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Hypercalcemia occurs in up to 4% of the population in association with malignancy, primary hyperparathy-
roidism, ingestion of excessive calcium and/or vitamin D, ectopic production of 1,25-dihydroxyvitamin D
[1,25(OH)2D], and impaired degradation of 1,25(OH)2D. The ingestion of excessive amounts of vitamin D3 (or
vitamin D2) results in hypercalcemia and hypercalciuria due to the formation of supraphysiological amounts of
25-hydroxyvitamin D [25(OH)D] that bind to the vitamin D receptor, albeit with lower affinity than the active
form of the vitamin, 1,25(OH)2D, and the formation of 5,6-trans 25(OH)D, which binds to the vitamin D receptor
more tightly than 25(OH)D. In patients with granulomatous disease such as sarcoidosis or tuberculosis and
tumors such as lymphomas, hypercalcemia occurs as a result of the activity of ectopic 25(OH)D-1-hydroxylase
(CYP27B1) expressed in macrophages or tumor cells and the formation of excessive amounts of 1,25(OH)2D.
Recent work has identified a novel cause of non-PTH-mediated hypercalcemia that occurs when the degradation
of 1,25(OH)2D is impaired as a result of mutations of the 1,25(OH)2D-24-hydroxylase cytochrome P450
(CYP24A1). Patients with biallelic and, in some instances, monoallelic mutations of the CYP24A1 gene have
elevated serum calcium concentrations associated with elevated serum 1,25(OH)2D, suppressed PTH concen-
trations, hypercalciuria, nephrocalcinosis, nephrolithiasis, and on occasion, reduced bone density. Of interest,
first-time calcium renal stone formers have elevated 1,25(OH)2D and evidence of impaired 24-hydroxylase-
mediated 1,25(OH)2D degradation. We will describe the biochemical processes associated with the synthesis and
degradation of various vitamin D metabolites, the clinical features of the vitamin D-mediated hypercalcemia,
their biochemical diagnosis, and treatment. (Endocrine Reviews 37: 521–547, 2016)
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I. Introduction

Hypercalcemia is encountered in 0.2 to 4% of commu-
nity-dwelling subjects and hospital patients (1–8).

The incidence of hypercalcemia is dependent upon whether
serum calcium measurements are performed in free-living
subjects in a community (1), in a hospital population

(2– 4), or in patients seen in an emergency department
(5, 6, 8). Causes of hypercalcemia are listed in Table 1.
Cancer-associated hypercalcemia and primary hyper-
parathyroidism are the most frequent causes of hypercal-
cemia. Their relative frequency depends upon whether the
diagnosis of hypercalcemia is made in a hospital setting
(where cancer-associated hypercalcemia is most fre-
quent) or within the context of an outpatient practice
(where the diagnosis of primary hyperparathyroidism
predominates) (9).

From a diagnostic and therapeutic perspective, it is use-
ful to think of hypercalcemia as a PTH-dependent or PTH-
independent process. Increases in PTH concentrations in
association with hypercalcemia indicate the presence of
primary (10–14), tertiary (15–28), and post-transplant
hyperparathyroidism (3, 21, 25, 26, 28–38) or severe neo-
natal hyperparathyroidism (associated with homozygous
mutations of the calcium-sensing receptor) (39–42),ISSN Print 0163-769X ISSN Online 1945-7189
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Abbreviations: HTLV, human T lymphotropic virus; IIH, idiopathic infantile hypercalcemia;
1,25(OH)2D, 1,25-dihydroxyvitamin D; 25(OH)D, 25-hydroxyvitamin D; PAM, pulmonary
alveolar macrophage; VDBP, vitamin D binding protein.
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whereas hypercalcemia in association with a low or sup-
pressed PTH concentration indicates the presence of PTH-
independent mechanisms causing hypercalcemia. In the
latter category, cancer-associated hypercalcemia is pre-
dominant. In vitamin D-associated hypercalcemia, PTH
concentrations are appropriately reduced.

II. Vitamin D-Associated Hypercalcemia

A review of vitamin D metabolism will assist in the un-
derstanding of mechanisms associated with vitamin D-
mediated hypercalcemia and the utility of measurements
of vitamin D metabolites when a diagnosis of vitamin-
associated hypercalcemia is made.

A. Vitamin D metabolism
The major physiological role of vitamin D through the

activity of its active metabolite 1�,25-dihydroxyvitamin
D [1�,25(OH)2D] is the maintenance of normal calcium
and phosphorus balance (43–46). 1�,25(OH)2D also me-
diates several other biological effects such as the modula-
tion of immune function (47, 48), muscle function (49–
51), and cell growth and differentiation (52–54). A brief
review of the metabolism, regulation, and mechanism of
action of vitamin D follows. For more detailed informa-
tion, readers are referred to prior reviews in Endocrine
Reviews (49, 50, 54–64) and other journals (48, 65,
67–69).

Figure 1A summarizes the salient biochemical trans-
formations that occur during the formation and metabo-
lism of vitamin D metabolites. The endogenous form of
vitamin D, vitamin D3 (cholecalciferol), is formed in the
skin as a result of photolysis of the precursor sterol, 7-de-
hydrocholesterol (70–78). Under the influence of ultravi-
olet light (optimal wave lengths for photolysis, 295–300
nm), the B-ring of the sterol is cleaved, giving rise to pre-
vitamin D3, which undergoes thermal equilibration to
vitamin D3 (76–78). Vitamin D3, bound to vitamin D-
binding protein, to which it preferentially binds relative to
its precursor, previtamin D3, exits the skin and enters the
circulation (77). Similar biochemical transformations
occur with the plant sterol, ergosterol, which upon pho-
tolysis gives rise to vitamin D2, or ergocalciferol (79). Al-
though there are interspecies differences in the biological
activity of vitamin D3 vs vitamin D2 (for example, vitamin
D2 is much less active in birds than mammals) (80), the
major metabolic transformations of vitamin D3 and vita-
min D2 are similar. For the purposes of this review, we will
use the term “vitamin D3” throughout. Unless specified,
the reader may assume that the similar metabolic trans-
formations occur in the case of vitamin D3 and vitamin D2.
The term “vitamin D” will be used to refer to both vitamin
D2 and vitamin D3 metabolites.

Vitamin D3 is metabolized in the liver microsomes and
mitochondria to 25-hydroxyvitamin D3 [25(OH)D3] by
the vitamin D3-25-hydroxylase (81–92). The vitamin D3-
25-hydroxylase is only partially inhibited by its product,
and hence, increasing amounts of administered vitamin D3

are associated with increases in the amount of product,
namely, 25(OH)D3, and hence, increasing concentrations
of vitamin D3 in the serum are associated with propor-
tional increases in serum 25(OH)D3. 25(OH)D3 (both free
and bound to vitamin D-binding protein) is the major cir-
culating vitamin D3 metabolite (43, 68, 69, 74, 94–95),
and measurements of this vitamin D metabolite are widely
used as an index of nutritional vitamin D status (96–99).
The CYP2R1 is the cytochrome P450 of the microsomal

Table 1. Causes of Hypercalcemia

PTH-Mediated
Primary hyperparathyroidism
Tertiary hyperparathyroidism
Post-transplant hyperparathyroidism
Familial hypocalciuric hypercalcemia/severe neonatal
hyperparathyroidism
Humoral hypercalcemia of malignancy—PTH-mediated

Non-PTH-Mediated
Endocrine

Hypothyroidism
Hypoadrenalism/Addison’s syndrome
VIPoma
Pheochromocytoma
Pregnancy/lactation-associated (PTHrP-mediated)

