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Abstract

Vitamin D is one of the steroid hormones. The precursor of vitamin D, 7-dehydrocholesterol, 
which is an intermediary for cholesterol pathway, is available in the skin. Ultraviolet B 
(UVB) radiation makes the transformation of 7-dehydrocholesterol to provitamin D3, 
which automatically isomerizes to cholecalciferol (vitamin D3). Vitamin D3 is secreted 
into blood circulation and carried by the vitamin D–binding protein (VDBP). Around 
80–90% of vitamin D is from sunlight-derived production in the skin. A little amount of 
vitamin D is also extracted from foods and/or additional supplementation. Vitamin D has 
been well known for its function in maintaining calcium and phosphorus homeostasis 
and promoting bone mineralization. Accumulating evidence from animal and human 
studies suggests that vitamin D also modulates reproductive processes in women and 
men and is involved in many functions of the reproductive system. Vitamin D recep-
tor (VDR) and vitamin D–metabolizing enzymes are found in  reproductive tissues of 
women and men. This chapter presents an up-to-date review for describing the function 
of vitamin D in female reproduction throughout reproductive ages from menarche to 
menopause, during pregnancy and lactation, and some disorders affecting women and 
also the role of vitamin D applied to male fertility.

Keywords: vitamin D, vitamin D receptor, metabolism, female reproduction, male 
reproduction
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1. Introduction

1.1. Overview of vitamin D: production, metabolism and action

Vitamin D (VD) is one of the fat-soluble vitamins from steroid hormones family. While 
there are various forms of vitamin D, two main forms are necessary for human body: (i) D2 
(ergocalciferol) and (ii) D3 (cholecalciferol) [1]. In the presence of ultraviolet radiation, vita-
min D2 is derived primarily in plants, yeast, and fungi, and also vitamin D3 is synthesized 
predominantly by the conversion of 7-dehydrocholesterol, a VD precursor present in the 
skin, under ultraviolet B radiation with only a small amount of this vitamin with around 
<10–20% obtained through diet supplements [2]. VD precursor isomerizes into cholecalcif-
erol. Cholecalciferol is bound to serum vitamin D-binding protein (DBP). To become bio-
logically active, two-step enzymatic pathways are necessary; involving 25-hydroxylase of the 
liver and 1a-hydroxylase (CYP27B1) of the kidney and extra-renal tissues, it is converted to 
the biologically active hormone calcitriol (1α,25(OH)2D3) [3, 4].

Vitamin D secretion is set out in the renal 1α-hydroxylase phase. Parathyroid hormone (PTH) 
upregulates the expression of this enzyme and also 1,25(OH)2D3 could suppress itself [5].

Finally, in the kidneys, both 25(OH) D and 1,25(OH) 2D3 convert into an inactive compound 
of calcitroic acid by 24-hydroxylase, which is water soluble and excreted in bile. Whereas 
1α-hydroxylase is predominantly found in the kidneys, it can also be expressed in different 
extra-renal tissues including bones, colon, breasts, prostate, and placenta. In this respect, it is 
suggested that macrophages could locally produce 1,25(OH)2D3 [6].

Biological roles of vitamin D are mediated by the VD receptor (VDR), a ligand-dependent tran-
scription factor mainly localized in the target cell nuclei that mediate the genomic action of 
1,25(OH)2D3, which influences on the transcription of more than 900 genes [7]. It is widely dis-
tributed in over 38 tissues and organs including skeleton, parathyroid glands, and the reproduc-
tive tissues indicating its potential role in the regulation of numerous metabolic processes [8].

The regulation of VDR expression is one of the main mechanisms through which target cells 
respond to vitamin D so that polymorphisms of this receptor can change the usual mode of 
functioning [9, 10]. After the linking of vitamin D, vitamin D receptors transform to a het-
erodimer with retinoid x-receptor (RXR) after which this complex binds to specific DNA 
sequences named vitamin D–response elements (VDREs) in the promoter zone of vitamin 
D–responsive genes. So, this trimeric complex of VDR-RXRVDRE acts as a molecular switch 
in nuclear 1,25(OH)2D3 signaling [11].

The genomic response lasts for longer times from a few hours to 1 day for the changes that 
occur in the transcription of gene. However, the nongenomic response is faster, taking only 
seconds to a few minutes due to the interaction that occurs with a cell surface receptor and 
the second messenger [10].

Catabolism of 1,25(OH)2D and 25-OHD to biologically inactive calcitroic acid is mediated by 
24-hydroxylase, in the kidney and liver [4]. It is generally accepted that the serum levels of 
25(OH)D are considered the best indicator of vitamin D status because of its easy measure-
ment and long half-life in circulation (~2–3 weeks) [12, 13].

A Critical Evaluation of Vitamin D - Basic Overview248



The three main steps in vitamin D metabolism, 25-hydroxylation, 1α-hydroxylation, and 
24-hydroxylation, are all performed by cytochrome P450 mixed-function oxidases (CYPs) 
(Figure 1).

These enzymes are located either in the endoplasmic reticulum (ER) (e.g., CYP2R1) or in 
the mitochondria (e.g., CYP27A1, CYP27B1, and CYP24A1). The electron donor for the ER 
enzymes is the reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent 
P450 reductase. The electron donor chain for the mitochondrial enzymes is composed of ferre-
doxin and ferredoxin reductase. These are not specific for a given CYP—specificity lies within 

Figure 1. The main steps in vitamin D metabolism.
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the CYP. Although the CYPs involved in vitamin D metabolism, only CYP2R1 and CYP24A1, 
have been crystallized, it is likely that these enzymes contain a number of common structural 
features. These include 12 helices (A–L) and loops and a common prosthetic group, namely 
the iron-containing protoporphyrin IX (heme) linked to the thiolate of cysteine. The I helix 
runs through the center of the enzyme above the heme where a thr(ser) and asp(glu) pair is 
essential for catalytic activity [14]. CYP2R1, like other microsomal CYPs, contains two extra 
helices that appear to form a substrate channel in the bilayer of the ER [14]. The B′ helix serves 
as a gate, closing on substrate binding. Whether a similar substrate channel exists for the 
mitochondrial CYPs is not clear.

