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Vitamin D binding protein is lower in
infertile patients compared to fertile
controls: a case control study
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Abstract

Background: The importance of vitamin D in general health as well as in human reproductive success has been an
area of focus. A better understanding of vitamin D metabolism, particularly vitamin D binding protein, is important
when elucidating this relationship.

Methods: This case control trial seeks to characterize vitamin D metabolism in infertile patients undergoing natural
cycle IVF as compared to normally cycling premenopausal women with proven fertility matched for age and body
mass index (BMI). A total of 68 subjects were examined; 39 were infertile premenopausal women and 29 were
regularly cycling fertile controls. Their 25-hydroxy vitamin D (25OHD), vitamin D binding protein (DBP), and albumin
were measured and free and bioavailable 25OHD calculated. Between group comparisons were conducted with an
unpaired t-test. A stepwise regression using age, BMI, 25OHD, estradiol & albumin in the model were used to
determine predictors of DBP.

Results: Age, BMI, and total 25OHD did not differ between the two groups. However, vitamin D binding protein,
free and bioavailable vitamin D were significantly different in the infertile patients as compared to the regularly
cycling fertile controls (p < 0.01). Stepwise Regression using age, BMI, 25OHD, estradiol & albumin in the model
showed that only albumin was a predictor of DBP (β-coefficient − 0.310; p = 0.01).

Conclusion: The implications of lower vitamin D binding protein associated with infertility is not clear from this
pilot study, and requires further study.
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Background
The 25-hydroxy vitamin D (25OHD) deficiency epidemic
in the United States has prompted exploration into its
relationship with many areas of human health and disease.
It has subsequently been linked to many chronic diseases
of the cardiovascular and metabolic systems [1–3] and
recent work has evaluated its impact on human
reproduction and obstetrical outcomes [4–6]. Given the
potential for 25OHD to impact even early pregnancy,
25OHD status in patients undergoing infertility treatment
has been of interest.

Investigation into this area using total 25OHD has re-
sulted in conflicting findings. Some studies which evalu-
ated follicular fluid correlated 25OHD levels to
pregnancy outcomes [5]. Other studies evaluted serum
25OHD levels amongst different ethnicities as they re-
lated to pregnancy outcomes and found that levels cor-
related with outcomes in non-Hispanic whites, but no
other ethnicites [6]. Another study charaterizing 25OHD
status in patients undergoing euploid embryo transfer
found no correlation between 25OHD status and preg-
nancy outcomes [7].
An issue with the 25OHD literature to date is a lack of

full characterization of the differences in 25OHD metab-
olism parameters in infertile patients as compared to fer-
tile controls. Further, the studies to date in this area
have utilized assays for 25OHD that measure the total
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circulating 25OHD level. It has been suggested that a
more comprehensive characterization of vitamin D sta-
tus should include the measurement of bioavailable
25OHD, which requires assessment of 25OHD, vitamin
D binding protein (DBP), and albumin [8, 9].
In the present study we seek to further characterize

key components of 25OHD metabolism in infertile pa-
tients and fertile controls by measuring 25OHD, DBP,
and albumin with subsequent calculation of free and
bioavailable 25OHD followed by comparison of these
parameters between groups.

Methods
This was a retrospective study evaluating 25OHD pa-
rameters in a group of patients undergoing infertility
treatment via modified natural cycle in vitro fertilization
(IVF) as compared to patients who were premenopausal,
normally cycling, and fertile controls. All study partici-
pants were informed of research participation and the
study occurred under Institutional Review Board ap-
proval and written informed consent was obtained from
the study participants.

Patient population
The infertile patients in this study were those at a single
IVF center who were undergoing a modified natural
cycle IVF. In order to be included, patients had regular
menstrual cycles of less than 39 days in duration. They
were undergoing treatment due to unexplained infertility
or fertility related to ovarian reserve. The patients were
not on hormone therapy. These patients underwent rou-
tine medical screening that excluded thyroid, liver, and
renal disease as determined by serum markers. These
patients did not have recurrent pregnancy loss or auto-
immune disease. As the patients were attempting con-
ception, all were on a standard prenatal vitamin
containing 200 mg of elemental calcium and 400 IU
vitamin D3. No patients were taking additional vitamin
D supplementation. Patients were counseled to ensure
calcium intake (dietary plus supplements) meet the rec-
ommendations of 1000-1200 mg per day.
The fertile controls were all premenopausal women

who had normal menstrual cycles and at least one prior
live birth. The controls underwent a telephone screening
and physical examination to ensure they met eligibility
criteria. The fertile controls were originally recruited for
a trial analyzing calcium and vitamin D metabolism [10].
Controls were asked to stop taking any dietary supple-
ments for at least 4 weeks before the measurements
were conducted and were given a standard daily multi-
vitamin/mineral supplement containing 200 mg of elem-
ental calcium and 400 IU vitamin D3. In addition,
calcium intake (dietary plus supplements) was adjusted
to meet the recommendations of 1000-1200 mg per day.