Malignancy
Humoral hypercalcemia of malignancy

PTH-related peptide
1,25-dihydroxyvitamin D

Lytic bone lesions
Drug-related

Thiazide diuretics
Vitamin D or vitamin D analogs
Vitamin K
Calcium
Aluminum
Beryllium
Theophylline
Vitamin A intoxication

Vitamin D-mediated
Excessive cholecalciferol or ergocalciferol indigestion
Ingestion or administration of excessive calcitriol (or other

1�-hydroxylated vitamin D analogs)
Ectopic 1,25-dihydroxyvitamin D production

Granulomatous disease
Sarcoidosis
Tuberculosis
Fungal diseases
Leprosy
Other granulomatous lesions

Lymphoma
Inactivating mutations of the CYP24A1 gene in children and adults

Miscellaneous conditions
Post-acute renal failure
William’s syndrome
Paget’s disease
Immobilization
Jansen’s metaphyseal chondrodysplasia
Hypophosphatasia
Milk-alkali syndrome
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vitamin D3-25 hydroxylase, a mutant form of which was
identified in a human subject with low circulating con-
centrations of 25-hydroxyvitamin D [25(OH)D] and clas-
sic symptoms of vitamin D deficiency (90). In the patient
studied, homozygous mutations in exon 2 of the CYP2R1
gene on chromosome 11p15.2 resulted in the substitution
of a proline for an evolutionarily conserved leucine at
amino acid 99 in the CYP2R1 protein and reduced vitamin
D3-25 hydroxylase activity. Other vitamin D3-25 hy-
droxylases are also likely to play a role in the transforma-
tion of vitamin D3 to 25(OH)D3 because Cyp2r1�/� mice
have only a partial (�50%) reduction in serum 25(OH)D3

concentrations and lack overt rickets and hypocalcemia

(92). The structure of the Cyp2A1 cytochrome P450
bound to its ligand, vitamin D3, has been solved by x-ray
crystallography (100). Vitamin D3 is bound in an elon-
gated conformation with the aliphatic side-chain pointing
toward the heme group (Figure 1B, top panel). The active
site is lined by conserved, mostly hydrophobic residues.

The further metabolism of 25(OH)D3 is dependent
upon the calcium and phosphorus requirements of the
individual. In states of calcium demand, 25(OH)D3 is me-
tabolized by the 25-hydroxyvitamin D3-1�-hydroxylase
to the biologically active vitamin D metabolite, 1�,25-
dihydroxyvitamin D3 [1�,25(OH)2D3], in the kidney by
PTH-dependent processes (Figure 1C) (43, 65, 74, 101–

Figure 1.

A B C

Figure 1. A, The formation and metabolism of vitamin D3. B, Docking studies may explain ligand specificity of cytochrome P450s for vitamin D3

and its metabolites. Top panel, Crystal structure of the Cyp2R1 bound to vitamin D3 (cyan) (PDB ID 3c6g) (100). Middle panel, Homology model of
Cyp24A1 (-9.2 kcal/mol) bound to substrate 25(OH)D3 (cyan). Bottom panel, Homology model of Cyp27B1 (-9.4 kcal/mol) bound to 25(OH)D3

(cyan). The heme, heme iron, and bound oxygen (yellow) positions in these cytochrome P450 cavities are shown as spheres at right. The amino
acids nearby or in the positions of all three ligands are shown for comparison. Residue names and numbers are provided only if one or more
enzyme atoms fall within a 4 Å distance of a ligand atom. The homology models shown were based on the closed ligand cavity conformation
observed for the crystal structure of Cyp11A1 (PDB ID 3na0). (All protein structural figures and modeling are courtesy of Dr. James R. Thompson.)
C, Physiological changes in response to decreases in serum calcium concentrations.
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112). Changes in PTH alter multiple processes including
renal calcium reabsorption (directly and indirectly through
changes in sclerostin expression) (111–114), 25(OH)D 1�-hy-
droxylase activity, and bone resorption mechanisms (43,
65, 74, 101–112). In states of calcium sufficiency, the syn-
thesis of 1�,25(OH)2D3 is reduced, and the synthesis of
24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) (115–
117), an inert vitamin D metabolite, is increased. The syn-
thesis of 24R,25(OH)2D3 is mediated by the 25(OH)D3-
24-hydroxylase that is present in several target tissues of
1�,25(OH)2D3 including the intestine and the kidney
(115, 118–120). This enzyme is induced by 1�,25(OH)2D3

(118, 121). Serum phosphate concentrations also regulate the
synthesis of 1�,25(OH)2D3 by PTH-independent mecha-
nisms (122). Thus, in states of phosphorous demand,
25(OH)D3 is metabolized to 1�,25(OH)2D3, and the syn-
thesis of 24R,25(OH)2D3 is reduced (69, 103, 123–126).
The converse occurs in hyperphosphatemic states. Nu-
merous factors other than calcium and phosphorus alter
the activity of the 25(OH)D-1�-hydroxylase, and the
reader is referred to reviews on this matter (104, 127–
131). As noted in Figure 1A, 1�,25(OH)2D3 and
24R,25(OH)2D3 are metabolized to 1�,24R,25(OH)3D3

by the 24 and 1�-hydroxylases.
The 25(OH)D3-24-hydroxylase is a mitochondrial,

multicomponent enzyme with a terminal cytochrome
P450, the CYP24A1, which uses molecular oxygen to hy-
droxylate 25(OH)D3 at C-24 on the side chain of the sterol
(132). The Cyp24A1/CYP24A1 gene has been cloned
from rats (133–136) and humans (137, 138). As we will
discuss in later sections, deletions or mutations in the
mouse and human CYP24A1 gene are responsible for hy-
percalcemia as a result of elevated 1�,25(OH)2D3 con-
centrations (69, 139–147). Shown in Figure 1B, middle
panel, is a model of the Cyp24A1 protein bound to
25(OH)D3. Note the proximity of the side chain to oxygen
and heme groups. Models of the Cyp24A1 and Cyp27B1
were generated by threading Cyp24A1 and Cyp27B1
amino acid sequences onto the backbone polypeptide
positions to form three cytochrome p450 structures: rat
24-hydroxylase (Cyp24A1; PDB ID 3k9v), human cho-
lesterol side-chain cleavage enzyme (Cyp11A1; PDB ID
3na0), and human 11-�-hydroxylase (Cyp11B1; PDB ID
4fdh) (148–154). The 25(OH)D3-1�-hydroxylase is a mi-
tochondrial, multicomponent enzyme with a terminal
cytochrome P450 (155–158), CYP27B1, which uses mo-
lecular oxygen to hydroxylate 25(OH)D3 at C-1 on the A
ring of the sterol (159–162). Mutations of the CYP27B1
gene are responsible for vitamin D dependency rickets,
type 1 (163–166), and deletion of the Cyp27B1 gene in
mice confers a rachitic phenotype (167). Shown in Figure
1B, lower panel, is a model of the Cyp27B1 cytochrome

P450 protein bound to 25(OH)D3. Note the proximity of
the A ring to oxygen and heme groups. The enzyme is
also responsible for the conversion of 24R,25(OH)2D3

to the metabolite, 1�, 24R, 25-trihydroxyviatamin D3.
Besides metabolism to 1�,24,25(OH)3D3, 1�,25(OH)2D3 is
also metabolized to polar steroids (glucuronides and sul-
fates) in the liver and excreted in bile [about 30 – 40%
of an administered dose of 1�,25(OH)2D3] (55, 104,
168 –172); to calcitroic acid that is excreted in the bile
as a polar metabolite (about 20 –25% of an adminis-
tered dose of 1�,25(OH)2D3) (173–176); and to
1�,25R(OH)2D3-26,23S-lactone (177–179).

