of

these common variants to bind vitamin D, perhaps
driven by the rs7041 genotype,21 which may have
an impact on serum 25-OHD levels. This may
partly explain racial and geographical differences in
GC allele frequencies,22 such that those with higher
vitamin D binding affinity (such as GC1F) are more
common in darker skinned races, and highly sun-
exposed regions. Serum levels of both 25-OHD and
1,25-OHD vary according to GC genotype, even
within racial groups,23 and this, or variations in
the other protein functions, may account for
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associations of the GC genotype with a variety of diseases,
including those discussed here. In addition, the response to
vitamin D supplementation may relate to GC genotype.24

Unlike other VDBP functions, there are no known variations in
actin binding capacity as a result of genetic variation.20 The role
of VDBP in macrophage activation and neutrophil chemotaxis
led to studies of genetic associations of GC in lung diseases
where such processes might be important in pathogenesis. These
will be discussed in disease-specific sections later.

STRUCTURE AND FUNCTION OF VDBP
VDBP is a glycosylated a-globulin, w58 kDa in size. It is 458
amino acid residues in length and folds into a disulfide-bonded,
triple-domain structure, further divided into two repeated,
homologous domains of 186 amino acids (domains I and II) and
a shorter domain of 86 residues at the C-terminus (domain III).25

Its structure is shown in supplementary figure 2 online. In
simplified terms, domain I binds vitamin D25 whilst it is
predominantly domain III that binds actin,26 the functions
which are independent of each other.

Circulating vitamin D and its metabolites are bound to both
albumin and VDBP. Since the affinity of albumin for 25-OHD
and 1,25-OHD is substantially lower than that of VDBP27 the
vast majority are bound to VDBP, but because of its relative
abundance a proportion remain bound to albumin. Since the
serum levels of both carrier proteins exceed those of 25-OHD
and 1,25-OHD, the vast majority of these carrier proteins are
empty.28 The relationship of VDBP and vitamin D concentra-
tions is not yet clear. Low total vitamin D concentrations were
reported in the original VDBP knockout mouse model, but did
not relate to that of the active form of vitamin D (1,25-OHD) in
more recent work,29 although these concepts have not been
studied widely in man.

Vitamin D may be taken up into cells by diffusion of unbound
vitamin across cell membranes, and by endocytosis of that
bound to VDBP via binding of VDBP to megalin30 and cubulin,31

a process illustrated in figure 1. This was first recognised in renal
cells, but has now been reported in other tissues, including

macrophages.28 These facts have a bearing on reports relating
vitamin D to lung disease, as most assays measure both bound
and unbound forms. It is also important to realise that 25-OHD
levels must be very low (<10 ng/ml) before the concentration of
1,25-OHD is affected, due to its regulation by the calcium
homeostasis systems.33 The serum level of 25-OHD considered
normal (or sufficient) is a topic of debate at present, with some
reference laboratories known to us using a level of 30 ng/ml, and
others 20 ng/ml. Since most of the immunomodulatory function
of vitamin D relates to 1,25-OHD34 it may be that only patients
exhibiting severe vitamin D deficiency (<10 ng/ml) will have
any alterations in immune function, since it is only this group in
whom 1,25-OHD will also be low. This is likely to be relevant in
studies of lung diseases, such as TB, where immune modulation
is biologically important.
The ability of VDBP to bind actin blocks the formation of F-

actin networks that might otherwise occlude the vasculature

Table 1 Vitamin D and lung disease

Disease Epidemiology In vitro research Clinical research

Asthma Ylevels associate with severity
[maternal concentrations associate with
childhood atopy

1,25-OHD alters Th1eTh2 balance Supplementation trial under way

COPD Ylevels associate with YFEV1
Ylevels in half of patients with COPD

1,25-OHD [clearance of Pseudomonas
and Staphyloccus spp

Supplementation trial under way

TB Ylevels in patients with TB 1,25-OHD [clearance of mycobacteria 1 RCT of supplementation: no benefit
Further trials under way

Lung cancer Ylevels associate with cancer incidence
[levels associate with better response to
treatment

25-OHD supplements Ymetastasis in
murine models

Supplementation trials under way in
a range of malignancies

The table summarises some of the existing evidence supporting a role for vitamin D in lung disease. Original references for these studies can be found in recent editorials/reviews,1e3 being
omitted here in order to simplify the text in the table.
COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 s; 25-OHD, 25-hydroxyvitamin D; 1,25-OHD, 1,25-dihydroxyvitamin D; RCT, randomised controlled trial; TB,
tuberculosis; Th, T helper.