1.2. Physiologic functions of vitamin D

As previously mentioned, once VD is produced in the skin received from the diet, it travels 
to blood circulation and is bound to vitamin D–binding protein. In the liver, it converts to 
25(OH) D as the main circulating form of vitamin D that is measured to determine an indi-
vidual’s vitamin D deficiency. In biological perspectives, 25(OH) D is in an inactive form. 
However, it converts to [1,25(OH)2D] in the kidney as a free form and travels to the target 
tissues and participates in the regulation of calcium and phosphorus metabolism. In the intes-
tine, 1,25(OH)2D is bound to vitamin D receptor to increase the expression of an epithelial 
calcium channel due to increasing the transportation of calcium from the intestinal lumen 
into the absorptive cell [15]. In this respect, 1,25(OH)2D could enhance the expression of a 
calcium-binding protein (calbindin9k) to help the transportation of calcium to the intestinal 
absorptive cell to deposit it into the blood circulation [16]. In addition, 1,25(OH)2D could 
transport to the skeleton which interacts with VDR in the osteoblast to enhance the expression 
of RANKL (receptor activator of NFκB ligand).

Monocytic preosteoclasts express the RANK receptor that interacts with RANKL making 
signal transduction resulting in the formation of multinucleated osteoclasts which are capable 
of secretion of HCl to save the bone mineral and collagenases to demolish the matrix releas-
ing calcium into the blood circulation.1,25(OH)2D could also directly enhance the calcium 
tubular reabsorption on the kidneys. As such, 1,25(OH)2D and its receptors reversely regulate 
the secretion of parathyroid hormone. In addition, among intestine 1,25(OH)2D induces phos-
phorus absorption. Thus, the main biological functions of vitamin D are to maintain serum 
calcium and phosphorus in physiological border to support metabolic functions of them and 
to save the mineralization of the skeleton [17]. The main factors that control the renal secretion 
of 1,25(OH)2D include PTH, hypocalcemia, and hypophosphatemia that increase its secretion. 
In this respect, fibroblast growth factor 23 (FGF 23) is secreted by osteocytes and osteoblasts 
and decreases the renal secretion of 1,25(OH)2D [18].

The dominant physiologic function of vitamin D is the increase of plasma concentration 
of calcium and phosphate. Both of them are essential for the mineralization of skeleton. 
Furthermore, the increase in the plasma level of calcium to regulate it in normal levels is 
also necessary for the functioning of the neuromuscular junction vasodilatation, nerve trans-
mission, as well as hormonal production. Plasma levels of calcium are remained at a very 
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constant level, in supersaturated bone mineral situation. If its plasma concentration becomes 
lower than saturated level, then mineralization fails, which leads to rickets among children 
and osteomalacia among adults [17].

The vitamin D could increase the serum level of calcium from three separate pathways:

(i)	 It could induce the proteins related to active intestinal calcium absorption throughout 
the entire length of the intestine, although its greatest activity is in the duodenum and 
jejunum which does not require parathyroid hormone. It is clear that vitamin D directly 
stimulates intestinal calcium and, independently, phosphate absorption, although it 
could stimulate active intestinal absorption of phosphate too.

(ii)	 In no-calcium diet, vitamin D plays an essential role in the mobilization of calcium from 
bone, a process requiring parathyroid hormone. Vitamin D induces osteoblasts to secre-
tion receptor activator nuclear factor-қ B ligand. RANKL then induces osteoclastogen-
esis and activates resting osteoclasts for bone resorption [19]. So, vitamin D appears to 
be implicated in allowing persons to remove calcium from bone when it is not sufficient 
in the diet [20].

(iii)	 The distal renal tubule is responsible for reabsorption of the last 1% of the filtered load 
of calcium, and the two hormones interact to stimulate the reabsorption of this last 1% of 
the filtered load. Because 7 g of calcium is filtered every day among humans, this repre-
sents a major contribution to the calcium pool. Both parathyroid hormone and the vita-
min D hormone are required. Calcium physiologic processes are such that a single low 
concentration of the vitamin D hormone stimulates enterocytes to absorb calcium and 
phosphate. If the plasma calcium concentration fails to respond, then the parathyroid 
glands continue to secrete parathyroid hormone, which increases the production of the 
vitamin D hormone to mobilize bone calcium (acting with parathyroid hormone). Under 
normal circumstances, environmental calcium is used first; if environmental calcium is 
absent, then internal stores are used.

Therefore, in general, vitamin D functions on the intestine, bone, and kidney to increase the 
serum concentration of calcium. If the serum calcium concentrations increase, the parathyroid 
hormone secretion decreases. In this respect, if serum concentration of calcium elevates too 
high, the parafollicular cells (“C” cells) of the thyroid produce the calcitonin hormone that 
could block calcium resorption from bone and lead to maintain serum level of calcium within 
the normal range. Vitamin D, through its receptor, suppresses parathyroid gene expression 
and parathyroid cell proliferation, providing important feedback loops that strengthen the 
direct mechanism of elevated serum concentration of calcium.

Also, it is shown that a deficiency of phosphate stimulates CYP27B1 to produce more vita-
min D, which in turn stimulates phosphate absorption in the small intestine, and vitamin 
D can also induce the secretion of fibroblast-like growth factor-23 (FGF23) by osteocytes in 
bone, which results in phosphate excretion in the kidney, as well as feedback on vitamin D 
metabolism [21].
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1.3. Vitamin D deficiency

High prevalence of vitamin D deficiency is present in all races, even in temperate areas. It is 
now recognized that vitamin D deficiency and insufficiency are the most common nutritional 
deficiency/medical condition in the world, with 20–90% of reproductive-age women being 
deficient [22]. The recently revised guidelines of the Endocrine Society of North America 
defined vitamin D deficiency as 25OH-D levels of <20 ng/mL and insufficiency as levels 
of 20–30 ng/mL [23]. These definitions are based in part on provocative testing in healthy 
adults. Intestinal calcium absorption is dramatically decreased when vitamin D deficiency 
occurred. This results in a transient reduction in ionized calcium concentration in the blood 
that is immediately sensed by the calcium sensor in the parathyroid glands leading to the 
enhanced secretion of PTH into the blood. As such, PTH enhances the renal tubular reab-
sorption of calcium and modulates the osteoblasts to increase the expression of RANKL 
which in turn improves the production of osteoclasts to remove calcium stores from the 
skeleton. It also increases the kidney secretion of 1,25(OH)2D which in turn transports to the 
bone and intestine to modulate calcium metabolism. The elevated level of PTH also causes 
internalization of the sodium-phosphorus cotransporter leading to the loss of phosphorus 
into the urine [15, 24].

