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The Chemical Disruption of Human Metabolism 

 

Stephen J. Genuis    &     Edmond Kyrillos         

 

Abstract 

  

Background: Recent evidence highlights the reality of unprecedented human exposure to toxic 

chemical agents found throughout our environment - in our food and water supply, in the air we 

breathe, in the products we apply to our skin, in the medical and dental materials placed into our 

bodies, and even within the confines of the womb. With biomonitoring confirming the widespread 

bioaccumulation of myriad toxicants among population groups, expanding research continues to 

explore the pathobiological impact of these agents on human metabolism. 

 

Methods: This review was prepared by assessing available medical and scientific literature from 

Medline as well as by reviewing several books, toxicology journals, government publications, and 

conference proceedings. The format of a traditional integrated review was chosen. 

 

Results: Toxicant exposure and accrual has been linked to numerous biochemical and 

pathophysiological mechanisms of harm. Some toxicants effect metabolic disruption via multiple 

mechanisms. 

 

Conclusions: As a primary causative determinant of chronic disease, toxicant exposures induce 

metabolic disruption in myriad ways, which consequently result in varied clinical manifestations, 

which are then categorized by health providers into innumerable diagnoses. Chemical disruption of 

human metabolism has become an etiological determinant of much illness throughout the lifecycle, 

from neurodevelopmental abnormalities in-utero to dementia in the elderly. 

 

 
 

Key words: biochemistry, chemical agents, toxicants, epigenetics, endocrine disruption, 

sensitivity-related illness, detoxification pathways, metabolic pathways, metabolism, 

multimorbidity, mitochondria, oxidative stress, immune dysfunction. 
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The Chemical Disruption of Human Metabolism 

 

   Environmental pollution is an incurable disease. It can only be prevented.  

                                                    Barry Commoner 
  

 

I. Introduction and Background 

 

In a colossal toxicological experiment carried out over the last few decades, there has been the 

unprecedented production and release of tens of thousands of chemical agents into the environment 

without sufficient consideration for human safety and without credible testing to secure the 

absence of danger or harm. Such chemical pollutants are now ubiquitous and surreptitiously linger 

within our foods, our air, our water, and even within our bodies.[1, 2] (Figure 1) In the last few 

years, emerging research, as explored in this paper, has begun to elucidate the unfolding 

consequences of this dubious experiment. 

 

Rather than rapidly exiting the human body, some chemical pollutants persist for extended 

periods[3, 4] primarily because of i) ongoing reabsorption in the enterohepatic circulation,[5] ii) 

limited detoxification capabilities of humans compared to other species,[6] and iii) selective 

affinity of some chemicals for specific sites of retention – such as brain adipose tissue for various 

lipophilic chemicals, or bone tissue for the toxic element lead. (Figure 2) The ongoing presence of 

bioactive chemical agents has a well-recognized impact on biological processes. While some feel 

the documented levels of such agents in the human body are insufficient to cause harm, ongoing 

research shows otherwise.[7]  

 

Standard biochemicals within our inherent physiology, as well as prescribed pharmaceutical 

agents, are often bioactive at levels of parts per billion (ppb), and some at parts per trillion (ppt). 

(Table 1) For example, normal estradiol levels in reproductive-aged women regulate hormonal 

processes at serum levels as low as 30 pg/ml. It is hardly surprising, therefore, that serum 

concentrations of various bioactive chemical toxicants often reported in ppb or ppm (parts per 

million) might also have biological impact on the human organism.  In fact, it has become apparent 

that myriad chemical agents exert significant impact at seemingly miniscule doses,[7, 8]  with 
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incremental influence for many pollutants at increasing levels of accrual.[9, 10] But what do these 

chemicals actually do to human biology and biochemistry? 

 

As a community of cells, the human organism has many sites and myriad metabolic processes 

confirmed to be targets of specific chemical agents. Emerging science has uncovered various 

mechanisms by which chemical pollutants disrupt normal biochemical and physiological 

functioning. This paper will explore the scientific literature to provide an overview of the assorted 

ways that chemical toxicants perturb and distort the metabolism and homeostasis of the human 

body. 

 

Ia….. From Etiology to Clinical Symptoms 

  
The study of human biochemistry and physiology explores the normal requisite metabolic 

pathways and processes that are fundamental to the functioning of the human organism. The field 

of pathophysiology, on the other hand, explores disordered or disrupted homeostasis and metabolic 

function in order to understand and potentially treat altered mechanisms that are characteristic of 

specific diseases. The etiology or root cause of illness refers to determinants which elicit the 

change from normal biochemistry and physiology to disordered biochemistry and physiology.  

Clinical signs and symptoms are the manifest expression of such disordered biology. (Figure 3) 

Medications used to treat disease, other than antimicrobials, generally involve the use of molecules 

designed to overcome the pathobiological changes in metabolism in order to relieve manifest signs 

and symptoms resulting from disordered processes. The underlying etiology or root cause of such 

pathobiological processes, however, is frequently not explored in contemporary medical 

practice.[11] 

 

Throughout history, conversely, much focus has been devoted to the study of disease etiology or 

“what’s out there making us sick?”[12] While various beliefs about disease causation have been 

dogmatically promoted at various times throughout the ages, much of the focus of contemporary 

healthcare has presumed a primarily genomic basis for chronic disease. Energies in clinical 

practice are thus usually directed at categorizing signs, symptoms, and laboratory data into 

diagnoses and then treating illness by instructing patients to ‘take this for that,’ as dictated by the 
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most recent clinical practice guidelines. While thick textbooks and abundant medical literature 

expound on the countless diagnoses and associated treatments studied by medical trainees and 

applied by health professionals in clinical situations, the provision of suggested medications and 

interventions to mitigate symptoms has been unable to stem the oft neglected and rising tide of 

chronic illness that plagues our culture.[13, 14] 

 

Recent scientific evidence suggests that rather than being the result of celestial genetic roulette, 

metaphysical destiny, or simply bad luck, illness appears to commence because of a cause (or 

causes), persists because the cause persists, and fully resolves only when the cause is found and 

addressed.[15] Both medical history and emerging science confirm that only a handful of primary 

determinants are the underlying etiological factors leading to the myriad diagnoses or labels we 

use to categorize patterns of signs and symptoms into diagnoses.[12] In other words, it appears that 

science consistently demonstrates that there are many ways of being sick, but only a few ways of 

becoming sick.[12, 16] The Centre for Disease Control recently confirmed that virtually all illness 

is the result of genomic predisposition in combination with environmental factors[17] and a recent 

article in the journal Science, goes on to suggest that 70-90% of all disease is primarily the result 

of modifiable environmental factors.[18] Other publications in the literature also confirm the 

enormous contribution of environmental determinants to the etiology of specific chronic 

diseases.[19, 20] A predominant environmental factor long ago identified and confirmed to be a 

consistent determinant of illness is exposure to toxic chemical agents.[21] 

 

While acute poisoning has long been recognized and studied as a cause of acute illness, Paracelsus 

sometimes known as the Father of Toxicology, recognized in the sixteenth century that ongoing 

low dose toxic exposures may also be an etiological determinant of illness prompting him to write 

about diseases of miners and the occupational hazards of metalwork.[21] More recently, it has 

been confirmed that chronic low dose exposure to many kinds of toxic chemical agents is a 

potential causative determinant of human illness.[7, 22]  In this paper, we will discuss much of 

what the recent scientific literature has elucidated with regards to toxic chemical exposures and the 

mechanisms by which these agents induce metabolic disruption and ultimately clinical illness. 
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  Ib….. Methodology 

 

This review of mechanisms of toxic chemical harm was prepared by assessing available medical 

and scientific literature from Medline as well as by reviewing several books, toxicology journals, 

government publications, and conference proceedings. Terms searched included toxicants and 

pathology, toxicants and metabolism, toxicants and biochemistry, toxicants and pathophysiology, 

toxicants and biology, as well as toxicants and physiology.  Relevant references found in these 

publications were also searched in order to glean pertinent information. 

 

General classifications for metabolic mechanisms of harm were then identified and used as 

headings in this paper. (Table 2)  Searching was subsequently undertaken according to each of the 

mechanisms listed. As the subject matter for this review is quite broad, a brief synopsis of 

available information in each section was prepared with the intention of providing an overview of 

the issue of toxicants and metabolism for clinical practitioners involved in environmental health 

sciences, occupational health, primary care, and all other relevant disciplines of healthcare 

provision. More detailed information on each of the mechanisms can be found in the papers 

referenced.  

 

A traditional integrated review format was chosen for this paper.[23] This type of publication 

approach seemed apposite when endeavoring to incorporate and synthesize extensive literature in a 

new and emerging field with limited primary study, while at the same time endeavoring to provide 

a clinically useful overview of highly detailed and scientific information to clinical and public 

health professionals. 