Table 2 Haplotypes of rs7041 and rs4588 result in structurally
different proteins

Variant
Alleles at rs7041
and rs4588

Protein composition
at positions 416 and 420

GC1F G/A Asp/Thr

GC1S T/A Glu/Thr

GC2 G/C Asp/Lys

The table shows the alleles present at rs7041 and rs4588, and the resulting protein
composition at positions 416 and 420, respectively.

Figure 1 How the vitamin D axis influences cellular response. The
diagram shows how vitamin D and vitamin D-binding protein (VDBP)
influence gene transcription via the vitamin D receptor (VDR). Free 1,25-
hydroxyvitamin D (1,25-OHD) enters cells via diffusion and bound 1,25-
OHD by interaction of VDBP with transporter proteins (cubilin and
megalin). The metabolite of 1,25-D3 (1,24-25-D3) binds to VDR. VDR is
associated with corepressors (NCoR), which dissociate from VDR after
ligands (such as 1,24-25-D3) bind. Ligand-bound VDR forms a hetero-
dimer with the retinoid X receptor (RXR) and recruits coactivators
(NCoA), resulting in histone acetylation. The resulting VDR complex
initiates transcription of accessible DNA templates. The expression of
VDR target genes results in cell growth inhibition and synthesis of
antimicrobial peptides, such as catheledicin. DRIP, vitamin D receptor-
interacting protein; VDRE, vitamin D receptor response element. Adapted
from Ting et al.32
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following cellular damage. The affinity for actin monomers is
high (Kd¼10�9 M),26 and is consistent with actin binding being
a major function of VDBP. Since cell death may result in the
liberation of large amounts of actin into the extravascular space,
and VDBP acts to clear this from the circulation, we might
expect VDBP levels to be depressed and actineVDBP complexes
elevated, in any condition where cell death occurs. This
hypothesis has been confirmed in a single study of adult respi-
ratory distress syndrome (ARDS), a disease characterised by
massive cellular injury.35 Low circulating levels of VDBP have
also been reported more recently in sepsis.36

The other main functions of VDBP relate to macrophage
activation4 and neutrophil chemotaxis.11 VDBP is converted to
macrophage-activating factor by the action of either b-galacto-
sidase from B lymphocytes or sialidase from T lymphocytes on
carbohydrate side chains of the protein.4 VDBP is not directly
chemotactic to neutrophils, but does enhance the chemotactic
effect of complement-derived peptides (C5a), which are able to
interact with domain I of VDBP.37 CD44 and annexin 2 are
thought to play a key role in subsequent interaction of VDBP
complexes with neutrophils.38 VDBP-binding sites are upregu-
lated on activated neutrophils,39 suggesting that changes in its
circulating concentration might occur in inflammatory condi-
tions. Consistent with this, in vitro work has shown that GC
transcription is enhanced by proinflammatory cytokines.40 The
functions of VDBP are summarised in table 3.

Location of VDBP
VDBP is present in various body fluids including serum, perito-
neal fluid41 and cerebrospinal fluid,42 and is also found on the
surface of many cell types including human neutrophils.10

Although the vast majority of serum VDBP is derived from
expression and secretion by liver parenchyma cells, small
contributions by non-hepatic cell types including human
monocytes are recognised.43 This implies widespread function-
ality of the protein, consistent with its effects on innate
immunity and actin binding.