Vitamin D deficiency among children during childhood leads to poor mineralization of the 
skeletal matrix and contributes to a wide range of skeletal deformities related to rickets such 
as bowed or knocked knees, rachitic rosary, widened epiphyseal plates at the end of the long 
bones, and frontal bossing. In older children, it prevents the attainment of the maximum 
amount of calcium that can be deposited into their skeletons based on their genetic makeup. 
In addition, vitamin D insufficiency among children leads to osteomalacia. Opposite to osteo-
porosis, which is an asymptomatic disease, osteomalacia has symptoms including bone pain 
and muscle weakness that is often misdiagnosed as fibromyalgia, chronic fatigue syndrome, 
or depression. The mineralization defect is due to the phosphaturic influence of PTH. It 
decreases the serum phosphorus level to be in the low normal or low range as a result of 
inadequate calcium-phosphorus secretion for sufficient bone mineralization [25, 26]. In adults, 
vitamin D deficiency and secondary hyperparathyroidism increase the loss of mineral and 
matrix which can cause osteopenia, osteoporosis, and an increased risk of fracture. In addi-
tion, vitamin D has a wide range of actions that include cell differentiation, apoptosis, antip-
roliferation, immunosuppression, and anti-inflammation [18, 27].

Mounting evidence suggests that hypovitaminosis D is linked to an increased risk for auto-
immune diseases, diabetes, and cardiovascular diseases [28], indicating the importance of 
sufficient vitamin D levels. In addition, vitamin D deficiency has been linked to an increased 
risk for several types of cancer including prostate, colon, ovarian, and breast cancer [29]. 
However, the daily intake of vitamin D for the prevention of those adverse effects is 
recommended.

However, in this chapter, we focus on the role of vitamin D in three important phases of 
reproductive women’s life span including menarche and adolescence, reproductive period, 
and menopause. Then, we discuss the role of vitamin D in male fertility.
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2. Vitamin D status in adolescent

There is mounting evidence that adolescents are at risk for poor vitamin D status. Since vitamin 
D is critical for optimal bone mineral accrual in the developing skeleton, poor vitamin D status 
in adolescence is a matter of concern. In vitamin D deficiency status, calcium homeostasis due 
to parathyroid and renal regulation at the expense of bone is maintained. In a growing child or 
adolescent, the lack of calcium accumulation in the skeleton can have negative impact for the 
attainment of peak bone density [30, 31]. Despite evidence indicating the crucial role of vitamin 
D in many physiological functions, maintaining adequate vitamin D status in adolescents is 
challenging in today’s food and living environment. It is reported that only 50% of girls (aged 
9–13 years) and 32% of girls (aged 14–18 years) are meeting the Dietary Reference Intake (DRI) 
recommendation for vitamin D (200 IU/d or 5 mg/d) [32]. In adolescents, vitamin D deficiency 
leads to decreased dietary calcium absorption, altered formation of the growth plate, and defec-
tive mineralization of the skeleton, resulting in rickets. Also, it has been determined that sub-
clinical vitamin D deficiency may also result in secondary hyperparathyroidism, lower serum 
calcium, increased serum alkaline phosphatase, and increased risk of bone abnormalities [33]. 
A positive correlation between bone mineral density (BMD) and 25(OH)D levels in previous 
studies supports the important role of vitamin D in protecting adolescent bone [34]. In addition, 
obesity is a major health problem among children and adolescents. Interestingly, a number of 
studies have supported the potential role of vitamin D in the modulation of obesity, energy 
metabolism, and insulin resistance in adolescent and children [35].

Also, vitamin D receptor is expressed in calcium-regulated tissues, including the ovary, and 
it appears to be necessary for full ovarian functions which indicate that vitamin D plays a 
key role in estrogen biosynthesis potentially via the maintenance of extracellular calcium 
concentrations and by direct regulation of aromatase gene expression. This point is discussed 
later on.

One needs to be aware of the high prevalence of calcium and vitamin D insufficiency in the 
adolescent age group, and make assessment and management of vitamin D deficiency as the 
component of routine adolescent health care.

2.1. Vitamin D and puberty (the potential role of vitamin D in hypothalamic hypophyseal 
ovarian axis)

Puberty is a time of dramatic developmental changes during which a child’s body progresses 
through a sequential set of stages to reach mature adult reproductive function. Although 
genetic factors play an important role in the timing of puberty, it is well documented that 
environmental factor may have an effect to the current change in pubertal progression [36]. 
In this respect, a geographic north-south-gradient effect on age at menarche [37] was proven; 
young women who live at higher latitudes seem to experience an earlier onset of menses 
than adolescents who live near to the equator [37]. Although, the time of menarche are influ-
enced by temperature, sun light and socioeconomic situation, but this time also related to the 
geographic gradient with the especial sun exposure, coincided with vitamin D status [38]. 
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Recent studies reported that vitamin D status was associated with the timing of menarche. 
Mechanistic explanations of an effect of vitamin D deficiency on early menarche are specula-
tive. However, it is suggested that vitamin D deficiency is associated with the development 
of adiposity in children [39], and childhood obesity could be a risk factor for early puberty 
[38]. Thus, vitamin D status could indirectly affect the timing of menarche through its effect 
on obesity. Biochemical pathways might involve adipose-derived hormones. Some studies 
indicated that the serum level of leptin increases at early puberty; however, vitamin D is 
negatively associated with leptin concentrations, but it is unclear whether the leptin or other 
adipokines derived from adipose tissue could alter in response to vitamin D supplementation 
[40–42].