 

In this paper, classification for biochemical and pathophysiological mechanisms of harm was 

divided into two categories: toxicity primarily occurring directly at the cellular level, followed by 

potential mechanisms of physiological alteration. (Table 2) The classification is arbitrary with 

considerable overlap in the mechanisms of harm discussed, as biochemical cellular change 

typically results in some type(s) of pathophysiological alteration. Furthermore, some metabolic 

outcomes result from several kinds of toxic mechanisms – such as disruption of thyroid hormone 
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homeostasis occurring from receptor dysregulation, autoantibody production, or pathway 

inhibition of deodinase enzymes.[24, 25] (Table 3) 

 

In addition, chain reactions of metabolic disruption might occur as one toxic action may prompt 

another and then another, resulting in a cascade of altered outcomes. For example, toxic chemical 

agents may induce oxidative stress which may result in mitochondrial damage, which may prevent 

normal cell demise, which may produce inflammatory changes in tissues, which may cause 

maldigestion or malabsorption in the gastrointestinal tract and subsequent nutritional compromise 

with assorted signs and symptoms. Furthermore, discovery of previously unrecognized exposure-

related distortions continues to unfold; the mechanisms discussed in this presentation are not 

exhaustive. The interwoven complexity of biochemical damage and pathophysiological 

mechanisms makes it difficult to provide precise descriptions and classification. Just the same, we 

felt it to be of value to highlight the various mechanisms discussed in the literature within a 

workable construct, albeit imperfect.  

 

After discussing mechanisms of metabolic harm, some of the challenges and limitations associated 

with research in the field of toxicology as they relate to pathobiology are presented. Finally, the 

relevance of this information to the clinical and public health domain is considered throughout 

 

 

II. Cytotoxic mechanisms of harm 

 
 

The several components and functions of the cell which can be directly or indirectly impacted by 

chemical toxicants will be highlighted in this section. It has long been realized that cellular toxicity 

can result from chemical damage at the cell membrane level where receptors and transporters are 

commonly found,[26, 27] at the level of various organelles (such as the nucleus, mitochondria, 

and/or endoplasmic reticulum), and anywhere in between in the cytosol.[28] Within the cell, 

chemical toxicants can also interfere with genetic material in several ways including epigenetic 

changes and disruption of DNA repair, signaling or chromosomal segregation.[29-32]  

Furthermore, interference with enzyme expression[33, 34] has the potential to impair critical 

pathways inside the cell, often resulting in the accumulation of biochemicals which precede the 
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impairment, and deficiency of requisite components distal to the impairment. The resulting 

disturbances of cellular homeostasis can have repercussion on other cells, tissues and organs, and 

ultimately on the whole organism. 
 

 

 

 

IIa…. Direct Damage to Cell Structures 

Some toxicants have the propensity to directly damage various cell structures including cell 

membranes, various organelles, as well as genetic material. Genotoxicity, for example, can be 

broken down into i) pre-mutagenic damage such as DNA adducts and strand breaks; ii) genetic 

mutations; and 3) chromosomal abnormalities such as deletions, breaks, as well as the loss or gain 

of a whole chromosome. It appears that assorted toxicants, including pesticides from the 

organophosphate, organochlorine, pyrethrin, triazine, and phenoxyherbicide families all 

demonstrate human genotoxic propensity with impact involving one or more of the above 

mentioned genotoxic modes of action.[35-39] 

 

Among other functions, the endoplasmic reticulum (ER) within the cytosol is involved in 

detoxification and the synthesis, folding, and delivery of proteins. Recent evidence confirms that 

prolonged ER stress from toxicants such as heavy metals[40-42] and several pesticide 

compounds,[43-45] induces disturbance of ER homeostasis and function, including the 

aggregation of misfolded proteins.[46, 47] This mechanism of harm has been identified as a 

determinant of human illness, particularly chronic afflictions including atherosclerosis, kidney 

ailments, diabetes, and the formation of tumors.[46]  

 
 
 

Extensive attention in the scientific literature has recently been devoted to mitochondria and the 

link between damage to these organelles and the pathogenesis of numerous chronic disease states 

ranging from autism[48] to cancer.[49] Myriad activities within the mitochondria are disrupted by 

xenobiotic agents. Vital cellular activities of mitochondria include the generation of ATP for 

energy production, the biosynthesis of heme, pyrimidines and sterols, calcium and iron 

homeostasis, as well as regulation of cell death (apoptosis) - an important defense mechanism 

against tumorigenesis. 
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Various xenochemicals can alter the transcription of mitochondrial proteins and alter 

mitochondrial permeability, leading to swelling and changes in calcium influx.[50] Mitochondrial 

injury can also lead to the production of reactive oxygen species and to consequent alteration of 

mitochondrial DNA,[51] which can culminate in apoptosis and various chronic illnesses (cancer, 

neurodegenerative diseases, cardiovascular and metabolic diseases, etc.). In addition, some 

toxicants can repress cellular death signaling and impair the elimination of damaged cells 

potentially leading to chronic inflammation.[50] Brominated flame retardants are examples of 

specific xenochemicals that can inflict considerable cytotoxic damage on mitochondria.[32, 33]  

 

By these and various other cytotoxic mechanisms as will be discussed, direct damage from 

chemical toxicants to cell membranes and to structures within the cytosol and nucleus can disrupt 

human metabolism. 

  

IIb…. Oxidative Stress 

 
Oxidative stress refers to the corrosive and toxic impact that occurs when there is an imbalance 

between the production of reactive oxygen and nitrogen species and the body’s ability to 

counteract the harmful effects of these species by antioxidants. Free radical destruction is 

considered to be a main pathophysiological mechanism involved in ongoing neuronal damage,[52] 

inflammation,[53] carcinogenesis[54], and various other pathogenic processes. Furthermore, 

oxidative stress is ultimately thought to be involved in the pathogenesis of many diseases including 

cancer, ADHD, ASD, Parkinson’s, Alzheimer’s, atherosclerosis, heart failure, myocardial 

infarction, vitiligo, and chronic fatigue syndrome.[55-67]  

 

 

The overproduction of reactive oxygen and nitrogen species and the consequent oxidative stress 

can occur following either endogenous or exogenous insults. Exposure of the human body to 

various chemical agents, for example, has the potential to generate reactive species which may 

bind to vital components of cells, causing extensive damage to various cellular components 

including mitochondria, proteins, lipids and DNA.[56, 61, 68]  Such radical species have the 

potential to disrupt many cell functions and can induce gene mutation and expression.[54] Certain 
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heavy metals, for instance, can mediate the formation of reactive species[69] which in turn may 

induce depletion of glutathione enhanced lipid peroxidation (where reactive molecules oxidize 

lipids in cell membranes, resulting in destruction of unsaturated fatty acids and direct damage to 

cell membranes), altered calcium and sulfhydryl homeostasis,[69] and various modifications to 

DNA bases.[55, 56, 70, 71]  Nanoparticles of certain chemical agents such as titanium dioxide may 

also produce reactive oxygen species.[72] In addition, fungal mold organisms such as Penicillium 

and Aspergillus can manufacture adverse chemical metabolites called mycotoxins that have the 

potential to induce oxidative stress and consequent harm to human health.[73, 74] 

 

Indirect damage of various other cell constituents can also result from products of oxidation – such 

as aldehydes produced from lipid peroxidation. In turn, these by-products can lead to extensive 

tissue damage, progression to diseases such as atherosclerosis, [55] and the production of 

mutagenic and carcinogenic toxins.[56, 69] It is also evident that some chemical toxicants, 

including various chemotherapeutic agents,[75] can potentially induce disruption of redox 

homeostasis – the maintenance of a physiological electrochemical potential and ionic 

concentration gradient across cellular boundaries. Finally, highly reactive chemical species that 

can adversely impact normal biochemistry can also be produced endogenously during the 

biotransformation of assorted xenobiotics, as the liver endeavors to metabolize and clear these 

toxic agents.[76] 

 

 

 Peroxynitrite (PXN) 

 

One reactive nitrogen species that merits particular attention and that may be formed in response to 

common chemical exposures such as benzene[77] as well as other toxicants[78-80] is peroxynitrite 

(PXN) – an oxidative and nitrative agent capable of disrupting dozens of fundamental biochemical 

processes and the potential to effect extensive damage to cells and tissues.[81, 82] PXN forms by 

the combination of nitric oxide and the toxic free radical superoxide. Somewhat of a biochemical 

terrorist, PXN has enormous potential to ignite biochemical havoc by inducing hydrogen 

abstraction (the loss of an electron located on a hydrogen atom) from essential biochemicals such 

as various proteins, DNA, and lipids, thus disrupting homeostasis throughout the cell.[81, 83] It is 
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thought by some that ongoing PXN-related destruction may be a determinant of many chronic 

diseases of modern civilization.[81] Research continues to elucidate the significance of PXN 

including its relation to other compounds such as uric acid, which appears to act as a PXN 

scavenger,[84] and other agents such as molecular hydrogen which may therapeutically serve to 

diminish PXN-related damage.[85, 86] 

  
 

IIc…. Receptor Dysregulation 

 
Essential components of physiological pathways include cell receptors that allow for the 

communication between various organs and cells, the orchestration of physiological responses, and 

the execution of specific actions within cells. Dysregulation of receptor function has been linked to 

various chemical toxicants and to adverse clinical outcomes.  