Controls also had confirmation of normal thyroid, liver,
and renal function as determined by history, physical
examination, and thyroid function tests, complete meta-
bolic panel, and complete blood count.

Biochemical assessment
DBP levels in serum were determined using a commer-
cial ELISA kit (Polyclonal antibodies, ALPCO, Salem,
NH). All determinations of standards and samples were
performed in duplicate. Levels of DBP were interpolated
from a standard curve after measuring absorbance on an
Elx808 plate reader using Gen5 data analysis software
(BioTek Instruments, Inc). The intra- and inter-assay co-
efficients of variation (CV) for this assay were 5.0% and
12.7%, respectively. The published normal reference
range for DBP levels [11] is 300–600 μg/ mL (30-60 mg/
dL). Serum samples were analyzed in duplicate for the
following hormones: 25OHD (radioimmunoassay, RIA;
DiaSorin, Stillwater, MN; CV < 12.5%). Estradiol was
measured using an ultrasensitive estradiol radioimmuno-
assay (DSL, Webster, TX; CV < 8.9%).

Calculations
Free and bioavailable 25OHD were calculated using equa-
tions described by Vermeulen et al. [12]. The bioavailable
hormone is the fraction that is both free and albumin-
bound; thus, the fraction not bound to DBP. This method
has been validated for calculation of free and bioavailable
testosterone based on the measured total testosterone, sex-
hormone binding globulin, and albumin along with the
known binding-affinity constants for albumin and sex-
hormone binding globulin. The formulas use the binding
constants for 25OHD, DBP and albumin to calculate free
and bioavailable 25OHD and are as follows: [Total] = con-
centration of 25OHD in g/mol ÷ 400.5 g/mol; [Alb] = serum
albumin concentration in g/L ÷ 66,430 g/mol; [Total
DBP] = concentration of serum DBP in g/L ÷ 58,000 g/
mol; [D] = {[Total] – (Kalb. [Alb] +1) . [D]} ÷ KDBP ÷
([TotalDBP] – {[Total] – (Kalb

. [Alb] +1) . [D]});
[Bio] = [D] + [Dalb] = (Kalb . [Alb] + 1) . [D], where
[Total] = Total 25OHD; [D] = free vitamin D; [Bio] = bio-
available vitamin D; Kalb = affinity constant between vitamin
D and albumin = 6 × 105 M−1; KDBP = affinity constant
between vitamin D and DBP = 0.7 × 109 M−1.

Statistical analysis
Descriptive data in terms of patient demographics and
vitamin D assessment were summarized with mean and
standard deviation for the entire group as well as for the
fertile and infertile patients. Between group comparisons
were conducted with an unpaired t-test. A stepwise re-
gression using age, BMI, 25OHD, estradiol & albumin in
the model were used to determine predictors of DBP.
Statistical analysis was performed using SPSS (version
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24, IBM Corp, Armonk, NY). Data are represented as
mean ± SD. A p value <0.05 was considered statistically
significant.

Results
The distribution of vitamin D status indicates that the ma-
jority of women had 25OHD concentrations within normal
range (Table 1). The mean age of the women was 38.0 ±
5.9 years, and the body mass index was 27.6 ± 4.4 kg/m2,
and did not differ significantly between groups (Table 2).
The patients’ self-reported ethnic breakdown was as fol-
lows: Black (9%), Asian (18%), and Caucasian (73%). The
mean 25OHD level was 29.7 ± 9.3 ng/mL. Total serum
25OHD did not differ between the two groups with levels
of 30.3 ± 9.8 ng/mL in the infertile group and 28.9 ± 8.7 ng/
mL in the fertile controls (p = 0.57) (Table 2). However,
when analyzing the infertile patients and fertile controls the
level of DBP was 40.1 ± 12.5 mg/dL and 53.0 ± 24.0 mg/dL
(p = 0.006), albumin was 5.2 ± 0.7 g/dL and 4.6 ± 0.2 g/dL
(p < 0.001), calculated free 25OHD was 6.3 ± 2.9 pg/mL and
4.3 ± 1.8 pg/mL (p = 0.001), bioavailable 25OHD was 3.0 ±
1.4 ng/mL and 1.8 ± 0.8 ng/mL (p < 0.001), and estradiol
was 116.0 ± 29.0 pg/mL and 45.3 ± 26.4 pg/mL (p < 0.01),
respectively. Stepwise Regression using age, BMI, 25OHD,
estradiol & albumin in the model showed that only albumin
was a predictor of DBP (β-coefficient − 0.310; p = 0.01).