CHRONIC OBSTRUCTIVE PULMONARY DISEASE
GC and genetic susceptibility
Cigarette smoking is the main environmental risk factor for
developing COPD, but genetic susceptibility also plays a role in
disease of both the airways and the parenchyma.44 In addition
to the accepted susceptibility conferred by a-1-antitrypsin defi-
ciency (AATD) (reviewed elsewhere45), adequately replicated
genetic associations are recognised in candidate genes suggested
by the pathogenetic themes of proteaseeantiprotease imbalance,
oxidanteantioxidant imbalance and inflammation. In addition
there may be a role for nicotine addiction, given the association
between polymorphisms in the a-nicotinic acetylcholine

receptor locus (CHRNA3/5) and COPD.46 The genes or regions
associated with COPD in a least one meta-analysis, or in at least
two independent populations in genome-wide association
(GWA) studies are SERPINE2,47 the MMP cluster on chromo-
some 11,48 49 the CHRNA3/5 locus,46 HHIP,46 50 the GSTP
genes,51 IL1B,51 EPHX152and TNFA.51 53 GC has been studied
only in smaller COPD populations, and as yet is not the subject
of a meta-analysis. Nevertheless it is appropriate to consider
current evidence for its role in COPD.
Most studies of GC in COPD (summarised in table 4) have

concentrated on known functional variants; such as the GC2
and GC1S alleles, caused by non-synonymous SNPs (rs4588 and
rs7041). The relationship between these SNPs, the listed genetic
variants and their resultant protein products is shown in table 2.
As such it is now recognised that GC2, GC1S and GC1F are not
alleles as such, but haplotypes composed of combinations of the
SNPs at these loci. We will therefore refer to them as variants
from here on. An individual may be homozygous or heterozy-
gous for each variant, depending on the two haplotypes present.
The GC1S variant has not been associated with COPD in any
racial group.54e56 The GC2 variant appears protective in
Caucasians.55e57 The GC1F variant has been consistently asso-
ciated with a range of COPD phenotypes in Asian subjects,57e59

but results in Caucasians have been inconsistent.55 60 61 This is
probably because Caucasians have a lower frequency of GC1F,
thus the studies were underpowered. A single recent study has
reported their results according to SNP genotype rather than the
more commonly reported variants; in that work, the rs7041 TT
genotype was associated with both low 25-OHD levels and risk
of COPD.21

An alternative explanation for inconsistency of study results
in COPD may be that the true functional variant lies in linkage
disequilibrium (LD) with one of the studied variants, or that the
phenotype it associates with is very specific, so it is not
detectable in heterogeneous populations. With this in mind it is
of interest that SNPs adjacent to GC associated with forced
expiratory volume in 1 s (FEV1) in a recent GWA study62

implying that in an adequately powered study a genetic variant
influencing FEV1 can be detected that may well exhibit a degree
of LD with GC. Further information pertaining to the strength
of LD between these SNPs and the GC2 and GC1F variants may
help to ascertain if the reported association could in fact be due
to GC variation.
In AATD, which is recognised to exhibit similar genetic

associations to usual COPD, we have reported an influence of
GC polymorphisms on airway bacterial colonisation and
subsequent bronchiectasis.63 It is also of note that GC variants
have been associated with diffuse panbronchiolitis58 (a condition
seen almost exclusively in Japan) which leads to bronchiec-
tasis.64 This may be due to similar mechanisms to those in
COPD and AATD, but will require further study.

Table 3 The functions of vitamin D-binding protein (VDBP)

Function Relevance to lung and/or systemic disease Mechanism

Vitamin D transportation Potential influence of levels of vitamin D on host
defence and regulation of cell proliferation

Delivery of vitamin D to lung parenchyma and
to alveolar macrophages

Actin binding Prevents systemic vascular occlusion following
cellular damage. Potential relevance in sepsis and
acute lung injury

Prevents formation of F-actin networks in the
systemic circulation

Neutrophil chemotaxis Neutrophilic inflammation is a recognised part of
COPD and ALI pathogenesis. Neutrophil recruitment
is a key part of host defence.