The bioactivity of vitamin D3 is dependent on the for-
mation of 1�,25(OH)2D3. Pharmacological amounts of
precursors such as vitamin D3 itself or intermediary me-
tabolites such as 25(OH)D3 are required to elicit a bio-
logical response in anephric animals and patients (109,
180, 181). In such individuals, 1�,25(OH)2D3 readily in-
creases intestinal calcium transport (105, 106) and mobilizes
calcium from bone (181). The actions of 1�,25(OH)2D3 re-
quire the presence of the vitamin D receptor, a steroid
hormone receptor that binds 1�,25(OH)2D3 with high
affinity and binds other vitamin D metabolites with
lower affinities (182–185). After binding of the ligand,
1�,25(OH)2D3, to the ligand-binding domain of the re-
ceptor, a conformational change in the receptor is asso-
ciated with the recruitment of other steroid hormone re-
ceptors such as the RXR� and various coactivator (or
corepressor) proteins to the transcription start site of genes
regulated by 1�,25(OH)2D3 (186–194). The vitamin D
receptor binds DNA binding elements of varied nucleotide
structures within vitamin D-regulated genes via its amino-
terminal DNA binding domain (195–199). Numerous cal-
cium-regulating genes are induced or repressed in vitamin
D-responsive target tissues such as the intestine, kidney,
and bone (45, 51, 200–205).

Absorption of dietary calcium by the intestine is essen-
tial for the maintenance of normal calcium homeostasis
(206) and is a major factor contributing to hypercalcemia
in patients with vitamin D intoxication. The efficiency of
calcium absorption increases or decreases inversely with
the amount of dietary calcium, and adaptations to changes
in calcium intake are dependent upon vitamin D and its
active metabolite, 1�,25(OH)2D3 (206, 207). Calcium is
absorbed by the intestine (predominantly in the duode-
num and proximal small intestine) by two mechanisms, a
passive paracellular mechanism, and an active transcellu-
lar one (206, 208, 209). Active calcium absorption ini-
tially involves the movement of calcium across the apical
border of the intestinal cell into the cell down a concen-
tration gradient (the interior of the intestinal cell has a
calcium concentration in the high nanomolar range) and
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an electrical gradient (the interior of the cell is electrone-
gative relative to the lumen). It does not require the ex-
penditure of energy (210, 211). The extrusion of calcium
out of the intestinal cell at the basolateral membrane is
against an electrical and concentration gradient and re-
quires the expenditure of energy (210, 211). Essential to
the process of active calcium transport are several vitamin
D dependent proteins, each with a specific function. These
include the epithelial calcium channel, calbindin D9K

andD28K, and the plasma membrane calcium pump (212).
In the duodenal enterocyte, apically situated TRPV 5/6
cation channels mediate the increase in calcium uptake
from the lumen into the cell (213); intracellular calcium
binding proteins such as calbindin D9K and D28K facilitate
the movement of calcium across the cell (209, 210); and
the basal-lateral plasma membrane calcium pump (214–
216) and the sodium-calcium exchanger (217) assist in the

extrusion of calcium from within the
cell into the extracellular fluid (Fig-
ure 2). The sodium gradient for the
activity of the sodium-calcium ex-
changer is maintained by the Na-K
ATPase. Intestinal transcellular cal-
cium transport is regulated by vita-
min D through its active metabolite,
1�,25(OH)2D3, which increases the
expression of TRPV 6 channels (218),
the intracellular concentrations of cal-
bindin D9K and D28K (210, 219–221),
and the expression of the plasma
membrane pump, isoform 1 (222,
223) (Figure 2). The requirement of
various intestinal calcium trans-
porter proteins in transcellular cal-
cium transport in vivo has been ex-
amined in knockout mice. Deletions
of TrpV6 and calbindin D9K genes
are not associated with alterations in
intestinal calcium transport in vivo
in the basal state and after
the administration of 1�,25(OH)2D3

(224, 225), although one report sug-
gests that basal calcium transport on
an adequate calcium diet is normal in
TrpV6 knockout mice but adapta-
tions to a low-calcium diet are im-
paired (226). We recently showed
that deletion of the Pmca1 in the in-
testine is associated with reduced
growth and bone mineralization and a
failure to up-regulate calcium absorp-
tion in response to 1�,25(OH)2D3,

thereby establishing the essential role of the pump in
transcellular calcium transport (227).

1�,25(OH)2D3, PTH, and the phosphatonin, fibro-
blast growth factor-23 (FGF-23), regulate and maintain
normal phosphorus concentrations (212, 228, 229).
Changes in serum phosphate concentrations are associ-
ated with changes in 1�,25(OH)2D3 concentrations. A
decrease in serum phosphate concentration is associated
with an increase in ionized calcium, a decrease in PTH
secretion, and a subsequent decrease in renal phosphate
excretion. An increase in renal 25(OH)D 1�-hydroxylase
activity, increased 1�,25(OH)2D3 synthesis, and in-
creased phosphorus absorption in the intestine and reab-
sorption in the kidney occur (122, 126, 230–237). In the
intestine and kidney, 1�,25(OH)2D3 regulates the expres-
sion of the sodium-phosphate cotransporters IIb, and IIA
and IIc, respectively, thereby regulating the efficiency of

Figure 2.

Figure 2. Integrated model of active Ca2� reabsorption in the intestine and distal part of the
nephron. Apical entry of Ca2� is facilitated by Transient Receptor Potential Cation Channel
Subfamily V Members 5,6 (TRPV 5,6)/Epithelial calcium channel (EcaC); Ca2� then binds to
calbindin-D28K, and this complex diffuses through the cytosol to the basolateral membrane,
where Ca2� is extruded by a Na�/Ca2� exchanger and a plasma membrane Ca2�-ATPase. The
individually controlled steps in the activation process of the rate-limiting Ca2� entry channel
include 1�,25(OH)2D3-mediated transcriptional and translational activation, shuttling to the
apical membrane, and subsequent activation of apically located channels by ambient Ca2�

concentration, direct phosphorylation, and/or accessory proteins. (Modified from Kumar and
Vallon; Ref. 112.)
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inorganic phosphate absorption in enterocytes and prox-
imal tubule cells (212, 238–240).

B. Prevalence and clinical manifestations of vitamin
D-mediated hypercalcemia

Although relatively uncommon in comparison to can-
cer-associated hypercalcemia and primary hyperparathy-
roidism, the true prevalence of vitamin D-mediated hy-
percalcemia is unknown. With the increase in vitamin D
supplementation in the general population and with new
information becoming available on the prevalence of
CYP24A1 mutations (139–147) in the general population
(241), it is likely that the prevalence of vitamin D-mediated
hypercalcemia will increase. Table 2 summarizes the
causes and mechanisms associated with the development
of vitamin D-associated hypercalcemia.

C. Hypercalcemia associated with excessive ingestion of
vitamin D and active vitamin D metabolites/analogs

1. Vitamin D intake and hypercalcemia
The upper tolerable limit, defined as the highest level of

daily nutrient intake that is likely to pose no risk of adverse
health effects to almost all individuals in the general pop-
ulation, for vitamin D3 is 1000 IU/d in infants ages 0–6
months, 1500 IU/d in infants ages 6–12 months; 2500
IU/d in children ages 1–5 years; 3000 IU/d in children ages
4–8 years, and 4000 IU/d in adolescents and adults (97,
99). The short-term ingestion of up to 10 000 IU/d of vi-

tamin D3 is associated with the maintenance of 25(OH)D
serum concentrations below 50 ng/mL (125 nmol/L)
(240), a concentration below which toxicity has not been
observed. In a study of 40 patients with metastatic breast
tumors, daily doses of 10 000 IU vitamin D3 for 4 months
were not associated with hypercalcemia although small
increases in serum calcium and decreases in PTH were
observed (243). Ingestion of amounts of vitamin D3 or
vitamin D2 higher than 10 000 IU/d in an adult (and lower
amounts in children) should raise the suspicion of vitamin
D intoxication, especially in the context of hypercalciuria
and/or hypercalcemia because the serum 25(OH)D con-
centration rises steeply at intakes �10,000 IU/d. The du-
ration of ingestion of vitamin D, the starting 25(OH)D
concentration before the ingestion of vitamin D3, and the
underlying reason for therapy are important in consider-
ing the contribution of vitamin D ingestion to changes in
25(OH)D concentrations (see Ref. 242 for a summary of
multiple studies). Generally, vitamin D-associated hyper-
calcemia occurs only when extremely large doses of vita-
min D (often several hundred-fold the recommended in-
take) are ingested (244–257).