 

Toxicants can alter receptor function in many ways. For example, ligands such as nutrients, 

hormones, and neurotransmitters may be improperly established at the receptor level leading to a 

diminished response - the net effect may be blockage or repression to varying degrees. Conversely, 

some toxicants can amplify receptor reaction and lead to an increased response (potentiation). 

Toxic chemicals may directly bind to the receptor or induce an immune response leading to 

antibody formation and antibody related alteration or sequestration of receptors.[24, 25, 87] 

 

The literature abounds with examples of toxicant induced receptor dysregulation. For example, 

PCBs (polychlorinated biphenyls) and PBDEs (polybrominated diphenyl ethers) have been found 

to act as agonists or antagonists of thyroid receptors and alter levels of thyroxine and TSH.[25]  

Phthalate compounds, responsible for the varying degrees of softness in plastic items, are another 

example of commonly found chemicals in the environment that possess antagonist thyroid receptor 

activity[88] and may result in a clinically non-euthyroid state despite normal thyroid levels on 

blood tests. Toxicants including Hg, PCBs, as well as PBDEs and other flame retardants have been 

reported to be implicated in dysregulation of glutamate receptors through receptor protein 

potentiation.[89, 90]  As the major excitatory brain neurotransmitter, glutamate enhancing effects 

may lead to induced neuro-excitotoxicity.  
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IId…. Epigenetic Alteration 

 

 
Epigenetic alterations represent potentially pathological changes in gene expression or phenotype 

without modification to the DNA sequence itself. Epigenetic change occurs as a response to one or 

several environmental triggers such as toxicant exposure through gene-regulating mechanisms 

which include DNA methylation, histone modifications and the expression of non-coding RNA 

(microRNA), all affecting transcription and translation of information from the genome.[46]  Some 

epigenetic changes serve to suppress normal gene expression, while other changes may facilitate 

the activation of genes.[91, 92]   Recent evidence confirms that epigenetic alterations may serve as 

a basis for chronic illness and that such alterations can be transmitted to subsequent generations. 

[46, 93, 94]  

 

DNA strands are wrapped around clusters of histones called nucleosomes forming a chain like 

structure called chromatin which is further arranged spatially into chromosomes. DNA methylation 

occurs at the level of the DNA strand at cytosine-guanosine sites (CpG) where cytosine is 

methylated through DNA methytransferase into 5-methylcytosine and has the effect of suppressing 

gene expression.[91] Histones undergo modifications such as acylation, phosphorylation and 

methylation, which all influence chromatin structure and gene expression. DNA methylation and 

histone deacetylation repress transcription (conversion of DNA to messenger RNA); conversely, 

high levels of histone acetylation and low levels of DNA methylation allow access to transcription 

factors and allow for gene activation. On the other hand, micro RNAs, which are non-coding 

RNAs, negatively regulate gene expression through inhibition of translation by binding to 

untranslated regions of target messenger RNAs.[91, 92] 

 

Several pollutants are known to induce epigenetic change and lead to a diseased phenotype. Global 

DNA hypomethylation, for example, has been reported in people who had an elevated blood level 

of some pesticides and persistent organic pollutants.[46] DNA methylation aberrations following 

exposure to dioxins has been linked to immune suppression[95] and various cancers.[96] 

Epigenetic modifications due to toxic metal exposure have been identified in children living in 

polluted areas.[97] Histone changes following exposure to neurotoxic insecticides were found to 

promote apoptosis and induce neurodegenerative changes.[93] Epigenetic alterations are 
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increasingly being linked to various other states including Parkinson’s, Alzheimer’s, ALS, 

multiple sclerosis, diabetes, and atherosclerosis, and even longevity.[93, 98] 

 

 

IIe….  Detoxification Impairment 

 

Among the physiological requirements for metabolic and cellular homeostasis in the human body 

is the elimination of intrinsic (waste products of endogenous biochemical reactions) and extrinsic 

(xenobiotics) chemicals. Accrual of endogenous or exogenous agents that are deleterious to cell 

function, can result in disrupted metabolic function and clinical illness.  

 

Although the lipid bilayer of cell membranes is generally impermeable to hydrophilic molecules, 

they are permeable to thousands of lipophilic toxicants that can enter cells and cause damage to 

various cell constituents.[99] Cells have specific enzymes that recognize and remove intrinsic 

chemical wastes and nonspecific enzymes that can attach to xenobiotics to tag them with polar 

groups that facilitate active transport and cellular excretion.[100] The process of transforming and 

eliminating xenobiotic is referred to as “detoxification” and is classically divided into three 

biotransformation phases:[101, 102] phase 1 (bioactivation), phase 2 (conjugation) and phase 3 

(elimination). (Figure 4) A main site of detoxification is the endoplasmic reticulum of the liver cell 

but various tissues (kidney, skin, brain, lungs, heart, testes, placenta, etc.) also participate in this 

biotransformation process.[103]  

 
In Phase 1 detoxification, the lipophilic hydrocarbon is modified through oxidation, reduction or 

hydrolysis reactions to incorporate nucleophilic or electrophilic atoms or groups (OH-, O-, N-, S-) 

that will serve as attachment points in further polarizing reactions through conjugation.[103-106] 

Phase 1 is mainly composed of cytochrome P450 enzymes regulated by nuclear receptors,[101, 

105, 107, 108] that may themselves be vulnerable to xenobiotic actions 

 

In phase 2 detoxification, other groups such as amino acids are added through covalent bonds 

making the transformed xenobiotic more polar and suitable for extraction through cellular 

membrane transporters.[102, 109] Phase 2 involves enzymes such as methyl-transferases, sulfo-
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transferases, glucoronosyl-transferases, glutathione S-transferase and reactions remain 

intracellular.[100, 106] The conjugated toxicants are then released into the extracellular medium 

where they are more easily eliminated from the body; they may also be subjected to further 

transformation in phase 3.[102, 110]  

 

Phase 3 detoxification, gaining further attention in research since the discovery of permeability 

glycoproteins (P-gp) in 1976, involves the ATP-binding cassette (ABC) family of drug 

transporters. From a pharmacological perspective, such transporters are implicated in multiple drug 

resistance and considered a nuisance to the activity of targeted drug therapies (antibiotics, 

chemotherapy, etc.); but from a chemical pollutant elimination perspective, they are salvific to the 

cell,[102] provided they are not malfunctioning. It has been discovered that some extrinsic 

chemical agents can bind the P-gp and inhibit its transporter detoxifying ability. A study by 

Nicklisch et al. published in 2016 demonstrated inhibition of this P-gp elimination transporter by 

common environmental organic pollutants including some organochlorine pesticides and their 

metabolites, some brominated flame retardants, and various PCBs at levels commonly found in 

contemporary surroundings. [111] 

 

Various chemical agents have been found to impede intrinsic detoxification pathways at one or 

more stages which thus impair the elimination of these and other pollutants, which in turn leads to 

bioaccumulation and an ever increasing body burden of contaminants with the associated 

physiological disruptions and toxicity.[107] For example, the ubiquitous pesticide agent 

glyphosate is reported to impair cytochromes P450 enzymes,[112]  and lead was found to impair 

conjugation and elimination of some polycyclic aromatic hydrocarbons (PAHs).[113, 114] In 

addition, polybrominated diphenyl ethers (PBDEs) have been found to negatively modulate 

intracellular levels of the conjugation cofactor glutathione (GSH) while being associated with 

neurotoxicity of neurons and astrocytes. [115]  
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IIf…. Plaque formation 

 
Some toxicants have been found to trigger the formation of, plaque-like structures or deposits. This 

section will briefly discuss the formation of alpha-synuclein, beta-amyloid and atherosclerotic 

plaques, which are pathognomonic of commonly seen neurodegenerative and cardiovascular 

diseases. 