Meanwhile, there is possible mechanism involved in the correlation of VD insufficiency with 
early onset of menarche which is not related to obesity. Insulin-like growth factor-1 (IGF-I) 
is one of the growth factors which may regulate the timing of puberty and puberty regres-
sion by inducing the gonadotropin-releasing hormone (GnRH) pulse, gonadotropin, and 
sex hormone [43]. It is showed that IGF-I increased the expression of gonadotropin-releasing 
hormone in vitro [43–45].

However, vitamin D receptors have been shown in different parts of the brain including the 
hypothalamus [46]. Therefore, it is possible that vitamin D plays other unknown roles in the 
neuroendocrine regulation of the gonadotropic axis [47].

In conclusion, vitamin D status was positively related to age at menarche, and vitamin D insuf-
ficiency was associated with earlier menarche. In regard to the serious problems associated 
with early menarche, the simple inexpensive medication such as vitamin D supplementation 
may be essential, which is needed to be studied in a randomized trial.

3. Vitamin D and female reproductive system: health implications of 
vitamin D deficiency in female reproduction

The secosteroid hormone of vitamin D regulates the expression of a large number of genes 
in reproductive tissues implicating a role for vitamin D in female reproduction. Human and 
animal data suggest that vitamin D plays an important role in female reproduction. It is dem-
onstrated that VDR is located in several tissues including the immune system, the endocrine 
system, and the reproductive system [5]. As such, VDR is distributed among nuclei and cyto-
plasm of granulosa cells of human ovaries which shows that vitamin D is involved in the 
physiologic functions of ovarian follicles [48]. Also, it is well documented that VDR mRNA is 
expressed in the ovarian cell and in a purified granulosa cell culture [49]. The expression of 
VDR in female reproductive organ indicates that vitamin D is involved in female reproduc-
tive function.

In this respect, vitamin D deficiency is related to subfertility, endometriosis and polycystic 
ovary syndrome (PCOS), preeclampsia, preterm delivery, gestational diabetes, and bacterial 
vaginosis. However, the definition of optimal vitamin D levels in the reproductive period 
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and the determination of the best dose of vitamin D supplementation need to achieve those 
levels for several actions of vitamin D through a woman’s life are important public health 
implications.

Current research on the role of vitamin D in earlier age at menarche, fertility impairments, 
polycystic ovary syndrome, uterine fibroids, endometriosis, maternal, and neonatal adverse 
outcome even improper semen parameters in the case of in vitro treatments suggests that 
vitamin D deficiency plays an important role in human reproduction processes. Here, in this 
section, we summarize the recent evidence that vitamin D status influences female reproduc-
tive system.

3.1. Vitamin D and ovaries

The physiological role of vitamin D in human reproduction and ovarian steroidogenesis is 
not well understood. There are several animal studies suggesting the importance of vitamin 
D in reproduction. It seems that vitamin D induces secretion of progesterone, estrone, and 
estradiol secretion in ovarian cells independently and, in the case of estradiol, synergistically 
with insulin. Vitamin D also enhances IGFBP-1 secretion. It is described subsequently.

3.1.1. Vitamin D and follicular development

Recently, it has been shown that vitamin D plays an important role in human follicular devel-
opment. Vitamin D could downregulate anti-Müllerian hormone (AMH) gene (as the best 
markers for ovarian reserve) and upregulated FSHR gene expression. An explanation of these 
findings is as follows: During a women's follicular phase, the follicle that contains the most 
number of FSH receptors, therefore that is most sensitive to FSH, emerges as dominant at 
the time of inter-cycle FSH rise during the follicular phase. By inhibiting AMH expression, 
vitamin D may counteract the repressive effects of AMH on granulosa cell differentiation, 
thereby allowing follicles to reach terminal maturation and ovulation. A reason for the con-
flicting results seen between prostate cancer cell line studies (where vitamin D was found to 
downregulate AMH gene) and granulosa cell studies could be explained by differences in sex 
and species. In human luteinized granulosa cells, vitamin D decreased AMHR-II and FSH-
receptor (FSHR) gene expression. Following follicular selection in a women's late follicular 
phase, the follicle becomes less dependent on FSH and more dependent on LH, followed by 
terminal maturation and ovulation. Similar to AMHR-II, FSHR expression in granulosa cells 
has been found to be the highest in small immature follicles and gradually diminishes dur-
ing folliculogenesis. FSHR expression decreases along with the progression of maturation 
of oocytes after human chorionic gonadotropin (hCG) administration. It is not clear if the 
mechanistic effect of vitamin D on FSHR is happening via AMH signaling. It is well docu-
mented that there is an interaction and strong positive correlation between AMHR-II and 
FSHR gene expression in humans. It could be that vitamin D alters common intracellular 
mechanistic pathways involved in the regulation of both AMHR-II and FSHR. Clearly, a com-
plicated interrelationship exists between these parameters. These findings suggest that vita-
min D might promote the differentiation and development of human granulosa cells [50–54].
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Of importance is the fact that there is a seasonal variation in serum AMH (being 18% lower 
in the winter than in the summer) that correlated with changes in seasonal serum 25OH-D. 
Also, 25-dihydroxyvitamin D3 supplements were sufficient to block the seasonal changes in 
both 25OH-D and AMH levels [55].

3.1.2. Vitamin D and steroidogenesis

All sex hormones are derived from cholesterol as the common precursor, which can be obtained 
through dietary sources or synthesized de novo from acetyl CoA. Sex hormone production is 
controlled by multiple enzymes. There are growing literature body suggesting that vitamin D 
affects the expression and activity of some of these enzymes. For example, it is reported that 
the treatment of human granulosa cells with 1,25-dihydroxy vitamin D3 in vitro increased pro-
gesterone production in the presence of the precursor substrate pregnenolone [54]. Also, it has 
been shown that vitamin D increased progesterone, estrogen, estrone, and insulin-like growth 
factor-binding protein 1 production in human ovarian cells. Moreover, 1,25-dihydroxyvita-
min D3 stimulated estrogen and progesterone production in human placenta [56].