2. Diagnosis of hypervitaminosis D
The clinical symptoms of vitamin D toxicity are the

result of hypercalcemia and hypercalciuria and are similar
to those of hypercalcemia due to any other cause. Symp-
toms include neuropsychiatric manifestations such as leth-
argy, confusion, irritability, depression, hallucinations,
and in extreme cases, stupor, and coma; gastrointestinal
symptoms such as anorexia, nausea, vomiting, and con-
stipation; cardiovascular manifestations such as ectopy;
and renal symptoms such as polyuria and renal colic from
the passage of renal stones.

Reports suggest that the administration of vitamin D3

in large amounts is associated with an increased risk of
falls and fractures (258–261). For example, in a 1-year,
double-blind, randomized clinical trial conducted in Swit-
zerland among community-dwelling men and women 70
years of age and older, groups of subjects receiving
monthly treatment with 60 000 IU of vitamin D3, and
24 000 IU of vitamin D3 plus 300 �g of calcifediol
[25(OH)D3], had a higher incidence of falls than a the
group receiving 24 000 IU of vitamin D3 (261). In another
study, in which older women received a single annual oral
dose of 500 000 IU of vitamin D3, the relative risk of
falling in the vitamin D group vs the placebo group was
1.31 in the first 3 months after dosing and 1.13 during the
following 9 months (258). Thus, among older community-
dwelling women, annual oral administration of high-dose
cholecalciferol resulted in an increased risk of falls and
fractures.

Table 2. Vitamin D-Associated Hypercalcemia

Exogenous Vitamin D Toxicity
Administration of excessive amounts of vitamin D3 or vitamin D2
Administration of excessive amounts of 25(OH)D3
Administration of excessive amounts of 1�,25(OH)2D3, other 1�-

hydroxylated vitamin D analogs such as 1�(OH)D3, paricalcitol,
and doxercalciferol in the context of chronic renal failure, end-
stage renal disease, and hemodialysis therapy

Excessive Production of Vitamin D Metabolites
Congenital disorders: excessive production of 25(OH)D and

1,25(OH)2D3, eg, in Williams-Beuren syndrome with mutations of
the Williams Syndrome Transcription Factor

Granulomatous disease: excessive production of 1,25(OH)2D3:
sarcoidosis, tuberculosis, leprosy, histoplasmosis,
coccidioidomycosis, paracoccidioidomycosis, candidiasis, cat-
scratch disease, Pneumocystis jiroveci or P. carinii pneumonia,
Mycobacterium avium complex, Wegener’s granulomatosis,
Crohn’s disease, infantile sc fat necrosis, giant cell polymyositis,
berylliosis, silicone-induced granuloma, paraffin-induced
granulomatosis, talc granuloma.

Lymphomas and malignant lymphoproliferative disease: excessive
production of 1,25(OH)2D3: lymphoma, non-Hodgkin lymphoma,
lymphomatoid, granulomatosis, inflammatory myofibroblastic
tumor, dysgerminoma

Mutations in Enzymes Associated With Vitamin D Metabolite
Degradation

Mutations of the CYP24A1 gene: reduced degradation of
1,25(OH)2D3: infantile and adult hypercalcemia
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Laboratory findings other than hypercalcemia include
hyperphosphatemia and suppressed serum PTH concen-
trations. The presence of hyperphosphatemia is a clue to
the presence of hypervitaminosis D. It occurs as a result of
an increase in intestinal and renal phosphate absorption.
In contrast, patients with primary hyperparathyroidism
have hypercalcemia and hypophosphatemia on account of
PTH-mediated losses of phosphate in the urine. Hyper-
calciuria is frequently present. Urinary calcium excretion
is generally elevated before the development of hypercal-
cemia in patients with hypervitaminosis D. Urine osmo-
lality may be low on account of a renal concentrating
defect that occurs as a result of resistance to the effects of
antidiuretic hormone and resultant nephrogenic diabetes
insipidus. Three mechanisms have been proposed to me-
diate the diabetes insipidus associated with hypercalce-
mia. Activation of the calcium-sensing receptor in the
thick ascending limb with attendant inhibition of sodium
chloride reabsorption and countercurrent multiplication
results in a dilute urine (262). In addition, the sensing of
the increased Ca2� concentrations in the urine in the ter-
minal collecting duct by calcium-sensing receptors facing
the urinary space is believed to reduce antidiuretic hor-
mone-stimulated water reabsorption from urine to med-
ullary interstitial fluid (262). Decreased aquaporin-2 ex-
pression and apical plasma membrane delivery in kidney
collecting ducts also contributes to the polyuria seen with
hypercalcemia (263). Elevated serum creatinine and blood
urea nitrogen, and nephrocalcinosis on radiographic ex-
amination of the kidneys are frequently present. Electro-
cardiogram findings include a shortened QTc, ST segment
coving, T wave broadening, and first degree heart block.

Although vitamin D (vitamin D3 and vitamin D2) can be
measured in serum and plasma and quantitated by various
methods such as ultraviolet spectroscopy and competitive
protein binding, its measurement is technically difficult,
and few reports have appeared on its use in the measure-
ment of vitamin D in patients with hypervitaminosis D
(264, 265). Measurements of serum 25(OH)D, which can
be performed by a variety of methods—including com-
petitive protein binding assay (266–268), RIA (269–272),
HPLC/ultraviolet spectroscopy (273, 274), automated,
antibody-, and microparticle-based, chemiluminescent
immunoassay (275), and liquid chromatography mass
spectrometry (272, 276–279)—are widely used in the as-
sessment of vitamin D status. Various epimers contribute
to the total 25(OH)D measurement and appear to be most
prominent in infants and very young patients in whom C-3
epimers of 25(OH)D can account for a significant pro-
portion of 25(OH)D measured by liquid chromatogra-
phy-tandem mass spectrometry unless measures are taken
to separate metabolites by chromatography (279). In hy-

pervitaminosis D [25(OH)D3 �64–439 ng/mL], the mean
relative contribution of 3-epi-25(OH)D3 was �4%, and
concentrations ranged from 2–28.6 ng/mL (280). Serum
levels of the C-3 epimer correlate with serum 25(OH)D3

concentrations. In subjects with 25(OH)D3 concentra-
tions indicative of hypervitaminosis D, the presence and
concentrations of the C-3 epimer were unrelated to age,
serum markers of renal and liver function, acute-phase
reactants, and the presence of hypercalcemia. Subjects
with significant PTH suppression (�14 pg/mL) showed
higher concentrations of 3-epi-25(OH)D3.