 

Alpha-synuclein is a protein that appears to control neurotransmitter release at the synaptic 

junctions of nerve cells. Increased levels and abnormal deposition of alpha-synuclein is found in 

Parkinson disease (PD). Alpha-synuclein is also expressed in other neurodegenerative diseases 

such as multiple-system atrophy, dementia with Lewy bodies, many cases of Alzheimer’s disease, 

neurodegeneration with brain iron accumulation type I, pure autonomic failure (PAF), and even a 

subtype of essential tremor.[116]  Although pathophysiological mechanisms are not yet fully 

understood, it is generally accepted that environmental exposures are an important factor in the 

pathogenesis of PD. Several animal and human studies have thus far have linked exposure to some 

pesticides, toxic elements, and solvents to an increase in alpha-synuclein deposition and some of 

the hallmark findings of PD.[117-121]  

 

The histological hallmarks of Alzheimer disease (AD) are deposits of b-amyloid in the form of 

neurotoxic plaques. The aggregation of soluble b-amyloid forms after the peptides are cleaved 

from the precursor protein bound to the cell’s plasma membrane. Considerable animal research has 

identified alterations of pathways and metabolisms associated with AD in response to certain 

environmental contaminants.[122]  Toxicants such as brominated flame retardants (BFRs) are 

among the exposures potentially implicated in the pathogenesis of AD, but further studies are 

required to confirm causality and precise mechanisms..[122] BFRs, widespread among consumer 

products, are pollutants that are known for their ability to cross blood-brain barriers and 

bioaccumulate in humans,[123, 124] and to exhibit cytotoxic impact at low micromolar 

concentrations.[33]  Studies on a specific line of neuronal cells, has revealed that BFRs can induce 

cell death through apoptosis and the activation of caspases, oxidative stress as well as the 

production and release of b-amyloid peptides within hours of exposure.[33] Some toxic elements 
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including  lead,, mercury, aluminum, cadmium and arsenic, some pesticides, and certain metal-

based nanoparticles also have been implicated in the formation of senile/amyloid plaques.[117]   

 

Finally, various xenobiotics such as allylamine and benzo[a]pyrene are becoming increasingly 

associated with vascular injury and found to be involved in the formation of atherosclerotic plaque 

- a critical finding in cardiovascular diseases such as hypertension, stroke, and coronary arterial 

disease.[125] 

 

 

IIg…. Displacement 

 

 

 

Displacement occurs when a toxicant takes the binding spot of a nutrient or an element that is 

essential for the maintenance of good health in an individual.  It is a specific form of receptor site 

competition, where the toxicant has such a high affinity for the receptor such that competition with 

other ligands for the receptor is virtually absent.  

 

A well-known example of this phenomenon is carbon monoxide toxicity. Carbon monoxide is a 

product of incomplete combustion of carbon based compounds.  Carbon monoxide is the most 

common type of fatal air poisoning in many countries and accounts for more than 50% of 

poisoning fatalities in industrial countries.[126]  Carbon monoxide has a very high affinity (200-

300 times that of oxygen) for hemoglobin and displaces oxygen from its binding sites on 

hemoglobin and produce carboxyhemoglobin. As CO binds to hemoglobin it also increases the 

affinity of other binding sites for oxygen leading to a left shift of the oxygen dissociation curve, 

thus interfering with unloading of oxygen in the tissues [127] making CO such a dangerous toxin. 

 

Other illustrations of this phenomenon can be found with PBDEs which have been shown to 

displace the thyroid hormone T4 from binding proteins and as such, affect thyroid function.[25] 

Cadmium has also been found to displace zinc in many metallo-enzymes and at DNA-zinc binding 

sites.[128] 
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IIh…. Other Mechanisms of Cellular Toxicity 
 

 

 

Recent research has identified a number of other mechanisms which disrupt cellular homeostasis 

and which are caused, in some cases, by toxicant exposures. 

 
 

 Signalling Dysregulation  
2 

 

 

Various toxicants have been found to impair and dysregulate normal signalling and the finely 

tuned turning on and off of assorted biochemical pathways.[129] Toxicants interfering with this 

process will potentially impair the necessary signalling for the biochemical activity to move ahead.  

Methylation and proper function of the intracellular methylation cycle, for example, is necessary to 

facilitate the proceeding of over 250 reactions within the body; hypomethylation can occur, as 

discussed, from exposure to various pesticide agents.[46] Another example can be seen with 

receptor tyrosine kinase (RTK) signaling pathways essential to the mitogenesis of progenitor nerve 

cells which have been found to be disrupted at environmentally relevant levels of methylmercury 

and lead.[130]   

 
 

 Impairment of Protein Degradation 
 

 

 

The Ubiquitin Proteasome Pathway (UPP) is the principal mechanism for protein catabolism in the 

mammalian cytosol and nucleus. This pathway is involved in a wide variety of cellular processes 

including antigen processing, cell division, transcription and repair, as well as biogenesis of 

organelles; disruption of UPP may be involved in the pathogenesis of various illnesses from 

dementia to cancer.[131, 132] This UPP pathway may be impacted by certain toxic elements[133] 

and pesticide agents.[134] [46] 

 

 Transporter Dysregulation  
 

 

 

It has also been recently identified that various toxicants have the potential to inhibit the transport 

of various required biochemicals necessary for metabolic processes.[111] As discussed in the 

detoxification impairment section, various organochlorine pesticides, BFRs, and PCBs have the 

propensity to paralyze cellular transport mechanisms essential for required biological 

processes.[111] 
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 Impairment of Required Autophagy 
 

 

 

Autophagy is an intracellular degradation system that facilitates the breaking down of cellular 

components and delivers cytoplasmic constituents to the lysosome, in part for recycling. This 

processing appears to be instrumental for a wide variety of biological functions within the cell. 

Dysregulated autophagy may result with exposure to some chemical toxicants,[50, 135, 136] 

including various pesticides.[137, 138] 

 

 

 
 

III. Pathophysiological Mechanisms of Harm 
 

 

Earlier paradigms in toxicology considered a simple dose-response relationship between toxic 

agents and consequent damage. While this is true for some toxic agents, it has become increasingly 

recognized that the dysfunction underlying chronic low dose toxicity is much more complex than 

previously thought. Exposure to a chemical agent, for example, may not result in visible tissue 

injury but may impact physiological function in subtle ways that, in turn, increase susceptibility to 

other forms of damage.[50]  In addition to various direct biochemical cellular effects that have 

been presented, (Figure 5) there are also a number of potential physiological alterations which can 

disrupt metabolic function within and outside the cell as a result of the exposure and 

bioaccumulation of toxic chemical agents. In this section, we will provide an overview of some of 

these metabolic alterations.  
 
 
 
 
 
 
 
 

IIIa…. Endocrine Disruption 

  

The field of study surrounding endocrine disruption by chemical toxicants is burgeoning.[139, 

140]  Endocrine disruption occurs when toxic compounds are found to act with impact on hormone 

receptors as mentioned, but also when they interfere with organ response and feedback loops.[46, 

141, 142]  (Figure 6) While some chemicals mimic endogenous hormones, others may act as 

blocking agents, and some interfere with hormone excretion or various transport proteins essential 

for the proper delivery of a hormone to its target tissue. The ultimate result can be amplification or 
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inhibition[46, 143] of various endocrine feedback systems with a spectrum of clinical 

manifestations.[139, 144] The end response is dependent on many factors, including the affinity of 

the toxicant to a particular receptor, the potency of the chemical, and the synergistic effect from 

other toxicants.[46, 143, 144]  Endocrine disrupting chemicals (EDCs) have also been shown to 

alter gene expression, with animal work demonstrating the potential to affect several consequent 

generations, as previously mentioned, through epigenetic alterations.[145-147] 

 

Many innate hormones, such as estradiol and testosterone, are bioactive at miniscule doses in parts 

per trillion. (Table 1) Many EDCs also have profound bioactive impact at miniscule doses.[7] 

While the impact of many toxicants still remains to be adequately researched, current evidence 

recognizes the myriad effects of hormone disruptors on several aspects of human health. Because 

EDCs are near ubiquitous and hormonal function affects almost every bodily function, health 

sequealae are numerous. EDCs can, for example, adversely affect reproductive health, thyroid and 

adrenal function, onset of puberty, sexual indices, and have potential impact on hormone sensitive 

organs such as prostate, breast, and endometrium.  Table 3 provides examples of some of the ways 

that chemical toxicants can disrupt thyroid metabolism.[24, 25, 88, 148] 

 

 

Examples from the scientific literature of the clinical and public health impact of endocrine 

altering agents are too numerous to recount[139, 140, 144] as many categories of compounds, such 

as perfluorinated compounds,[149] BPA and phthalates,[150, 151] various pesticides,[152, 153] 