However, two of these steroids are explained particularly as follows:

•	 17β-hydroxy steroid dehydrogenase (17β-HSD): the biological active form of androgens and 
estrogens are biologically active in their 17β-hydroxy configuration. As well, 17-oxo de-
rivatives are not capable to bind to their receptors. The ribozymes is the convertor enzyme 
which is one of the 17β-hydroxy steroid dehydrogenase (17β-HSD) families. These isozymes 
modulate intracellular level of steroid hormones in target tissues [57]. However, vitamin D 
application in vitro increased 3β-HSD mRNA levels and progesterone production. These 
suggest that vitamin D may play a role in enhancing certain key steroidogenic enzymes 
such as 3b-HSD. During the normal menstrual cycle, luteinized human granulosa cells usu-
ally form the corpus luteum which produces large amounts of progesterone (and some es-
trogens) and induces endometrial changes such as decidualization to support a pregnancy. 
Literature suggests that 1,25-dihydroxyvitamin D3 may potentiate granulosa cell luteiniza-
tion as reflected by increased progesterone production, thus providing a better endometrial 
environment. Whether this is clinically relevant still needs to be determined in vivo [50].

•	 Aromatase: Aromatase is an estrogen synthetize, which catalyzes estrogen biosynthesis 
from androgen precursors. Aromatase is found in several tissues including the ovaries, 
liver, breasts, brain, and adipose tissue [58–60].

3.1.3. Vitamin D and ovarian reserve

According to recent evidences, in the serum the positive correlation exists between circulat-
ing vitamin D and ovarian reserve markers, particularly anti-Müllerian hormone as the best 
predictor of ovarian reserve.

Gonadal-specific glycoprotein of AMH is a kind of transforming growth factor (TGF) 
superfamily. In men, sertoli cells produce the AMH during male fetal sex differentiation 
which stimulates the regression of the Müllerian ducts [61]. In women, AMH is secreted by 
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granulosa cells in growing primary and prenatal follicles but does not produce until near 
birth. Slight variations in AMH concentration during the menstrual cycle and its unique 
secretion by growing ovarian follicles make it a suitable predictive indicator for assisted 
reproductive technology (ART). However, some studies have been reported that environ-
mental factors including vitamin D deficiency may change its expression and serum concen-
tration [54, 62, 63]. The fact that vitamin D supplementation prevented the seasonal changes 
in serum AMH strongly indicates that AMH production in adults may be regulated by vita-
min D. Thus, the assessment of vitamin D status, theoretically, might be considered as part 
of the routine workup in infertile women. Additionally, appropriate supplementation of 
patients with vitamin D deficiency might translate to better ovarian reserve markers and 
better ovarian follicular dynamics. However, most of the studies to date used markers of 
ovarian reserve/function rather than pregnancy as an outcome, which limits the translational 
significance of the findings [50].

3.2. Vitamin D and fertility

A seasonal distribution in human natural conception and birth rates has been consistently 
demonstrated, showing a peak conception rate during summer in northern countries with 
strong seasonal contrast in luminosity [64].

Some studies have demonstrated that the low level of vitamin D leads to a 75% decrease in 
fertility of female rats which is associated with 50% reduction in fecundation and enhance-
ment of the probability of complications during pregnancy [65]. Also, vitamin D deficiency 
may lead to uterine hypoplasia and impaired folliculogenesis [66]. In this respect, vitamin D 
modulates estrogen biosynthesis through the maintenance of calcium homeostasis [65, 67]. 
It is shown that infertility was a secondary consequence of the low level of calcium rather 
than a direct result of the non-functional VDR [67, 68]. The indirect consequence of vitamin D 
deficiency on fertility through the regulation of calcium level in reproductive organ was also 
shown by literature in diet-stimulated vitamin D–deficient animals, in which both vitamin D 
and a diet supplemented with high levels of calcium repaired fertility. As such, some studies 
have been reported that the low level of vitamin D itself and not hypocalcemia is responsible 
for subfertility in vitamin D–deficient rats, exposed to different levels of serum calcium and 
phosphorus [68, 69]. Different studies have examined the role of vitamin D in a spectrum of 
female reproductive system disorders, such as adverse effect on pregnancy, endometriosis, 
and subfertility treated by IVF and PCOS.

3.3. Vitamin D and pregnancy: adaptations and metabolism during gestation

During pregnancy and lactation, there is an increase in the rate of synthesis and plasma 
levels of active form of vitamin D, which presumably functions to increase the intestinal 
absorption of calcium and the mobilization of maternal bone. The human embryos consume 
30 g of calcium. More than 99% of this calcium is contained within the skeleton. Nearly 
150 mg/kg/day of this calcium is transferred by placenta during the last trimester [70]. 
Serum protein-bound and complexed fraction calcium levels decrease during pregnancy 
due to the decrease in serum albumin. This physiological decrease is not an evidence of 
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real hypocalcemia. The  physiologically active form of calcium, ionized calcium, does not 
change during pregnancy. Parathyroid hormone decreases to the lower limit of the normal 
range and can become undetectable. Serum levels of other hormones potentially regulate 
the calcium including estradiol, prolactin, human placental lactogen (hPL), and parathy-
roid hormone-related protein (PTHrP), and they increase during pregnancy [70]. Doubling 
the amount of intestinal calcium absorption starting early in pregnancy seems to meet the 
fetal requirement for calcium. Skeletal resorption can also provide mineral to the blood, 
but evidence is controversial on whether the maternal skeleton contributes considerable 
amounts of calcium to the fetus. In this respect, bone resorption indicators are enhanced 
during pregnancy. The maternal kidneys do not reclaim calcium avidly during pregnancy; 
instead, urinary calcium excretion increases in parallel with the increase in intestinal calcium 
absorption [70]. Ionized calcium levels are stable until third trimester of pregnancy. PTH is 
decreased early in pregnancy but can increase in the third trimester of pregnancy. Skeletal 
mineral enhances in early pregnancy. It is well known that vitamin D deficiency is prevalent 
among pregnant women. Decrease of plasma vitamin D could contribute to the reduction 
in plasma calcium level during pregnancy and may result from increased maternal metabo-
lism or enhanced utilization of vitamin D by the fetus [71]. Moreover, maternal low level of 
vitamin D might be independently correlated with an increased risk for gestational diabetes 
mellitus (GDM), preeclampsia, and small-for-gestational age (SGS) births [72–74] as well as 
with offspring rickets [75]. 25-hydroxyvitamin D [25(OH)D], the storage form of vitamin D, 
easily could pass from placentas in rats [76] and probably crosses the hemochorial human 
placenta easily. As well, the cord blood 25(OH)D levels are similar to or up to 20% lower than 
maternal level [77]. Thus, neonates with an adult level of normal 25(OH)D, their mothers 
have the sufficient level of vitamin D. Maternal transient of 25(OH)D to fetus could decrease 
maternal levels, especially if the mother has normal and adequate vitamin D concentration, 
whereas some studies have been demonstrated that either no change or a modest decrease 
in maternal 25(OH)D levels during pregnancy. The low fetal level of 1,25(OH)2D shows the 
low fetal PTH and high phosphorus level, which suppress renal 1α-hydroxylase. Although 
PTHrP is increased in the fetal blood circulation, it seems to be less able to induce the renal 
1α-hydroxylase than PTH [78, 79].