It is challenging to assign an absolute serum vitamin D
concentration over which toxicity is always present. Some
patients can have 25(OH)D concentrations well over 80
ng/mL without hypercalcemia or hypercalciuria. How-
ever, in general, serum total 25(OH)D concentrations
�80 ng/mL (200 nmol/L) are necessary to result in vitamin
D toxicity, with concentrations typically severalfold
higher than 80 ng/mL in those who present with symp-
tomatic hypercalcemia (244–257). In most cases, serum
1�,25(OH)2D3 concentrations are normal. The vitamin D
concentration at which an individual develops hypercal-
cemia or hypercalciuria is likely influenced by the amount
of dietary calcium intake. As a result, serum and urine
calcium concentrations may be quite variable, despite con-
centrations of serum 25(OH)D that might be regarded as
elevated. A report by Adams and Lee (281) suggested that
concentrations of 25(OH)D as low as 50 ng/mL (125
nmol/L) were associated with hypercalciuria. In addition,
results of the Women’s Health Initiative found that mod-
est vitamin D and calcium supplementation resulted in a
higher risk of nephrolithiasis compared to placebo (282).
Although 25(OH)D concentrations of approximately 50
ng/mL (125 nmol/L) may increase urinary calcium excre-
tion and the risk of nephrolithiasis, it should be remem-
bered that normal individuals exposed to sunlight for
short or long periods of time can have 25(OH)D serum
concentrations as high as 65 ng/mL (163 nmol/L) without
ill effects or hypercalcemia (248, 266, 283–295). Concen-
trations of 25(OH)D �80 ng/mL in the presence of hyper-
calcemia and the clinical setting of excessive vitamin D in-
gestion should raise the suspicion of vitamin D intoxication.

In serum, 25(OH)D is tightly bound to vitamin D bind-
ing protein (VDBP) (296–298), and only a small percent-
age of total serum 25(OH)D is free or unbound (95, 299–
301). The role of VDBP in determining the amount of
bioavailable 25(OH)D has recently been investigated by
Powe et al (302), who reported that community-dwelling
black Americans, as compared with whites, had low levels
of total 25(OH)D and vitamin D-binding protein but sim-
ilar concentrations of estimated bioavailable 25(OH)D.
Subsequent studies using mass spectrometry or a poly-
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clonal antiserum against VDBP (instead of an anti-VDBP
monoclonal antibody) to measure VDBP failed to validate
the previous report and concluded that total 25(OH)D
was an appropriate measure of vitamin D nutritional sta-
tus (303–306). There is a paucity of information about the
role of VDBP in human vitamin D toxicity. The biological
role of VDBP was explored in mice in which the VDBP
gene had been deleted (307). On vitamin D-replete diets,
DBP�/� mice had low levels of total serum vitamin D me-
tabolites but were otherwise normal. When maintained on
vitamin D-deficient diets, the DBP�/�, but not DBP�/�,
mice developed secondary hyperparathyroidism and the
accompanying bone changes associated with vitamin D
deficiency. After an overload of vitamin D, DBP�/� mice

were unexpectedly less susceptible to
hypercalcemia and its toxic effects.

3. Mechanism of hypercalcemia in hy-
pervitaminosis D

Hypercalcemia occurs as a result
of increased calcium absorption
from the intestine and increased
bone mobilization. The 25(OH)D3

or 25(OH)D2 which are present in
increased amounts bind to the vita-
min D receptor in sufficient amounts
to induce processes that enhance in-
testinal calcium absorption and en-
hance bone mobilization (81, 82, 83,
308, 309, 311). In in vitro radioli-
gand binding assays with the vitamin
D receptor, the B50 (B50 value is de-
fined as the concentration of mate-
rial necessary to cause 50% dis-
placement of the radiolabel from
the protein) of 1�,25(OH)2D3 is ap-
proximately 1.62 � 10�10

M,
whereas, the B50 of 25(OH)D for the
vitamin D receptor is approximately
1.38 � 10�7

M. These concentra-
tions of 25(OH)D may be present in
vitamin D target tissues in hyper-
vitaminosis D. A second possible
mechanism is the endogenous pro-
duction of 5,6-trans-25(OH)D3,
which has a 1� hydroxyl group and
which binds to the vitamin D recep-
tor with increased affinity (312) (Fig-
ure 3). We have shown that 5,6-
trans-25(OH)D3 is present in the
serum of rats administered large
doses of vitamin D3 (312). Because

of the presence of a 1� hydroxyl group, binding of 5,6-
trans-25(OH)D3 to the vitamin D receptor is increased—
6.9 � 10�8

M for 5,6-trans-25(OH)D3, 1.95 � 10�7
M for

25(OH)D3, and 2.2 � 10�10
M for 1�,25(OH)D3 (312). It

should be noted, however, that although we have isolated
5,6-trans-25(OH)D3 from the serum of rats dosed with
vitamin D3, it is not known whether this metabolite is
present in the serum of humans with hypervitaminosis D.

4. Hypercalcemia associated with the administration of
1�-hydroxylated vitamin D metabolites and analogs

Several 1�-hydroxylated vitamin D compounds are
available for the treatment of secondary hyperparathy-
roidism seen in the context of chronic renal failure and

Figure 3.

Figure 3. 5,6-trans-25(OH)D3 is produced from 25(OH)D3 in animal models administered large
amounts of vitamin D3. Because of the presence of a C-1 hydroxyl group, 5,6-trans-25(OH)D3

binds to the vitamin D receptor with higher affinity than 25(OH)D3.
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end-stage renal disease and in various forms of inherited
rickets. 1�,25(OH)2D3 (calcitriol), 1�,(OH)D3 (alfacalci-
dol), doxercalciferol (Hectrol), paricalcitol (Zemplar),
and 22-oxacalcitriol are examples of such drugs that are
available in the United States and Europe. Other drugs,
such as dihydrotachysterol (313, 314) and 5,6-trans-
25(OH)D3 (312), also have hydroxyl groups in the 1�

configuration in the A-ring of the sterol. All are capable of
causing hypercalcemia when administered in excess. Some
drugs, such as paricalcitol, are believed to be less hyper-
calcemic than others, such as calcitriol (315–322). Table
3 shows the relative potencies of various vitamin D ana-
logs in chronic renal failure and the duration of toxicity.

5. Treatment of hypercalcemia associated with
hypervitaminosis D

Treatment of hypercalcemia associated with hypervi-
taminosis D includes withholding the vitamin D prepara-
tion. In individuals with no previous renal dysfunction, the
administration of isotonic fluids with or without a loop
diuretic such as furosemide and the administration of glu-
cocorticoids are usually effective in reducing serum cal-
cium concentrations. In patients with chronic renal failure
receiving 1�-hydroxylated vitamin D analogs, withhold-
ing the drug may be sufficient. If sufficient renal function
is still present, administration of isotonic fluids and a loop
diuretic will be of value. Glucocorticoids, which act by
inhibiting intestinal calcium absorption through the inhi-
bition of enterocyte basolateral membrane calcium extru-
sion and inhibition of intestinal cell RNA polymerase ac-
tivity (323–325), will also help in this circumstance.
Patients on hemodialysis will need to have the offending
drug withheld and, if hypercalcemia persists, may require
dialysis against a low calcium hemodialysis bath (2 mEq/L
calcium).

D. Hypercalcemia associated with
granulomatous disease

As noted in Tables 1 and 2, granulomatous disease is
associated with hypercalcemia.

1. Sarcoidosis
Hypercalcemia in sarcoidosis has been described since

the 1930s (326, 327). Up to 10% of patients with sar-
coidosis have hypercalcemia of varying degrees (328,
329). The association of sunlight exposure with hypercal-
cemia raised the possibility that abnormal vitamin D me-
tabolism might play a role in the pathogenesis of hyper-
calcemia (330). Hypercalciuria responsive to cortisone
and sodium phytate therapy suggested abnormal intesti-
nal calcium metabolism and hypervitaminosis D (331,
332). Bell and Bartter (333) suggested the presence of in-
creased sensitivity of bone to vitamin D in patients with
sarcoidosis. The finding of increased serum 1�,25(OH)2D3

concentrations in patients with sarcoidosis explained
many of the prior findings (334, 335). Investigators dem-
onstrated the presence of elevated serum concentrations of
1�,25(OH)2D3 in an anephric subject and patients with
end-stage renal disease, thus establishing that the kidney
was not the source of the elevated serum concentrations of
1�,25(OH)2D3 (336, 337). The earlier observations of
Bell and Bartter (338) that hypercalcemia in sarcoidosis
persisted after the occurrence of concomitant nephritis are
consistent with the presence of a nonrenal source of
1�,25(OH)2D3 production (338).