Enhances chemotactic effect of complement-derived peptides

Macrophage activation Macrophage activity is a key part of host defence,
and contributes to COPD and ALI pathogenesis

VDBP is converted to macrophage-activating factor by
enzymes derived from lymphocytes

ALI, acute lung injury; COPD, chronic obstructive pulmonary disease.
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Very little functional work concerning GC polymorphisms
has been undertaken in COPD; one study has reported differ-
ences in molecular structure which could play a role,65 but it is
more likely that known differences in conversion to macro-
phage-activating factor4 are important. Differences in neutrophil
chemotactic activity between the GC2, GC1F and GC1S
proteins have not been found.61 Both activated macrophages and
neutrophilic inflammation are believed to be important in
COPD pathogenesis; since the former is affected by GC varia-
tion, this supports a role for the gene in susceptibility.

VDBP
There has been relatively little work concerning the role of
VDBP in COPD, despite the wealth of genetic studies. The
protein is present in bronchoalveolar lavage (BAL) fluid from
subjects with COPD and asymptomatic smokers.5 66 In general
VDBP levels were higher in COPD,5 but the effect of smoke
exposure is uncertain, as results pertaining to this and VDBP
function were inconsistent. It should be noted that since tran-
scription of GC is affected by proinflammatory cytokines, VDBP
might be considered an acute phase reactant. As such, differen-
tiation of its role in the lung to ascertain if it is distinct from this
will be important. VDBP also interacts with a key mediator of
lung damage in COPDdneutrophil elastase (NE) cleaves the
VDBP-binding site on neutrophils, such that VDBP is released
into the circulation,67 where it would become bioactive.
Furthermore, the ability of VDBP complexes to mediate
neutrophil chemotaxis is prevented by NE inhibitors.67 This area
warrants further research to clarify its relevance to COPD, and
potential for modification by treatment.

TUBERCULOSIS
GC and genetic susceptibility
Given that VDBP is involved in both neutrophil chemotaxis and
macrophage activation, it is conceivable that airway defence
against infection could be altered by GC genotype. Genetic
susceptibility to TB has been found in a genome-wide linkage
study,68 though to date most studies have been relatively small
and concentrated on candidate genes relating to immune func-
tion. This limits their utility in determining new disease
mechanisms but, where associations are well replicated, does not
detract from their results. At least one GWA study is now

underway,69 which has potential to reveal hitherto unrecognised
aspects of pathogenesis. Meta-analysis level support for genetic
susceptibility exists for SSC11A1 polymorphisms in Asians,70

and a non-synonymous SNP in interferon g (IFNG).71

If the vitamin D axis plays a role in TB pathogenesis,3 varia-
tion within genes such as GC and VDR could be relevant in
promoting resistance or susceptibility to the infection. VDR has
been more widely studied and genetic variation within it appears
to influence lymphocyte response toMycobacterium tuberculosis.72

Nevertheless a meta-analysis of VDR studies was inconclusive,73

perhaps due to small study sizes and population heterogeneity.
HIV status in particular may influence the apparent effect of
susceptibility loci, perhaps because in HIV-positive individuals
this surpasses the small risk attributable to genetic factors.74

Three studies have reported risk of TB infection in relation to
GC genotype. GC2 homozygotes were more common in TB
relative to controls in two studies in Asian populations,75 76 but
the risk appears to depend on an interaction between vitamin D
status and genotype.76 The association might be consistent with
their reduced ability to convert GC to macrophage-activating
factor, but requires further study of the reasons for synergy with
vitamin levels. In Caucasian Russians, no GC genotype was
associated with TB.77

VDBP and vitamin D
The main focus of vitamin D axis research in TB has been
vitamin D itself. The purpose of this review is to concentrate on
other aspects of the axis, so it is appropriate to consider how
these relate to vitamin D concentrations. Circulating vitamin D
levels have often been reported to be low in TB, as summarised
elsewhere,3 and vitamin D deficiency has been proposed as part
of a mechanism for annual influenza epidemics.78 Nevertheless
the first trial of supplementation in TB did not improve
outcomes79 perhaps because vitamin D concentrations were not
improved markedly in the treatment group, or because part of
the effect of the vitamin D axis in TB lies away from the
vitamin. VDBP is elevated in serum during human80 and
bovine81 mycobacterial infections, though it is not known if this
relates directly to vitamin D. It is also unclear if VDBP is simply
a marker of the acute inflammatory response, since other acute
phase reactants were similarly elevated,80 or truly reflective of
a role for the protein in pathogenesis. Further studies of both