PCBs and dioxins,[154] paraben preservatives,[155] acrylamide,[156] several mycotoxin,[157, 

158] and many toxic elements such as cadmium display hormone disrupting behavior.[159, 160] 

EDC-related sex ratio imbalances, for example,  resulting in fewer male offspring in humans have 

been associated with bioaccumulation of some dioxins and pesticides.[144] Phthalates and 

organochlorine pesticides are common toxicants that have been linked to an increased prevalence 

of fibroids.[144] Phthalates, PCBs, and dioxins have been associated with endometriosis.[144] 

Mixtures of chemicals with anti-androgenic properties, such as phthalates or a range of fungicides 

and pesticides during pregnancy increases the risk of cryptorchidism in the male newborn and 

other congenital abnormalities.[144]  Recent discussion has explored the impact of endocrine 

disruption on gender issues, sexual preference, and sexual behavior.[161, 162] Epidemiological 
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evidence suggests that several groups of common contaminants, including PCBs, brominated 

flame retardants, phthalates, BPA and perfluorinated chemicals, are associated with decreased 

thyroid hormone levels in humans.[140, 163, 164]  (Figure 4)  The examples go on and on with 

emerging evidence suggesting links, perhaps by various mechanisms, between EDCs and cancers, 

adrenal disorders, bone disorders, and various metabolic diseases.[144] In review, the potential 

impact of endocrine altering hormones is vast and continues to be researched.  

 

IIIb…. Inflammation 

 

 

 

Toxicants can lead to inflammation in many ways: i) the release of pro-inflammatory cytokines 

and triggering of an immune response such as atopic illness,[165] ii) the generation and 

enhancement of oxidative stress, iii) direct mitochondrial and/or cellular damage, iv) toxicant 

mediated disruption of intracellular calcium homeostasis - which can affect various intracellular 

pathways and organelles, and so on.[50] Cellular signalling pathways such as the mitogen-

activated protein kinase and stress-activated protein kinase cascades have also been shown to be 

activated and induce inflammation.[50] Phenols, polycyclic aromatic hydrocarbons (PAHs), 

bisphenol A (BPA), PCBs, toluene, phthalates, benzene and ethanol are among some of the 

chemicals found to cause inflammation through these various mechanisms.[166-171] 

 

Dysfunctional cell survival and death pathways are also a main mechanism that toxicants employ 

to induce inflammation. Cellular demise mechanisms potentially inducing inflammation include 

autophagy, apoptosis, pyroptosis, and necrosis. Cell death in some situations can be protective (e.g. 

apoptosis of tumorigenic cells and elimination of genetically damaged cells) but if caused on an 

ongoing basis by toxicant exposure, it can be deleterious (e.g. neurodegeneration, loss of 

oncogenic protection and surveillance) to the organism and result in ongoing inflammation.[50] 

For instance, it is known that efficient phagocytosis of dead or dying cells prevents the 

development of inflammation during apoptosis;[172] but when cells are exposed to specific 

toxicants such as PCBs and certain toxic metals, autophagy or other protective cell death and 

recycling mechanisms become dysregulated[173, 174] and inflammation may no longer 

avoided.[50]  
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Over the last decade, research related to the emerging production of nanoparticles has spawned the 

field of nanotoxicology.[175] Some nanoparticles, for example, have been found to induce 

autophagy, apoptosis or necrosis and produce reactive oxygen species (ROS) leading to increased 

oxidative stress and inflammation.[176] 

 
 

 

IIIc…. Immune Dysfunction 

 

The immune system is a complex interactive network of lymphoid organs, specialized defence 

cells imbedded in various tissues, as well as humoral factors and cytokines. Its function is, in part, 

to defend the body from  infections and tumors.[177] Environmental pollutants such as heavy 

metals, solvents, and pesticides have been shown to dysregulate the immune system potentially 

resulting in immune suppression, auto-immune conditions and/or hypersensitivity states.[178] 

 

 Immune Suppression 
 

 

 

By various ways including suppression of natural killer cells, dysfunction of T-cells and so on, 

various chemical agents including heavy metals and commonly used pesticides have been found to 

suppress immune system cells and could possibly impair immune function in vivo. For example, 

the toxic element mercury, as well as various pesticide groups including organophosphates, 

triazines (atrazine) and carbamates induce a significant dose-dependent decrease in the 

performance of human T and natural killer lymphocytes which are vital in the immune defence 

against tumors and viruses.[179-181] Impaired immune competence via suppressed cell mediated 

immunity, reduced T cell count, and downregulation of phagocytic activity of lymphocytes was 

also a common finding following the 1984 Bhopal industrial catastrophe in India where about a 

half million people were exposed to various toxins released by a pesticide plant.[182-184] 

 

 Autoimmunity 
 

 

 

Increasing research has begun to suggest that chemical exposure can produce autoimmune 

manifestations in human populations and promote the development of autoimmunity.[20, 185, 

186] Human and animal research  has confirmed the link between chemical exposure and 

autoimmune pathology for agents including solvents [186] such as trichloroethylene,[104, 187]  
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some pesticides such as hexachlorobenzene,[188, 189] various inorganic metals,[190-192]  and 

other exposures including silica[193] and asbestos,[194] In mice experimentation with 

trichlororethylene,  for example, it was observed that while T-lymphocytes were activated along 

with increased production of IFN-gamma, pro-inflammatory cytokines were released with a 

corresponding inhibition of T cell apoptosis.[195]  With the protective and suppressing process of 

apoptosis deleted, autoimmunity was promoted and confirmed by the presence of autoantibodies 

and pathological evidence of autoimmune hepatitis. 

 

In epidemiologic study of human populations, certain demographic determinants such as proximity 

to industrial regions appears to be associated with rates of autoimmune diseases; clusters of 

autoimmune illness tend to accompany adverse exposures in population groups. For example, 

pneumoconiosis and scleroderma are seen in workers exposed to crystalline silica whereas 

scleroderma and Raynaud’s phenomenon are seen in vinyl chloride workers.[196-199] Smokers 

have also been found to be at higher risk of seropositive rheumatoid arthritis.[186] 

 

Further study is required to better understand precise mechanisms potentially involved between 

toxicant exposures and the development of many autoimmune conditions, but it has been 

hypothesized by some that cells and tissues which retain toxic chemical agents following an 

adverse exposure present differently to an intact immune system and trigger an autoimmune 

response. Nonetheless, increasing evidence through in vitro studies, animal and human 

epidemiological studies supports the proposition that chemical agents including mercury, iodine, 

vinyl chloride, certain pharmaceuticals, solvents, hydrocarbons (benzene, toluene, ethylbenzene, 

xylene, pristine, phytane) and crystalline silica are determinants of autoimmune diseases.[185, 196, 

197, 200-202]   

 

 Loss of Tolerance / Hypersensitivity 
 

 

 

Recent evidence has also linked toxicant exposure and bioaccumulation with the pathogenesis of 

various hypersensitivity states.[178] Whether considering such reactions in the form of classic 

atopic diseases (allergies, asthma, eczema) or more complex presentations with extensive multi-

morbidity – given diagnostic labels such as ‘environmental sensitivities’, ‘multiple chemical 



Official publication at    http://dx.doi.org/10.1080/15376516.2017.1323986 
 

24 

 

sensitivity’ (MCS), or ‘sensitivity related illness’(SRI) - these presentations have become more 

prevalent as the world has produced and released more chemical pollutants.[178, 203]  

 

Evidence increasingly suggests that such conditions may be immune-related through a mechanism 

called TILT or a toxicant induced loss of tolerance.[178, 203, 204] The TILT model, first 

described by Miller[204] (Figure 7), illustrates the link between toxicants, the immune system and 

symptoms. In 2010, De Luca and team found that MCS patients produced high levels of IFN-

gamma, IL-8, IL-10, and VEGF with lower levels of glutathione S-transferase and glutathione 

when compared to control populations.[205] Emerging research on this SRI state confirms that 

elevated nitrotyrosine (a  peroxynitrite marker) is a potential disease biomarker for this 

condition[206]  - a finding which provides clues as to the pathological metabolic dysfunction that 

characterizes this hypersensitivity state. Reduction of the total body load of toxicants foreign to the 

body has been associated with resolution of the SRI state and normalization of tolerance.[178]   

 

Other studies have found correlations between pediatric allergies and prenatal exposure to 

toxicants through vertical transmission,[207, 208] the latter being an increasingly common 

observation in perinatal medicine.[2, 209] While elevations in IgE were correlated with 

organochloride placental contamination,[208] respiratory symptoms in the newborn were observed 

with prenatal maternal exposures to polycyclic aromatic hydrocarbons (PAHs), PCBs and 

dioxins[210, 211] and allergies were triggered in children of mothers exposed to marine 

pollutants, lead, PFCs and dioxin-like compounds.[207, 212-214] Hypersensitivity was also a 

common and enduring finding two decades later among children born of mothers exposed in the 

Bhopal tragedy.[215] 

 

In addition to the metabolic changes as a result of immune system dysregulation, there are various 

secondary effects of an atopic hypersensitive state. For example, as a result of contamination with 

certain chemical pollutants including arsenic and lead,[216, 217] IgE elevation and mast cell 

degranulation often occur with release of histamine when triggered. As a bioactive amine, 

histamine can have profound metabolic effects with clinical symptoms in some individuals.[218, 

219] 
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IIId …. Pathway Dysregulation 
 

 

 

 

Disruption of metabolic pathways through enzyme dysregulation can induce a cascade of 

pathophysiological effects as a result of the accrual of biochemicals prior to the site of pathway 

disruption and deficiency of required components distal to the position of the affected enzyme. 