Mason et al (339) described the metabolic conversion
of 25(OH)D3 to 1,25(OH)2D3 by sarcoid lymph node ho-
mogenates but not by normal lymph nodes. Adams et al
(340–343) showed that pulmonary alveolar macro-
phages derived from patients with sarcoidosis metabo-
lized 25(OH)D3 to 1�,25(OH)2D3. The 25(OH)D3-1�-
hydroxylase present in sarcoid-associated pulmonary
alveolar macrophages (PAMs) has properties distinct
from that of the native renal enzyme. PAM 25(OH)D3-
1�-hydroxylase is stimulated by �-interferon and is not
inhibited by 1,25(OH)2D3 or calcium (340, 3444–347).
The enzyme is not stimulated by PTH (343), and
1,25(OH)2D3 does not induce 25(OH)D3-24-hydroxy-
lase activity in PAMs (340).

The symptoms and signs of hypercalcemia in the
context of sarcoidosis are similar to those found in hyper-
calcemia due to excessive exogenous vitamin D intake.
Laboratory findings are similar except for the presence of
increases in serum angiotensin-converting enzyme con-
centrations that are also found in other granulomatous
diseases such as leprosy also found in other granuloma-
tous diseases, and generally correlate with disease activity
in sarcoidosis (328, 348–355). Serum 25(OH)D concen-
trations are normal, whereas 1�,25(OH)2D concentra-
tions are elevated (334, 335, 337, 341, 345, 356). Treat-
ment regimens are similar to those used for the treatment
of hypercalcemia. Glucocorticoids are effective in sup-
pressing the activity of the PAM 25(OH)D3-1�-hydrox-

Table 3. Usual Daily Dose Requirement for the
Treatment of Secondary Hyperparathyroidism and
Duration of Toxicity of Vitamin D Analogs in Chronic
Renal Failure

Analog
Potency Relative
to Vitamin D3

Daily Dose,
�g

Duration of
Toxicity, d

Vitamin D3 1 750–10 000 17–30
Dihydrotachysterol 10 200–1000 17–30
25(OH)D3 50 50–200 15–30
1�(OH)D3 5000 0.5–2.0 5–15
1�,25(OH)2D3 5000 0.25–2.0 2–7

Data are from Ref. 310.
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ylase (340) and reducing hypercalcemia, as well as reduc-
ing other manifestations of sarcoid activity (357, 358).
Ketoconazole, an inhibitor of 25(OH)D3-1�-hydroxylase
activity, has also been effectively used to treat the hyper-
calcemia of sarcoidosis (135, 359–365).

2. Tuberculosis
Hypercalcemia occurs in patients with tuberculosis.

The prevalence is quite variable in patients with the dis-
ease, varying from approximately 2.3% in some studies
(366) to 10–48% in other studies (367–371). The precise
reason for the variability is uncertain, although vitamin D
and calcium intake may play a role. It should be kept in
mind that rifampin and isoniazid, drugs used in the treat-
ment of tuberculosis, may alter concentrations of serum
25(OH)D and 1,25(OH)2D and thereby reduce the degree
of hypercalcemia (372–376). Rifampin induces several en-
zymes (Cyp3A4, Cyp24A1, and uridine 5�-diphospho-
glucuronyltransferases) that degrade 25(OH)D (373–376)
and, by reducing substrate, reduce 1,25(OH)2D concentra-
tions. In contrast, isoniazid inhibits 1,25(OH)2D synthesis
(371). As in sarcoidosis, pulmonary alveolar macrophages
and lymphocytes, aswell asmacrophages isolated frompleu-
ral fluid, express the 25(OH)D3-1�-hydroxylase (377–381).
The pleural fluid:serum 1,25(OH)2D3 gradient is approxi-
mately 2:1, suggesting 1,25(OH)2D3 production by cells in
the pleural cavity (381). Toll-like receptor activation of hu-
man macrophages up-regulates expression of the vitamin D
receptor and the 25(OH)D3-1�-hydroxylase genes (382),
the latter increasing 1,25(OH)2D3 synthesis. Addition-
ally, pleural fluid contains substances such as �-interferon
that potentiate 25(OH)D3-1�-hydroxylase expression
(380). 1,25(OH)2D3 potentiates macrophage killing of
Mycobacterium tuberculosis bacteria through the gener-
ation of antimicrobial peptides, the cathelicidins (382,
383).

The symptoms and signs of hypercalcemia in the con-
text of tuberculosis are similar to those found in hyper-
calcemia due to excessive exogenous vitamin D intake.
Laboratory findings include suppressed PTH, elevated
1�,25(OH)2D, and usually normal 25(OH)D concentra-
tions. Treatment regimens are similar to those used for the
treatment of hypercalcemia. Patients with tuberculosis
frequently receive vitamin D supplements, which should
be eliminated. Ketoconazole, an inhibitor of 25(OH)D3-
1�-hydroxylase activity, has also been effectively used to
treat the hypercalcemia of tuberculosis (365, 384).

3. Leprosy, fungal diseases, and other
granulomatous disorders

Hypercalcemia has been reported in association with
infections such as leprosy (385–389), Mycobacterium

avium complex (390–395), Bacille Calmette Guérin ad-
ministration (396, 397), a variety of fungal infections (see
Table 2) (398–411), cat-scratch disease (412), and Pneu-
mocystis pneumonia (244, 413–417). A number of non-
infectious granulomatous conditions are also associated
with hypercalcemia, including Wegener’s granulomatosis
(418), Crohn’s disease (419–421), infantile subcutaneous
fat necrosis (422, 423), giant cell polymyositis (424), be-
rylliosis (365, 425), silicone-induced granuloma (426–
428), paraffin-associated granulomas (429, 430), and talc
granuloma (431). The mechanism for the hypercalcemia
in these disorders is the ectopic production of
1�,25(OH)2D3.

4. Lymphomas
Hodgkin, non-Hodgkin, and adult T-cell leukemia/

lymphoma are associated with hypercalcemia (432–435).
Hypercalcemia occurs in approximately 13% of non-
Hodgkin lymphomas and 5% of Hodgkin lymphomas
(432–435). Lymphoma patients with hypercalcemia tend
to have more extensive disease and reduced survival (436).
Increased serum levels of 1�,25(OH)2D3 have been im-
plicated in the pathogenesis of hypercalcemia in virtually
all cases of Hodgkin lymphoma and in 30–40% non-
Hodgkin lymphoma (434). It is likely that the production
of 1�,25(OH)2D3 occurs at extrarenal sites inasmuch as
patients with lymphoma have had elevated 1�,25(OH)2D3 de-
spite the presence of renal failure (437). The production of
1�,25(OH)2D3 in vitro in lymph node homogenates sup-
ports the concept of extrarenal production of the hormone
(438).

Adult T-cell leukemia/lymphoma is associated with hy-
percalcemia in 50–70% of patients with this disease, but
the mechanism of hypercalcemia is independent of vitamin
D and is often associated with the expression of PTHrP
(439, 440) or other cytokines (441–443). The human T
lymphotropic virus (HTLV) that is often associated with
adult T-cell leukemia/lymphoma elaborates a protein
(HTLV-1 transactivator protein, tax) that binds to and
activates the PTHrP promoter (444–450). IL-2-mediated
stimulation of the PTHrP promoter has been reported in
HTLV-1 infected cells (451). Osteoclastogenesis and ac-
tivity may be influenced by increased expression of Wnt5
and Dkk1 and inhibition of expression of osteoprotegerin
by HTLV-1 transfected cells (452–454).