Discussion
These data demonstrate there are significant differences
in 25OHD metabolism between cohorts of infertile pa-
tients and fertile controls. Despite similar total 25OHD
levels, DBP, free 25OHD and bioavailable 25OHD all dif-
fered between groups. This provides additional insight
into the differences in health and disease when it comes
to characterizing the infertile population.
It is important to note that both groups consisted of

subjects that have normal menstrual cycles. It has been
shown that timing of assessment during the follicular
phase of the menstrual cycle when estrogen levels fluc-
tuate most do not impact 25OHD metabolism parame-
ters [13] which would suggest the variation seen is likely
not due to synthetic differences driven by estradiol

levels. It is likely some other factor drives the differences
seen in DBP between the two groups, which ultimately
lead to the differences seen in bioavailable and free
25OHD. The fact the DBP can have varied binding affin-
ities adds a further layer of complexity [14].
It is known that 25OHD metabolism is influenced

by a number of factors. Investigators have shown that
age, BMI, ethnic background, as well as pre- and
post-menopausal status affect the metabolism of
25OHD [11, 15, 16]. Here, age, BMI, and ethnicity
did not differ between groups. Estrogen insufficiency,
as is the case with postmenopausal women who have
concentrations of about 13 pg/mL, have lower levels
of 25OHD and DBP [17]. Further, exogenous estrogen
increases DBP [18]. However, in regularly cycling
women who experience a rise and fall of estradiol on
a monthly basis, these levels will not decline to an
appreciable degree [13]. In the current study, serum
estradiol is within a normal range in both groups of
women, and while it’s higher in the infertile women,
it is likely above a threshold of estrogen in women
cycling, whereby DBP is no longer affected. There is
no evidence that the wide range of estradiol (15-
350 pg/mL) found in premenopausal women influ-
ences DBP.
Anovulation is a cause of infertility and may be

related to vitamin D metabolism since low 25OHD
concentrations is associated with longer menstrual
cycles [19] and low vitamin D intake may increase the
risk of early menopause [20]. However, all of the
patients with infertility in the current study had regular
menstrual cycles. While these data do not offer an
explanation why differences were seen between groups,
it is possible that even though free and bioavailable
25OHD are higher in the infertile group, a low DBP
plays a role in infertility. It is important to note this is a
pilot study with a small sample size. These findings and
this hypothesis should be confirmed in a larger cohort
study with a large ethnic diversity.

Table 1 Vitamin D statusa

Status Infertile (n = 39) Fertile (n = 29)

12-20 ng/mL 12% 7%

16.3 ± 2.7 17.9 ± 0.4

20-30 ng/mL 44% 68%

25.4 ± 3.2 28.9 ± 8.7

>30 ng/mL 44% 24%

39.1 ± 6.9 40.3 ± 10.7
aInstitute of Medicine Guidelines for 25OHD status [Low levels < 50 nmol/L
(20 ng/mL); Normal range: 50-125 nmol/L (20-50 ng/mL)]

Table 2 Characteristics of vitamin D metabolic parameters in
premenopausal women

Infertile (n = 39) Fertile (n = 29)

Age (years) 37 ± 6 39 ± 6

BMI (kg/m2) 27.3 ± 5.4 27.9 ± 2.3

25OHD (ng/mL) 30.3 ± 9.8 28.9 ± 8.7

Albumin (g/dL) 5.2 ± 0.7* 4.6 ± 0.2

DBP (mg/dL) 40.1 ± 12.5* 53.0 ± 24.0

Free 25OHD (pg/mL) 6.3 ± 2.9* 4.3 ± 1.8

Bioavailable 25OHD (ng/mL) 3.0 ± 1.4* 1.8 ± 0.8

Estradiol (pg/mL) 116.0 ± 29.0* 45.3 ± 26.4

Values are mean ± SD. Differs from Fertile women, * P < 0.01
Abbreviations: 25OHD 25-hydroxyvitamin D, DBP vitamin D binding protein
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Conclusions
In summary, total 25OHD may be misleading when
evaluating vitamin D status in infertility. The data
presented show that while serum 25OHD does not differ
between infertile and fertile women, DBP, free 25OHD,
and bioavailable 25OHD are different in the infertile
patients compared to fertile controls. Examining this in
a larger dataset and determining the physiologic explan-
ation for these findings is needed.

Abbreviations
25OHD: 25-hydroxy vitamin D; BMI: Body mass index; DBP: Vitamin D binding
protein; IVF: In vitro fertilization
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