Table 4 GC polymorphism and the risk of chronic obstructive pulmonary disease (COPD)

Population Phenotype No. of cases/controls Risk allele Protective allele Ref

Caucasian Canada COPD 75/64 e GC2 61

Canada COPD 104/413 e GC2 60

Iceland COPD
Chronic bronchitis

112/183
48/183

e
GC1F

e
GC2

110

Russia COPD 298/237 e e 56

USA COPD 127 families and
304/441

e e 54

Denmark Rapid decline of FEV1 283/308 e e 55

Asian Tatar COPD 298/237 GC1F GC2 56

Japan COPD
Rapid decline of FEV1
Emphysema

113/88
86/21
85/88

GC1F e 57

Japan COPD
Diffuse panbronchiolitis

63/82
82/82

GC1F e 58

China COPD 69/52 GC1F e 59

The table summarises studies of functional GC variants in COPD phenotypes. Since some of the studies have considered related, albeit different, COPD phenotypes, or have used different
severity criteria, meta-analysis has not been performed. There have been three studies in Caucasians reporting that GC2 homozygotes were protected from COPD, but also three negative
studies. In Asian subjects there have been four studies reporting GC1F (particularly homozygotes) to be susceptible to COPD, and one report of GC2 acting as a protective variant. It should be
noted that the Tatar population in whom this study was performed, whilst ethnically Asian (coming from Mongolia), are relatively heterogeneous in modern Russia, where the study was
performed. Ancestral markers to determine racial admixture were not checked, so this population is likely to contain both Asian and Caucasian elements.
FEV1, forced expiratory volume in 1 s.
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vitamin D and VDBP are warranted in infectious lung disease to
clarify this.

LUNG CANCER
GC and genetic susceptibility
The vitamin D endocrine system is involved in a wide variety of
biological processes including regulation of cell proliferation and
differentiation, and can modulate such processes in cancer
cells.82 Consequently GC and VDR may both be considered
potential candidate genes for malignancy. The literature on
genetic susceptibility to malignancy is extensive, and many
GWA studies have been carried out already. In lung cancer the
most well replicated associations at the GWA level lie in (or close
to) CHRNA3/5,83 TERT84 and CLPTM1L.84 Meta-analysis level
support exists for p53,85 XPC86 and hOGG1 (Asians only),87

amongst others. Several VDR polymorphisms have recently been
associated at meta-analysis level with malignancy, but this was
not specific to lung cancer.88 No studies have considered GC in
lung cancer susceptibility, and studies of the GC1F and GC2
alleles in other malignancies have yielded conflicting results.89 90

VDBP and vitamin D
Animal and epidemiological studies suggest that active vitamin
D metabolites (such as 1,25-OHD) prevent progression and
metastasis of lung cancer.91 92 Consistent with this, higher rates
of total cancer mortality have been reported in regions with less
UV-B radiation, where vitamin D levels tend to be lower,92 and
improved survival has been observed in patients with early-stage
non-small cell lung cancer (NSCLC) with high vitamin D
levels.93 The protective effects of vitamin D are believed to result
from its role as a nuclear transcription factor that regulates
cellular mechanisms central to the development of cancer,
including cell growth, differentiation and apoptosis. Inhibition
of metastasis and angiogenesis seems to be responsible for the
anticancer effects of vitamin D in the lung.94 It should, however,
be noted that although there may be good mechanistic reasons
for suggesting that vitamin D has a direct role in pathogenesis,
this has yet to be supported by clinical trial data in lung cancer
indicating that supplementation and correction of deficiency is
beneficial.