E. Hypercalcemia associated with CYP24A1 mutations

1. Inactivating CYP24A1 mutations and hypercalcemia
Idiopathic infantile hypercalcemia (IIH) is character-

ized by hypercalcemia, hypercalciuria, nephrocalcinosis,
and failure to thrive. The role of vitamin D in IIH was
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considered in the United Kingdom in the 1950s when over
200 children were diagnosed with this condition (112, 65).
At that time, infants routinely received up to 4000 IU of
vitamin D per day between fortified milk powder, infant
cereal, and supplementation with cod liver oil (65). As a
result, a reduction in vitamin D intake for infants was
recommended. In the 1960s, the Committee on Nutrition
of the American Academy of Pediatrics also provided
guidance on vitamin D fortification for infant formula,
suggesting a limit of 400 IU per day in an effort to prevent
rickets while avoiding possible toxicity (67, 68).

In 2011, Schlingmann et al (136) described 10 patients
with IIH due to loss of function mutations in the CYP24A1
gene. The majority of the patients were symptomatic at the
time of diagnosis with failure to thrive, dehydration, hy-
potonia, and lethargy. All experienced hypercalciuria
and/or nephrocalcinosis. Several of the patients were re-
ceiving only modest doses of vitamin D daily (500 IU/d),
whereas others had received high doses less frequently
(600 000 IU/dose).

In 2012, we described the presence of a similar syn-
drome in adults (140). Since these original reports, nu-
merous groups have collectively described the clinical and
biochemical phenotype of over 100 patients with mono-
or biallelic mutations in the CYP24A1 gene (49, 50, 55,
56, 60–64, 141, 147, 455–459).

2. The syndrome of hypercalcemia, hypercalciuria,
nephrocalcinosis, and nephrolithiasis due to
CYP24A1 mutations

The clinical manifestations of this disease depend
largely on the age at diagnosis. As noted above, infants
present with weight loss or failure to thrive, vomiting,
dehydration, lethargy, and hypotonia (50, 62, 139, 140,
146, 456, 457). Some infants and children have been
asymptomatic at diagnosis and were discovered only after
evaluation due to positive family history (63, 139, 140). In
some cases, this was attributed to avoidance of vitamin D
supplementation in a younger child due to hypercalcemia
experienced by the older sibling. Adults with CYP24A1
mutations most frequently present with renal manifesta-
tions such as nephrolithiasis and/or nephrocalcinosis and
may experience polyuria. The degree of hypercalcemia
(and symptoms) can vary from mild and intermittent to
severe but in general is less pronounced compared to those
who manifest disease during infancy. As with other causes
of vitamin D-mediated hypercalcemia, adults may develop
neuropsychiatric symptoms such as lethargy, confusion,
and irritability. Gastrointestinal symptoms can include
abdominal pain, nausea, vomiting, and constipation. Ad-
ditional features described in adults with CYP24A1 mu-
tations include hypertension (56, 63, 142, 144, 458) and

pancreatitis (56). Exposure to ultraviolet radiation due to
seasonal changes or tanning bed use has been implicated
as a factor altering disease severity in some patients (49,
55, 62). It should be noted that pregnancy is a time when
this condition may initially manifest or progress as a result
of increased 1�,25(OH)2D production. Worsening hyper-
calcemia during pregnancy or shortly after delivery has
been described in several recent reports (56, 141, 146). It
has long been recognized that calcitriol concentrations are
elevated during normal pregnancy (129, 460), which will
lead to exacerbation of hypercalcemia and hypercalciuria
in women lacking an adequate calcitriol disposal pathway
due to CYP24A1 mutations. A review of the changes in
mineral and bone metabolism during pregnancy has been
recently published and details the changes in calcium, PTH,
and vitamin D concentrations during gestation (131).

The effect of this condition on bone health and bone
density is not clear. The few reports that included bone
mineral density assessment have yielded conflicting results
ranging from low, to normal, to clearly elevated bone min-
eral density (49, 140, 142, 145, 455). Infants with IIH are
frequently treated with a low-calcium diet, which conceiv-
ably could lead to low bone density over time. Alterna-
tively, a lifetime of suppressed PTH due to intestinal cal-
cium hyperabsorption and hypercalcemia may produce an
elevated bone density such as that seen in patients with
acquired hypoparathyroidism. More data are needed to
understand the effect of the underlying disease and its
treatment on bone health.

Distinguishing laboratory findings include variable de-
grees of hypercalcemia, low PTH, and an inappropriate
1,25(OH)2D concentration (upper normal or elevated).
Infants who are symptomatic nearly universally have
moderate to severe hypercalcemia sometimes exceeding
20 mg/dL. Most adults have serum calcium concentrations
in the 10–15 mg/dL range. Because the underlying mech-
anism is an inadequate disposal pathway for active vita-
min D and not excessive substrate, 25(OH)D concentra-
tions can be low, normal, or elevated. A family history of
hypercalcemia or a personal history of overzealous vita-
min D supplementation would be helpful but is not always
readily apparent. The biochemical profile of hypercalce-
mia, low PTH, and elevated 1,25(OH)2D is indistinguish-
able from patients with endogenous overproduction of
1,25(OH)2D due to granulomatous disease and lym-
phoma described above.

Low serum concentrations of 24,25(OH)2D have
proved useful in identifying patients with CYP24A1 mu-
tations (93). We recently developed and validated a liquid
chromatography-tandem mass spectrometry assay for the
measurement of serum 24,25(OH)2D (93). The limits of
detection for 24,25(OH)2D3 and 24,25(OH)2D2 were
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0.03 ng/mL (0.2 nmol/L) and 0.1 ng/mL (0.23 nmol/L),
respectively; the corresponding limits of quantification
were 0.1 ng/mL (0.2 nmol/L) and 0.5 ng/mL (1.2 nmol/L).
On the basis of the limits of quantification and the highest
calibrators used, the analytical measurement range for un-
diluted samples was set at 0.1–25 ng/mL (0.2–60 nmol/L)
for 24,25(OH)2D3 and 0.5–25 ng/mL (1.2–58.3 nmol/L)
for 24,25(OH)2D2. Across this range, intra-assay impre-
cision was 3.1–6.2% for 24,25(OH)2D3 and 11.7–14.8%
for 24,25(OH)2D2. The corresponding interassay values
were 4.5–8.3% and 3.0–10.1%. Recovery of exogenous
24,25(OH)2D3 and 24,25(OH)2D2 spiked into samples
was 94–100% and 90–94%, respectively. 24,25(OH)2D3

showed very low cross-reactivity (0.6%) with the spiked
25(OH)D, and 24,25(OH)2D2 showed 4% cross-reactiv-
ity. We observed �5% signal suppression for both 24,
25(OH)2D2 and 24,25(OH)2D3. 25(OH)D/24,25(OH)2D
ratios of 7–35 were observed in healthy subjects. In these

individuals, serum 24,25(OH)2D3

concentrations correlated with
25(OH)D3 concentrations of 7–60
ng/mL (17.5–150 nmol/L):
24,25(OH)2D3 	 0.10 � 25(OH)D3

� 0.32; r2 	 0.75; n 	 91 (Figure 4).
It should be noted that in the pres-
ence of vitamin D excess or defi-
ciency when substrate, namely
25(OH)D, concentrations are high
or low, 24,25(OH)2D increases or
decreases, but the 25(OH)D/
24,25(OH)2D ratio does not change
significantly. In patients with
Cyp24A1 mutations, 24,25(OH)2D
is low as a result of reduced 24-hy-
droxylase activity, despite the pres-
ence of adequate amounts of sub-
strate. As a result, the ratio of
25(OH)D to 24,25(OH)2D mea-
sured on a simultaneous sample is el-
evated. Hence, the assessment of the
25(OH)D/24,25(OH)2D ratio is
necessary for the interpretation of
24,25(OH)2D concentrations and
the assessment 24-hydroxylase ac-
tivity. A 25(OH)D/24,25(OH)2D ra-
tio of 7–35 was observed in healthy
subjects, whereas in patients with
CYP24A1 mutations, 25(OH)D/24,
25(OH)2D was significantly in-
creased (99–467; P � .001) (Figure
4). A 25(OH)D/24,25(OH)2D ratio
�99 identified patients who were

candidates for CYP24A1 genetic testing (Table 4). Nearly
all patients described to date with biallelic disease have a
25(OH)D/24,25(OH)2D ratio �80 (60,140–144, 458).
Unaffected patients and most heterozygotes have a ratio
�30.