Genes provide the template or recipe for the coding of enzymes required for the myriad 

physiological pathways in the body. A simple but critical malfunction or interruption of a cellular 

pathway by disrupting the production or function of a required enzyme can have major 

consequences on the macroscopic functioning of the organism and can manifest as clinical 

symptoms and disease.[29, 107] This section will highlight the importance of enzymes as a major 

target of toxicants and a key element to the integrity of cellular and biochemical pathways that take 

place anywhere within a cell and its organelles or in an extracellular compartment. 

 

Many examples of pathway dysregulation are discussed in the literature. Heavy metals have been 

found to impair the function of many enzymes and to disrupt fundamental intracellular pathways in 

numerous ways.[220] Mercury, for example, has the potential to impair glutamic acid 

decarboxylase (GAD)[220] an enzyme that catalyzes the decarboxylation of glutamate to GABA – 

leading to accumulation of the excitatory neurotransmitter glutamate, while diminishing the 

production of the relaxing neurotransmitter GABA. Mercury also has the potential to disrupt the 

basic process of methylation in cells,[220] required for over 150 metabolic processes including 

DNA repair, genetic expression, production of some neurotransmitters, and so on.[221, 222] 

Cadmium and arsenic have been shown to stimulate mitogen-activated protein kinase 

phosphorylation.[223]  The enzymatic pathway for proper tetrahydrobiopterin metabolism, crucial 

for the production of several neurotransmitters including serotonin, dopamine and norepinephrine, 

is impaired in the cell by the presence of common contaminants including aluminum[224] and 

lead.[225] Another important example of enzymatic distortion with profound potential 

consequence is the impact of lead on nitric oxide synthase (NOS) activity.[226] Lead 

contamination can interfere with the production of nitric oxide,[227] impairing proper blood 

circulation and unleashing the consequent production of radical oxygen species superoxide as a 

result of NOS uncoupling. 
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Other types of toxicants are also potent enzyme dysregulators. In a study exploring the effect of 

maternal smoking on the expression of metabolic enzymes in human fetal liver, O'Shaughnessy et 

al. were able to demonstrate that fetuses exposed to toxicants displayed a significantly altered 

expression of mRNA transcripts for liver enzymes.[34] Animals exposed to PCBs have also 

demonstrated decreased levels of the enzyme GAD and manifested audiogenic seizures.[228]  

PCBs have also been found to interfere with the TLR4/NF-kB pathway and enzymes (such as 

nitric oxide synthase) in a way that results in an impairment of immune response and macrophage 

responsiveness.[229]   

 

To review: within each pathway, substrate A makes product B. For this to occur, gene function to 

produce enzyme ‘AB-ase’ must be in order and operational, the required nutrient cofactors to 

facilitate enzyme action must be present, and the absence of toxicant dampers must be secured. 

Disruption of metabolic pathways by genetic compromise, enzyme damage, deficiency of required 

cofactors, or activity of toxic agents may paralyze the normal biochemistry of the body and result 

in clinical illness. While much attention of late has been extended to SNPs (single nucleotide 

polymorphisms) variants that impair the full potential of the enzyme to carry out the metabolic 

process from A to B, there is insufficient awareness that many toxicants are dysregulating enzymes 

and interfering with pathway progression. 

 

IIIe…. Biome Alteration 

 

 

The human biome refers to the body’s ecosystem of microscopic organisms residing in many 

locations including the skin, female vagina, sinuses, and most abundantly in the gastrointestinal 

tract.[230, 231] This biome includes various types of organisms including viruses, helminths, 

prokaryotes and eukaryotes.[232, 233] These organisms play a major role in metabolic 

homeostasis and individual health with functions including the release of neurotransmitters, proper 

digestion and absorption of foodstuffs, production of required nutrients  (e.g. vitamin B12, vitamin 

K2), modulation of the immune system, detoxification, and so on. A healthy gut biome also 

provides protection against microbial overgrowth and dysbiosis and conversely, an unhealthy 

biome has been associated with various disease processes.[234] The importance of the biome as a 
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determinant of health is so significant that some authors refer to it as ‘the 11th organ system’. [230, 

235] 

 

Common environmental chemicals (such as chlorine, heavy metals, assorted pesticides, antibiotics, 

etc.) are found to interfere with microbiome viability and functionality – with potentially adverse 

clinical outcomes.[112, 236-239]   Differences in microbiota species, diversity and distribution, for 

example, are extensively described in inflammatory bowel disease.[240, 241] The loss of the 

beneficial oxalate metabolizing bacteria ‘Oxalobacter formigenes’ is a particular example of 

microbiome damage where the breakdown of oxalates becomes significantly reduced, leading to 

increased oxalic acid absorption and bioaccumulation of oxalate.[242]  Elevated oxalates may have 

deleterious consequences which include mitochondrial damage, generation of reactive oxygen 

species, oxidative stress, repression of cellular respiration (TCA cycle), and reduction in 

antioxidant enzymes and glutathione.[243, 244] High oxalate levels contribute to cellular 

dysregulation and malfunction, which may further translate into clinical manifestations and 

disease,[245] such as nephrolithiasis[246] and mental health issues including autism.[242]  

 

A fundamental realization relating to biome alterations has been the recognition that the ability to 

effectively eliminate toxic compounds requires a healthy, functioning biome.[247] Accordingly, 

concerted efforts are being explored to prevent biome damage in the early stages of life,[248] and 

to restore biome health throughout life. Interventions to restore the microbiome include the use of 

pre and pro-biotics, the adoption of fermented foods in the diet and fecal implants.  For instance, it 

was found that the most efficacious treatment for Clostridium difficile colitis was fecal 

bacteriotherapy.[249, 250] However, sustained improvement and adequate colonization of the 

biome would necessitate addressing the adverse and ongoing impact of adverse exposure and the 

underlying accumulated toxicant burden in order to preclude ongoing destruction of healthy 

organisms.[112, 236, 251] 
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IIIf…. Autonomic Nervous System Dysregulation 

 

The Autonomic Nervous System (ANS) is the neurological regulatory system for many automatic 

functions in the body. It controls breathing, heart rate, gastrointestinal function and motility, 

vasodilatation, thermoregulation, papillary function, and so on. Malfunction of the ANS can thus 

lead to a myriad of clinical manifestations such as arrhythmias, orthostatic hypotension, 

constipation or diarrhoea, vasomotor symptoms, alterations in blood pressure and various other 

abnormal clinical states. ANS dysfunctions can therefore have significant impact on health and 

wellbeing and, at times, be associated with fatal events.  

 

Various adverse chemicals can impact the ANS, either in excitatory or inhibitory ways. For 

example, some xenobiotics, such as assorted chemical warfare agents,[252] may act as relative 

cholinergic blockers, which block the action of cholinergic nerves that transmit impulses by the 

release of acetylcholine at their synapses, thus paralyzing the proper function of the autonomic 

nervous system. In occupational settings, carbon disulfide (CS2), lead (Pb) and excess manganese 

(Mn) have been found to have toxic effects on the ANS, inducing neurobehavioral, neuroendocrine 

(affecting acetylcholine, dopamine, noradrenaline and serotonin neuronal conduction) and 

neuromuscular abnormalities.[253]  

 

Impairment of cardiac autonomic function and diminished heart rate variability (HRV) has been 

observed in response to certain toxicant exposures and has sometimes been used as a marker for 

ANS activity and integrity. Nicotine, smoke inhalation, and organic solvents, for example (such as 

n-hexane, xylene and toluene) have been observed to affect the cardiovascular system and 

diminish heart rate variability.[253, 254]  Exposure to particulate matter, a common event in 

polluted areas, has also been associated with ANS changes and increased arrhythmogenicity.[255] 

Reduction of HRV, a predictor for increased risk of cardiovascular morbidity and mortality, has 

also been demonstrated to correlate with exposure to higher levels of particulate matter.[255] 
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 IIIg…. Neurotransmission Dysfunction 

 

Neurotransmitters are endogenous chemicals that enable neurons to transmit signals across their 

synaptic junctions to message other neurons or target cells (muscles, glands, etc.). 