The VDR has also been studied in a murine lung cancer model
and is present in both normal lung epithelial cells and those from
lung adenomas.95 In one study, circulating VDBP levels were
similar between subjects with cancer (although not specifically
lung cancer) and healthy individuals.96 This does not necessarily
mean that the vitamin D axis is not involved in cancer risk.
Possible interpretations of the negative result are: (1) the vitamin
D axis has a role local to the tumour site; (2) that the effect is
mediated purely by vitamin D and VDR; or (3) VDBP’s role is
small and difficult to quantify. Current understanding of the role
of the vitamin D axis in malignancy is shown in figure 1, and
would tend to favour the first two of these hypotheses. However,
the techniques for measurement of VDBP are now much more
sensitive,97 such that further study of VDBP in lung cancer should
be undertaken to determine any effect. This would be logical
follow-up work to proteomic work in a mouse model of lung
cancer, which suggested that VDBP acts as a disease biomarker.98

ASTHMA
GC and genetic susceptibility
In common with COPD, it is recognised that asthma may
develop as a consequence of a variety of geneeenvironment
interactions. Genetic associations of asthma have been widely

published, and the findings and reproducibility reviewed
recently.99 Briefly, those genes with associations replicated at the
GWA level are IL4R, ORMDL3 and IRAK3,99 whilst additional
meta-analysis level support exists for SNPs within IL4,100

TNFA,101 GSTM1,102 GSTT1,102 ADAM33103 and ADRB2.104

Once again, although genes in the vitamin D axis have been
studied and implicated, they do not have the strongest
supporting evidence in the field.
VDR has been more widely studied than GC in asthma, but

results have been inconsistent.105e109 One small study of GC in
asthma did not find an association, although it was probably
underpowered to detect a difference.110 Overall these results
suggest that genes within the vitamin D axis may be less
important in asthma than COPD, perhaps because of the shift
towards eosinophilic rather than neutrophilic inflammation.

VDBP and vitamin D
Murine models of pulmonary eosinophilic inflammation suggest
that vitamin D supplementation alters cytokine expression
profiles, immunoglobulin E levels, and the pattern of airway
eosinophilia during allergen sensitisation, suggesting that the
vitamin D axis could influence the development of allergy and
asthma.111 Reports of both low and high 25-OHD levels in
relation to asthma can be found in the medical literature, which
have been reviewed elsewhere,112 though, as before, the rela-
tionship of this to the rest of the vitamin D axis has not been
considered in detail. VDBP is also found in the BAL fluid in
animal models of asthma,113 but there have been no reports
comparing VDBP levels of healthy human subjects and those
with asthma. The inconsistency of vitamin D studies and the
paucity of evidence relating to VDBP mean that no firm
conclusions regarding a role in asthma can be made currently.

ACUTE LUNG INJURY
Acute lung injury is pathologically characterised by diffuse
alveolar damage, with neutrophils, macrophages and protein-
rich oedema fluid in the alveolar spaces, together with capillary
injury, and disruption of the alveolar epithelium.114 The
involvement of neutrophils and macrophages might support
a role for VDBP. However, little supportive evidence of the type
seen in the other lung diseases discussed here exists. To date
there have been few large studies of genetic susceptibility to
acute lung injury, and no genome-wide work or meta-analyses of
genetic susceptibility loci. The best replicated associations lie
within the candidate genes IL6, ACE and SFTPB, the evidence for
this being summarised elsewhere.115 No candidate gene studies
pertaining to elements of the vitamin D axis have been published.
Since cell death may result in the liberation of large amounts

of actin into the extravascular space, and VDBP acts to clear this
from the circulation, we might expect VDBP levels to be
depressed and actineVDBP complexes elevated, in any condition
where cell death occurs. This hypothesis has been confirmed in
a single study of ARDS, a disease characterised by massive
cellular injury.34 Low circulating levels of VDBP have also been
reported more recently in sepsis.35

CONCLUSIONS
A growing body of research supports the view that vitamin D
and VDBP influence the development of COPD and TB, and that
they do so via immunomodulatory effects relating predomi-
nantly to macrophage function. Evidence of differences in
protein function according to genotype, together with
numerous genetic association studies, points to a role for VDBP
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in particular, with recent work suggesting that genotype inter-
acts with vitamin D status to influence risk of disease. Func-
tional work to clarify how VDBP contributes to pulmonary
infection and inflammation, and how it relates to serum 25-
OHD, is now under way and will be a key part of the investi-
gation of the vitamin D axis, and supplementation of vitamin D
in lung disease.
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