3. Biallelic vs monoallelic disease
Patients with biallelic disease (homozygous or com-

pound heterozygous mutations) consistently demonstrate
the clinical and biochemical phenotype described above. It
is less clear whether individuals with monoallelic gene
changes are asymptomatic carriers or manifest an atten-
uated condition. We have described two kindreds with
some, but not all, monoallelic members having symptom-
atic disease including IIH (calcium as high as 16 mg/dL),
hypercalcemia, hypercalciuria, nephrolithiasis, and/or
nephrocalcinosis (60, 140). Other groups have described
asymptomatic family members with monoallelic disease

Figure 4.

Figure 4. Association between 25(OH)D/24,25(OH)2D in healthy individuals (F) and patients with
CYP24A1 mutations (Œ). The inset shows that although the 25(OH)D/24,25(OH)2D ratio at
25(OH)D �20 ng/mL is higher, it still distinguishes between unaffected and affected individuals
(93). Modified Figure 4B from: Kumar R, Vallon V. Reduced renal calcium excretion in the
absence of sclerostin expression: evidence for a novel calcium–regulating bone kidney axis. J Am
Soc Nephrol. 2014 Oct;25(10):2159–68. doi: 10.1681/ASN.2014020166. Epub 2014 May 29.
Review. PubMed PMID: 24876121; PubMed Central PMCID: PMC4178449.
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who have normal biochemical findings including a normal
25(OH)D/24,25(OH)2D ratio (53, 143). Cools et al (455)
recently described heterozygous members of a family and
reviewed the available literature regarding the biochemi-
cal and clinical phenotype of patients with monoallelic
mutations in CYP24A1. It should be noted that not all
monoallelic patients reported in the literature have been
fully phenotyped, leaving much to be learned about this
population. In those with available data, however, five of
28 were hypercalcemic (calcium �10.6 mg/dL), seven of
22 had 1,25(OH)2D concentrations �80 pg/mL, nine
of 26 had a low PTH (�15 pg/mL), three of 15 had an
elevated 25(OH)D:24,25(OH)2D ratio, and eight of 40
had nephrolithiasis and/or nephrocalcinosis. These find-
ings suggest that patients with monoallelic mutations can
become symptomatic. It is likely that environment (cal-
cium and vitamin D intake) and other genetic factors affect
disease expressivity in this group.

4. Treatment of hypercalcemia and hypercalciuria due to
inactivating CYP24A1 mutations

Initial treatment of severe, symptomatic hypercalcemia
caused by CYP24A1 mutations is the same as any other
cause of hypercalcemia and should begin with intravenous
isotonic saline. A loop diuretic can be added once the pa-
tient is adequately hydrated. Intravenous bisphospho-
nates, calcitonin, and glucocorticoids have been used in
the acute setting with variable results (49, 50, 55, 56, 63,
139, 141, 142, 144–146). It is difficult to attribute im-
provement in hypercalcemia to any single treatment when
multiple therapies are provided in the acute setting. How-
ever, based on available reports, bisphosphonate therapy
appears to be more effective, and glucocorticoids have a

limited, if any, role in the acute (or chronic) management
of these patients.

Acute management of hypercalcemia during pregnancy
is more problematic because some of the available medi-
cations are contraindicated. In this population, focusing
efforts on calcium restriction and hydration seems pru-
dent. The effects of hypercalcemia are not limited to the
mother because intrauterine hypercalcemia can lead to
fetal/neonatal PTH suppression with resulting severe and
sometimes prolonged hypoparathyroidism and hypocal-
cemia after birth (61, 66, 88, 131). Infants born to mothers
with hypercalcemia should be monitored closely for hy-
pocalcemia, especially if maternal hypercalcemia was
moderate to severe.

Long-term management is focused on eliminating or
minimizing symptoms of hypercalcemia and reducing hy-
percalciuria (and thus nephrocalcinosis/nephrolithiasis).
Because the underlying mechanism of disease is intestinal
calcium hyperabsorption, a low-calcium and vitamin D
diet is the cornerstone of therapy. Although this is suffi-
cient for some patients, others will remain hypercalcemic
with ongoing active renal stone disease. A variety of long-
term strategies have been described including glucocorti-
coids, loop and thiazide diuretics, phosphate supplemen-
tation, proton pump inhibitors, and antifungals such as
ketoconazole and fluconazole. Glucocorticoids have not
consistently been shown to be effective and would not be
a desirable long-term solution due to a multitude of tox-
icities associated with glucocorticoid exposure (49, 141,
146, 457). Thiazide diuretics may reduce urine calcium
without exacerbating hypercalcemia in some patients (49)
but have been implicated for producing significant hyper-
calcemia in others (144). Normalization of serum calcium
with reductions in urine calcium have been described in
several patients treated with the azole drugs, ketoconazole
or fluconazole, acting to inhibit 25(OH)D-1-hydroxylase
(55, 140, 141, 143–145). Toxicity and off-target P450
enzyme blockade from azole drugs will limit their long-
term use in many patients. It is interesting that patients do
not sufficiently down-regulate 25(OH)D-1-hydroxylase
activity sufficiently despite the suppression of PTH and
elevation in serum calcium concentrations. This would
suggest that 25(OH)D-1-hydroxylase is to some degree
constitutively active. A selective, titratable inhibitor of
25(OH)D-1-hydroxylase would be optimal but is not cur-
rently available.

III. Summary and Conclusions

Vitamin D-mediated hypercalcemia occurs as a result of
diverse mechanisms including excessive ingestion of vita-

Table 4. Serum 25(OH)D, 1,25(OH)2D, PTH, and
25(OH)D/24,25(OH)2D Ratio in Patients With Genetically
Confirmed Cyp24A1 Mutations

Patient
No.

25(OH)D,
ng/mL

1,25(OH)2D,
pg/mL

PTH,
pg/mL

25(OH)D/24,
25(OH)2D

1 47 79 24 336
2 70 70 14 467
3 50 123 8.1 250
4 37 101 13 103
5 47 104 22 124
6 37 66 �1 132
7 29.7 82 11 149
8 49 86 9 189
9–11 39–59 83–160 3–10 130–230
12 71 79–121 3 112
13 38 99
14 32.5 113
Reference

interval
20–80 22–65 15–65 7–35

Data are from Ref. 93.
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min D and its metabolites, ectopic enzyme overexpression,
and mutations of inactivating enzymes. Diagnosis of vi-
tamin D-mediated hypercalcemia is usually based on the
presence of hypercalcemia, elevated concentrations of var-
ious vitamin D metabolites in the presence of a suppressed
concentration of PTH. A few select biochemical tests will
allow the diagnosis to be established. Treatment with var-
ious drugs or by withholding vitamin D and/or calcium is
usually successful in treating vitamin D-mediated
hypercalcemia.
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