The total serum level of 1,25(OH)2D doubled or tripled in the maternal circulation start-
ing in the first trimester of pregnancy, but studies have only shown increased free concen-
trations during the last trimester. This elevation is due to maternal synthesis by the renal 
1α-hydroxylase.

In addition, intestinal calcium absorption doubles in humans and rodents early in pregnancy, 
well before free 1,25(OH)2D concentrations increase late in pregnancy [80].

3.4. Vitamin D and maternal outcomes in pregnancy

It is shown that during pregnancy, vitamin D deficiency has been related to increased risks of 
adverse pregnancy outcome including gestational diabetes, recurrent pregnancy loss (RPL), 
preeclampsia, and small-for-gestational-age babies (Figure 2).
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3.4.1. Maternal plasma vitamin D levels and preeclampsia

Preeclampsia is a pregnancy-induced multi-systemic problem characterized by de novo-onset 
hypertension and proteinuria after 20 weeks of gestation which is prevalent in 2–8% of all preg-
nancies. It is one of the major acute and long-term health risks for maternal and perinatal mor-
tality and morbidities [81, 82]. The underlying etiologies of preeclampsia are not completely 
understood. It has been hypothesized that abnormal trophoblastic invasion, oxidative stress, 
inflammatory responses, and endothelial dysfunction are possible contributing factors [83]. 
Maternal low level of vitamin D is so prevalent during pregnancy and is a kind of worldwide 
public health problem [84, 85]. As we state before, vitamin D effects on placental function and 
inflammatory response [86]. Recently, epidemiological studies have demonstrated an association 
between low maternal vitamin D status during pregnancy and the incidence of preeclampsia 
and suggest that vitamin deficiency may be an independent risk factor for preeclampsia [74, 87].

However, the underlying mechanisms remain unknown. Vitamin D deficiency is associated 
with inflammation-linked vascular endothelial dysfunction. Proinflammatory cytokines such 
as tumor necrosis factor-a, interleukin-6, and interferon-c have been reported to be increased 
in pregnancies with vitamin D deficiency. The molecular mechanisms involving hypovita-
minosis D in endothelial dysfunction might be regulated, in part, by proinflammatory tran-
scription factor nuclear factor-қB (NF-қB), as a major proinflammatory nuclear transcription 
factor, and interleukin-6, low VDR, 1α-hydroxylase, and hypocalcemia [88]. The endothelial 
cell expression of NF-қB and interleukin-6 and downregulation of NF-қB were more in the 
low level of vitamin D. Interleukin-6 expression in endothelial cells was strong negatively 
associated with 25(OH)D [89].

Figure 2. Serum level of vitamin D and pregnancy outcome.
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The levels of other circulating proinflammatory cytokines, including tumor necrosis factor-
a33and C-reactive protein (CRP), are inversely associated with serum level of 25(OH)D [90]. 
Oxidative stress is elevated in vitamin D deficiency. Vitamin D supplementation could reverse 
this effect. High levels of thiobarbituric-acid-reactive substances, which indicate lipid peroxi-
dation, have been shown in women with low level of vitamin D [91]. Endothelial cell damage 
or dysfunction appears to be a basic pathophysiological event of the maternal vascular system 
in women with preeclampsia [89, 92]. Maternal low level of vitamin D may influence a pro-
inflammatory response, enhancement of oxidative stress, and lead to endothelial dysfunction 
and finally preeclampsia [93]. As such, some evidence demonstrates that vitamin D affects 
the genes responsible for trophoblast invasion and angiogenesis critical for implantation that 
appears to be implicated in the pathophysiology of preeclampsia [87]. Although calcium and 
vitamin D supplementation in pregnancy was associated with a significant reduction in blood 
pressure, the effect of intervention on the incidence of preeclampsia is controversial. In this 
respect, more research is needed.

3.4.2. Vitamin D and small-for-gestational age

Fetal growth restriction, most often estimated by the incidence of a birth weight that is small-
for-gestational age, is a major public health issue across the globe. Infants suffering from SGA 
have a higher risk for serious neonatal morbidities and mortalities among infancy into adult-
hood. Growth restriction is related to a wide range of maternal factors including nutritional 
status, obesity, age, smoking, and infection, although there are insufficient effective interven-
tions for prevention [94]. Several observational studies have linked maternal 25(OH)D con-
centrations and the risk of SGA in general obstetric populations [95]. It has been shown that 
maternal second trimester vitamin D status was inversely associated with the risk of SGA in 
singleton pregnancies.

The biologic mechanism that may connect maternal vitamin D status to fetal growth remains 
elusive. A plausible mechanism for the impact of maternal vitamin D on fetal growth is 
placental vascularization, which has received considerable attention in its association with 
fetal growth [96, 97]. Vitamin D has several biologically possible roles in fetal growth. In this 
respect, the vitamin D–activating enzyme CYP27B1 and VDR are expressed in human 
placenta [98]. The active form of vitamin D, 1,25-dihydroxyvitamin D, which acts through the 
VDR and the cAMP/protein kinase A (PKA)-signaling pathway, modulates human chorionic 
gonadotropin production in human syncytiotrophoblast and enhances placental sex steroid 
secretion. Vitamin D is also essential in glucose and insulin metabolism in glucose availability 
for transplacental transport and fetal use. As a regulator of calcium homeostasis and trans-
port, calcitriol also can effect on fetal growth directly due to impacts on skeletal muscle and 
bone growth and development [56, 99].