Neurotransmitters are vital to the organism at a microscopic and macroscopic level and for 

voluntary and involuntary actions. Common neurotransmitters include glutamate, gamma-

aminobutyric acid (GABA), glycine, serine, acetylcholine, dopamine, noradrenaline, epinephrine, 

serotonin, melatonin, histamine, vasopressin, gastrin, secretin, motilin, somatostatin, nitric oxide, 

and adenosine. 

 

GABA for example, is a chief inhibitory neurotransmitter in the central nervous system (CNS). It 

is synthesised from the excitatory neurotransmitter glutamate and plays an important role in 

regulating neuronal excitability. The release of GABA into the synapse depends on its synthesis, 

loading into vesicles, its reuptake, transformation rate back into glutamate, and other indirect 

factors.[256] GABAergic malfunction has been associated with epilepsy, cognitive impairment, 

anxiety, neurodevelopmental disorders and ASD.[256] Various toxicants such as PCBs and 

PBDEs, heavy metals such as mercury and lead, and various other adverse agents can impair 

GABA receptors and lead to neuronal excitability.[143, 257, 258]  For example, it has been found 

that PCB-47 and the brominated flame retardant metabolite 6-OH-PBDE-47 act as agonists on 

inhibitory GABA(A)-mediated signaling and excitatory α(4)β(2) nACh-mediated signaling 

pathways.[143]  

 

Furthermore, glutamate is the most abundant and the major excitatory brain neurotransmitter. It 

influences a range of important cognitive and motor functions including learning, memory and 

behavior control.[89] Various toxicants including PBDEs, PCBs, and Hg impact glutamate 

physiology by dysregulating its uptake at the synaptic level, leading to potentiation of its effect on 

receptor proteins and resulting in excito-toxicity.[89, 90] 
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IIIh. …Nutritional Compromise 

 

Some toxicants provide interference with absorption, assimilation and/or utilization of nutrients. 

This can occur through different mechanisms including biome disruption, enzyme dysregulation, 

gastric inflammation, and so on. As a consequence, individuals may be rendered nutritionally 

compromised and their ability to clear toxins and perform physiological functions becomes 

negatively affected. For example, tobacco is associated with diminished levels of zinc, beta 

carotene, folic acid (Vitamin B9), vitamins B6, C, and E.[259]   

 

Cadmium, a toxic element commonly found in vehicle emissions, decreases the intestinal 

absorption of calcium and directly interferes with the incorporation of calcium into cells, it 

interferes with parathyroid hormone stimulation of vitamin D production in kidney cells, it reduces 

the activity of kidney enzymes activating vitamin D, and it increases excretion of calcium through 

the urine.[260] Cadmium can also contribute to zinc deficiency.[128] Accordingly, this toxic metal 

can be associated with nutritional compromise in many ways. 

 

Medications are a special example of xenobiotics that can be found to be a causative factor in 

nutritional deficiency or insufficiency states. Some may lead to a vast spectrum of possible 

deficiencies either by directly inhibiting absorption, or indirectly through the modification of the 

gastrointestinal biome (e.g. antibiotics). Table 4  provides a brief overview of some commonly 

prescribed medications and the deficiencies that are potentially associated with these agents.[261]  
 

 

 

 

 

 

IIIi Other Emerging Mechanisms of Pathophysiological harm 

 

 Degranulation Dysregulation  

 

Another intriguing pathophysiological process potentially related to toxicant exposure is the 

dysregulation of degranulation from specific cells including mast cells, basophils and eosinophils. 

There has been increasing attention to the issue of inflammatory mediators from mast cells, for 

instance, as a determinant of various chronic illnesses. [262-268] Mastocytosis [262, 269] and 
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mast cell activation [270, 271] appear to be mechanisms associated with the inexplicable release of 

elevated levels of inflammatory mediators from mast cells. One bioactive substance from mast 

cells, histamine, is involved in many physiological processes including regulating gut function, 

facilitating immune processes, triggering inflammatory responses, acting as a neurotransmitter, and 

as a mediator of pruritus; altered histamine release may affect various physiological roles. 

Although much research remains to be done to understand the precise pathogenesis of conditions 

associated with mast cell dysregulation, it has been recently found that disruption of proper mast 

cell degranulation may be generated by toxic agents including mercury.[272, 273] arsenic,[274] 

some pesticides,[275] phthalates,[276] bisphenol A,[277] as well as some mold and mycotoxin 

exposures.[278, 279] 

 

 

IV. Limitations 

 

While extensive ongoing study is underway to delineate metabolic and health effects associated 

with specific toxicants, such research is limited by particular challenges associated with human 

toxicology research. 

 

 Toxicokinetic uncertainty    

There is limited available research in certain aspects of clinical biochemistry related to toxicants 

including i) excretion pathways for some compounds, ii) outcomes of interaction between many 

toxicants and inherent biochemistry, iii) synergy and interaction between assorted xenobiotic 

compounds, and iv) toxico-kinetic behavior for many of the chemical agents currently in our 

environment. As a result, a primary problem with human toxicant research is that bioactive 

mechanisms of impact for some chemical agents are still not well understood. Furthermore, 

because of the multiplicity of exposures experienced by most individuals today, it is difficult to 

attribute specific outcomes to a particular exposure. 
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 Lack of high level evidence     

It is not possible to do prospective clinical trials on the health and metabolic effects of exposures 

on humans as it is unethical to expose individuals or groups to potentially toxic compounds in 

order to study their biochemical or physiological response – accordingly animal studies and less 

reliable human observational studies are used instead. Such studies are much more likely to be 

affected by confounding variables, such as the metabolic impact from the concomitant presence of 

other toxicants.  
 

 

 Chemical sequestration  

Quantifying metabolic impact at specific toxicant blood or urine levels is of limited value as 

biomonitoring values are notoriously inaccurate. Many chemicals that sequester in tissues are not 

necessarily present in blood, and many are not excreted into urine. Levels measured in peripheral 

blood or urine on a single occasion only represent a ‘snapshot’ that may not reflect the actual 

degree of contamination. Furthermore, serum levels of xenobiotics may fluctuate due to movement 

in and out of cells depending on various factors including exercise and caloric intake.[280]  

 

 

 Genomic Variability & Chemical Interaction  

Confounders can also make it difficult to interpret the results of toxicant exposure outcome studies. 

Each individual, for example, has a unique genome and may respond differently to toxic 

exposures. It is thus not possible to extrapolate findings from individuals to larger groups. Synergy 

or interaction between various chemical compounds may also alter the impact of any individual 

agent. With the array of combinations and permutations of potential exposures continuing to 

unfold at an unprecedented rate, the reality is that there is a paucity of credible data on the precise 

metabolic impact of bioaccumulation for each individual compound or for collective chemical 

cocktails. 

 

In review, challenges remain when attempting to conclusively quantify the full metabolic impact 

of chemical exposures. Nonetheless, this paper has tried to provide an overview of biochemical 
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and physiological alterations identified to date as a result of toxicant exposure and accrual. As a 

consequence of these and other potential metabolic alterations, ongoing research continues to 

elucidate the clinical impact that such agents are having on human health.  