In addition, several observational studies have connected poor vitamin D status with a higher 
risk of preeclampsia, which, like fetal growth restriction, has placental origins related to 
angiogenesis and uterine blood flow [97]. Vitamin D deficiency makes labyrinth of placental 
vessels narrower, indicating dysregulated vascularization [100].
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Also, it is suggested that fetal VDR gene may play a role in the regulation of fetal growth. It is 
observed that sequence variation in the VDR gene modified the effect of maternal vitamin D 
deficiency on infant size at birth. Low 25(OH)D concentrations were associated with lower-
birth-weight infants only among infants that were either homozygous for the FokI major allele 
or heterozygotes [95].

More basic science research is needed in this area as well as studies with multiple measure-
ments of fetal growth and placental vascularization.

3.4.3. Vitamin D and gestational diabetes mellitus

Gestational diabetes mellitus is one of the most prevalent disorders which have long-term 
consequence for the health of mothers and their children. It can increase the risk of developing 
type 2 diabetes, while their children may be at risk of obesity and diabetes later in life [101].

Polymorphisms of vitamin D have been related to insulin release and glucose tolerance [102]. 
A genetic influence of CYP27B1 polymorphisms may modulate 25(OH)D3 concentration in 
gestational diabetes patients [103]. Recent evidence from meta-analysis indicated a significant 
inverse relation of serum 25OHD and the incidence of GDM [104]. It is reported that 25(OH) 
D3 levels of <50 nmol/l at 16 weeks of gestation before the onset of GDM were associated with 
a 2.7-fold increased risk for the development of GDM later in pregnancy independent of mea-
sured confounders [72]. There are several mechanisms that explain the association between 
vitamin D deficiency and gestational diabetes risk: (i) vitamin D could directly or indirectly 
regulate pancreatic β-cell function and production by binding its circulating active form, 1,25-
(OH)D, to β-cell vitamin D receptor and controlling the balance between the extracellular 
and intracellular β-cell calcium pools [105, 106]. (ii) Vitamin D can stimulate insulin sensitiv-
ity by inducing the expression of insulin receptors and increasing insulin responsiveness for 
glucose transportation. It also controls extracellular calcium to ensure normal calcium entry 
through cell membranes and a sufficient intracellular cytosolic calcium pool, which is crucial 
for insulin-mediated intracellular processes in insulin-responsive organs [72]. Finally, (iii) it 
is probable that the negative association of 25-[OH] D concentration with GDM risk shows 
the impact of other components of major endogenous and exogenous sources of vitamin D on 
glucose homeostasis due to other mechanisms. For instance, endogenous secretion of vitamin 
D in the skin with the sun exposure is a main source of plasma vitamin D. Sun exposure could 
be positively associated with outside home physical activity, a protective factor for insulin 
resistance, impaired glucose tolerance, and GDM [107].

However, randomized controlled trials (RCTs) of vitamin D supplementation, initiated early 
in pregnancy, are now required to demonstrate whether vitamin D supplementation might 
reduce the incidence or severity of GDM.

3.4.4. Vitamin D and spontaneous preterm birth

Spontaneous preterm birth (SPB) happens before 37 weeks of gestation. Intrauterine infec-
tion and inflammation is one of the main factors underlying this disorder. One important 
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factor is bacterial vaginosis, which could disturb the normal balance of vaginal flora with 
enhanced growth of anaerobic bacteria responsible for the secretion of inflammatory cyto-
kines, prostaglandins, and phospholipase A2 [108]. In this respect, studies have shown a 
linear inverse association between maternal vitamin D status and the prevalence of bacte-
rial vaginosis among pregnant women [109–111]. Vitamin D has immunomodulatory and 
anti-inflammatory effects, including the control of the secretion and function of cytokines 
and neutrophil degranulation products that is important and relevant to prevent microbial 
invasion which may have a protective effect on SPB risk [27, 112]. Several cells of the immune 
system express VDRs and are regulated by vitamin D [113]. Although vitamin D function 
adjusts the activation of the acquired immune system in response to autoimmunity, it has 
key role to increase the innate immune system. It is involved in cell-mediated immunity 
by decreasing the secretion of inflammatory cytokines including IL-1, 6 and TNF-α that are 
involved in SPB [114, 115].

Human decidual cells are capable to synthesize the active form of vitamin D. Therefore, some 
studies demonstrated that vitamin D is involved in the modulation of acquired and innate 
immune responses at the fetal-maternal interface across gestation [116]. Vitamin D might 
decrease the risk of SPB also by helping to maintain myometrial quiescence. Myometrial 
contractility is related to calcium within the muscle cell and this process is manipulated by 
vitamin D [117]. The prevalence of SPB was lowest among women who conceived in sum-
mer and fall and was highest among winter and spring conceptions [118] and vitamin D 
supplementation in early pregnancy may protect against preterm birth [119]. More large 
studies are awaited to validate these important findings that might represent vitamin D 
supplementation as a simple and inexpensive method to reduce the risk of this adverse 
pregnancy outcome.

3.4.5. Vitamin D and recurrent pregnancy losses

Recurrent pregnancy loss is a devastating reproductive problem affecting approximately 5% 
of couples trying to conceive [120, 121]. RPL is typically defined as two or three or more 
consecutive pregnancy losses. Genetic, hormonal, metabolic, uterine anatomical, infectious, 
environmental, occupational and personal habits, thrombophilia, or immune disorders were 
reported as possible etiologies [121]. Despite the many etiologies, a majority of women with 
recurrent miscarriage have no discernible cause. It has been postulated that immunologic 
aberrations may be the cause in many of such cases.