 

Increasing numbers of Public Health and Toxicology journals have focused on illuminating the 

outcomes of such research. What is clear is that low level exposure to, and/or accrual of selected 

chemical compounds appears to increase the risk for potentially serious clinical sequelae including 

cancer,[281] reproductive dysfunction,[282] endocrine dysregulation,[283] immune 

alteration,[284]  congenital anomalies,[285] as well as neurological and psychiatric 

dysfunction.[286] In response to this unfolding research, increasing exploration of interventions 

and strategies to facilitate elimination of bioaccumulative toxicants is underway in order to 

preclude the looming damage associated with toxicant accrual.[5, 22, 287-291] 

 

 

V. Concluding Thoughts 

   
 

The human body is a biochemical factory, continually making what it needs to function and to 

maintain homeostasis. Physiologically, the functioning of this intricate organism represents the 

sum total of metabolic pathways – if these pathways malfunction microscopically, the body 

malfunctions macroscopically, leading to morbidity and mortality. As discussed in this paper, 

various chemical agents have been shown to disrupt biochemistry and physiology in many ways, 

potentially resulting in varying degrees of metabolic error. With widespread bioaccumulation of 

numerous assorted chemicals in many population groups,[1, 2, 4] the ensuing metabolic disruption 

is not without consequence for individual and global health – a reality that is now ineluctable.  
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Table 1 – Examples of physiologically active levels for some common hormones, toxicants, and 

pharmacological compounds for comparative purposes.[9, 292-299] 
 

Uric acid (serum) reference range for adult males is 3.7-8.0 mg/dL (220-476 micromole/L) and 

2.7-6.1 mg/dL for women (160-363 micromole/L). Conversion factors between the different 

concentration units are as follow: 1 ng/dL = 0.01 ppb, 1 ng/mL = 1 ppb. It is considered that 1 L of 

water (or serum) corresponds to 1000 g of water. It follows then that 1 L of water represents 55.51 

moles of water. Therefore, 1 pmol of a compound/L of water (or serum) corresponds to 1 pmol of 

compound / 55.51 moles H2O or simply 0.0180 pmol of compound/mol of water (or serum).  
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Table 2.    Mechanisms of Metabolic Harm:  

                           Classification of Biochemical and Pathophysiological Alterations 

 

 

 

 
 

CELLULAR TOXICITY 
 

PATHOPHYSIOLOGY  

Damage to Cell Structures (e.g. DNA) 
 

Endocrine Disruption  

Oxidative Stress 
 

Inflammation   

Receptor and Transporter Dysregulation   
 

Immune Dysfunction 

Epigenetic Change   
 

Pathway Dysregulation 

Cellular Detoxification Impairment  
 

Biome Alteration  

Dysregulation of Signalling  ANS Dysregulation 

Plaque Formation  Neurotransmission Dysfunction 

Displacement  Nutritional Compromise 

Other Mechanisms of Cellular Toxicity  Other Mechanisms of Pathophysiological harm 
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Table 3. Example of Endocrine Disruption: Some of the many ways toxicants can disrupt thyroid 

metabolism [24, 25, 88, 148] 

 

 

BPA and phthalates  

DDT & PCBs,   

PBDEs & Triclosan   

Phthalates 

PCBs, 

Fungicide (Mancozeb)  

Toxic Metals (Pb, Hg, Cd, etc) 

Organochlorines 

Binds thyroid hormone receptors 

Bind TSH receptor 

Induction of thyroid autoantibodies 

Blocks Iodide uptake 

Binds thyroid transport protein 

Impairs thyroid hormone production 

Inhibition of Deodinases 

Direct Thyrotoxicity 



Official publication at    http://dx.doi.org/10.1080/15376516.2017.1323986 
 

37 

 

Table 4.   Medications and the Associated Deficiencies that May Occur 

                             
 

  

Drug or type of drug Possible deficiency  

Antacids 
Folic acid, Calcium, Copper, Phosphate, Vitamin A, 
Vitamin B12 

Antibiotics Vitamin K, L-leucine, Biotin 

Atorvastatin Coenzyme Q10 

Beta-adrenergic blocking agents Coenzyme Q10 

Bile acid sequestrants 
Calcium, Carotenoids, Folic acid, Vitamins A, D, E, K, 
Zinc 

Bisacodyl (Dulcolax, stimulant laxative) Potassium 

Chemotherapy 
Magnesium, Vitamin B2, Taurine, and many other 
nutrients 

Cholestyramine 
Carotenoids, Fat, Folic acid, Calcium, Iron, 
Magnesium, Phosphorus, Zinc, Vitamin A, Vitamin 
B12, Vitamins A, D, E, K 

Conjugated oestrogens (Premarin) Vitamin B6 

Corticosteroids 
Calcium, DHEA, Magnesium, Melatonin, Potassium, 
Folic acid, Vitamin B6, B12, C, D, K, E, Selenium, Zinc 

Digitalis (Digoxin, Lanoxin, Digitoxin) Magnesium, Calcium, Sodium, Potassium 

Diuretics Magnesium, Potassium, Zinc, Vitamin B1 

L-dopa ( Levodopa, Dopar, Larodapa) Vitamin B6, Potassium 

Edetate calcium disodium (EDTA) Calcium, Zinc 

Furosemide (Frusemide, loop diuretic) 
Calcium, Magnesium, Potassium, Vitamin B1, Vitamins 
B6 and C 

Heparin Vitamin D 

Histamine H2-antagonists Iron, Zinc, Folic acid, Vitamin B12 

Isoniazid (INH, Laniazid, Rifamate, Rimactane) 
Calcium, Folic acid, Magnesium, Vitamins B3, B6, B12, 
D, E, K 

Losartan (Cozaar, angiotensin-II receptor 
antagonist) 

Calcium, Chloride, Magnesium, Potassium, Sodium, 
Phosphate 

Metformin (Glucophage) Vitamin B9, B12 

Methotrexate Calcium, Vitamin B9 

Oral contraceptives 
Magnesium, Manganese, Zinc, Folic acid, Vitamins B1, 
B2, B3, B6, B12, C 

Proton Pump Inhibitors Beta carotene, Vitamin B12, Calcium 

Simvastatin (Zocor) Coenzyme Q10, Vitamin E, Beta carotene 

Thiazide diuretics Magnesium, Potassium, Sodium, Zinc 

Ventolin (Albuterol/Salbutamol/Proventil) Calcium, Magnesium, Phosphate, Potassium 
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Figure 1 – Environmental contamination.  

            (NOx = Nitrogen oxide compounds; SOx = Sulfur Oxide compounds) 
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Domestic & industrial 

release of chemicals 

Contamination of various 

environmental bodies 

  

  

Incomplete retention and/or elimination of pollutants right at the source 

e.g.  

- NOx, SOx, and remains from incomplete combustion products 

released from chimney stacks; 

- medications and cleaning agents flushed in toilets 

Limited decontamination processes 

e.g. 

Water treatment & filtration 

Air filtration 

Soil 

(agriculture land, food) 

  

  

Water 

(spring, lakes, streams, oceans) 

Air 

(outdoor & indoor) 

  

  

Human Contamination 

Contamination from one body to another is common 
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Figure 2 – Overview of exogenous toxicant passage from the environment through the human body.    

     

(Body wastes are not included.) 
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Figure 3 – Pathway to clinical disease. 
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Figure 4 – Simplified overview of the main steps involved in the elimination of intrinsic waste products of metabolism, xenobiotics and 

toxicants.  

 

(Dashed lines represent short cuts that some compounds may take). 
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Figure 5 – Simplified overview of main mechanisms of cellular and extracellular toxicity.  
(ER = Endoplasmic reticulum) 
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Figure 6 –Endocrine disruption and receptor dysregulation.  

 

A simplified model of thyroid hormone feedback is used to illustrate the concept. Toxicants can have various disruptive effects and 

alter hormone synthesis, expression and reception. Phthalates have shown antagonist thyroid receptor activity while PCBs and PBDEs 

have shown both agonist and antagonist activity on thyroid receptors. 
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Figure 7 – Toxicant induced loss of tolerance (TILT) phenomena. As a result of toxicant 

bioaccumulation within the body, the immune system becomes oversensitive and responds to low 

dose levels of common environmental chemicals (e.g. perfume) or chemical structures (e.g. pollen) 

to which the same individual would have otherwise not reacted to previously. 
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Accrual of Toxicants 

Acute 
e.g. Ingestion of arsenic 

Subacute 
e.g. Gulf war veterans; 

inhabiting a moldy house. 

 

Chronic 
e.g. Occupational 

exposures (mechanics, 

pilots, firefighters, road 

construction workers, 

etc.);  

 

No symptoms 

Antigenic Incitant(s) or Trigger(s) 
 

e.g.  

- Allergens such as: Pollens, grass, pets, etc. 

- Common foods such as: dairy, nuts, gluten, etc. 

- Chemicals commonly found in an individual’s 

environment such as perfumes, scents, detergents, 

fabric softeners, air fresheners, personal care 

products, fuel, paint, smoke, etc.) 

Sufficient 

elimination of 

toxicants? 
 

e.g. gastric lavage, 

activated charcoal, etc. 

 

TILT Phenomena 

(Toxicant Induced Loss of Tolerance) 

 

Body Response 

e.g. Activation of immune system pathways, release of 

cytokines, immunoglobulins (IgE, IgM, IgG, IgA), 

histamine, etc. 

  

Multi-system signs & symptoms 

e.g. Fatigue, myalgia, arthralgia, rhino-conjunctivitis, sinusitis, 

edema, dyspnea, rashes, irritable bowel syndrome, headaches, 

cognitive impairment, ataxia, paresthesia, mood disorders, etc.  

  

Exposure to 

incitants or 

triggers? 

 

Yes 

No 

Yes 

No 
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