Tissue responses to vitamin D include the regulation of hormone secretion, the modulation of 
immune responses, and a control of cellular proliferation and differentiation [122]. Vitamin D 
could inhibit the proliferation of T helper 1 (Th1) cells and limit the secretion of cytokines, such 
as interferon gamma (IFN-g), interleukin-2 (IL-2), and tumor necrosis factor-alpha (TNF-a). Also, 
vitamin D stimulates T helper 2 (Th2) cytokines, such as IL-4, IL-5, IL-6, IL-9, IL-10, and IL-13 
[123]. Furthermore, in many studies vitamin D has been presented as a modifiable environmen-
tal factor for Th1-mediated autoimmune disease and appears to be important for susceptibility 
to and severity of the disease. Vitamin D also regulates B-cell immunity. It downregulates the 
proliferation and differentiation of B lymphocytes and inhibits IgG production [123].
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With these immune-regulatory effects of vitamin D, it has been hypothesized that vitamin 
D could regulate immune response during implantation. In early pregnancy, trophoblasts 
secrete and respond to vitamin D, which influences local anti-inflammatory responses and 
stimulates decidualization for successful pregnancy [124]. A dominant Th2 immune response 
is important to maintain maternal-fetal relationship for successful pregnancy. By contrast, 
autoimmunity and dysregulated cellular immune reactions may be responsible for immuno-
logical alterations leading to recurrent pregnancy losses (RPL). High proportion of women 
with RPL has vitamin D deficiency, which is associated with increased cellular and autoim-
munity. Women with RPL have increased prevalence of various autoantibodies, such as APA, 
ANA, and TPO antibody [124]. Vitamin D was shown to prevent autoimmune thyroiditis by 
inhibiting lymphocyte proliferation and secretion of inflammatory cytokines [125].

Low vitamin D appears to be important for autoimmune disease susceptibility and severity 
and vitamin D deficiency was associated with an increased presence of autoantibodies [126] 
via B-cell hyperactivation and autoantibody production [127]. It can be inferred that vitamin 
D plays a role in regulating B-cell proliferation and function during successful pregnancy.

Several studies have reported a link between RPL and altered cytotoxicity and level of periph-
eral natural killer (NK) cells [128]. Preconception evaluation of NK cell activity in women with 
RPL has been reported to predict pregnancy outcome of the subsequent pregnancy [128]. 
Furthermore, elevated peripheral NK cells in pregnant women predict spontaneous abortions 
with normal karyotype in index pregnancy. Recently, increasing evidence supports a novel 
immune-regulatory role of vitamin D [129]. Vitamin D and NK cytotoxicity seem to have a direct 
inverse relationship, which might associate with RPL. Vitamin D may be regulating the NK cell 
population and cytotoxicity. Elevation of NK cell and/or cytotoxicity is risk factor for abortion.

Briefly, the high prevalence of hypovitaminosis D was detected among women with RPL. 
Vitamin D deficiency has immunological function in RPL. Vitamin D is related to B- and 
NK-cell immunity and Th1/Th2 balance, and vitamin D deficiency leads to a tendency to 
develop APA and other autoantibodies, which are associated with autoimmune disease and 
adverse reproductive outcome. Therefore, the assessment of vitamin D status is very impor-
tant in women with RPL and autoimmune or cellular immune abnormalities. As such, vita-
min D–deficient women have significantly increased risk for autoimmune abnormalities that 
is a risk factor for RPL and infertility. NK-cell cytotoxicity and Th1 polarization were sig-
nificantly decreased in vitro by vitamin D, and vitamin D decreased perforin production and 
polarization in NK cells. Also, vitamin D suppressed type 1 cytokine secretion and increased 
type 2 and growth factors from NK cells. So, these results raise the likelihood that vitamin D 
could be available as a new therapeutic choice for RPL and infertility [124]. Further study is 
required to elucidate immune-regulatory function of vitamin D.

3.4.6. Vitamin D and mode of delivery

Serum calcium status, which is regulated by vitamin D, plays a role in smooth muscle func-
tion in early labor [130]. It was speculated that the higher serum calcium levels played a role 
in the mechanism of the initiation of labor [130].
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An inverse association with having a primary cesarean section and vitamin D deficiency is 
shown. Severe vitamin D–deficient women with levels of 25(OH)D3 of <37.5 nmol/l delivered 
nearly four times as often by cesarean section than those with 37.5 nmol/l or greater (odds ratio 
(OR): 3.84) [131]. Because vitamin D is essential for the maintenance of calcium homeostasis, it is 
possible that the low level of vitamin D, which leads to modest lowering of the serum calcium, 
is associated with both skeletal muscle and smooth muscle strength and may have a role in the 
initiation of early labor. Poor maternal vitamin D status might reduce the strength of the pelvic 
musculature and the mother’s ability to push and deliver vaginally [132]. Also, vitamin D status 
is associated with preeclampsia [123] and gestational diabetes [133], which may increase the odds 
of cesarean [134]. It is also suggested that the low level of vitamin D is associated with cesareans 
due to cephalopelvic disproportion or failure to progress, although there is some controversy.

However, it should be noted that intravenous hydration would have diluted the blood and 
artificially imitate the lower level of 25(OH) D. However, the volume of intravenous fluids 
associated with blood loss is essentially the same.

However, vitamin D status and the mode of delivery should be examined and therefore the 
issue needs further investigation.

3.4.7. Vitamin D and fetal programming

Vitamin D stimulates more than 3000 genes. Several of them play a role in fetal growth and 
development [135]. It might be possible that vitamin D may be specifically relevant to the 
fetal programming indicating that vitamin D as an environmental factor may influence the 
genomic programming of fetal and neonatal development and following disease risk in child-
hood and adult life [136]. In this respect, in later life, mother and child who suffered from vita-
min D deficiency during pregnancy suffer more often from chronic diseases such as wheezing 
and asthma [137, 138], schizophrenia [139], multiple sclerosis [140], type 1 diabetes mellitus, 
and insulin resistance [141, 142]. Mechanisms underlying this long-term effect of the intra-
uterine environment are not known [143–145] yet, but epigenetic mechanisms that lead to 
persistent changes in structure and function in endocrine systems are hypothesized [101].

3.4.8. Vitamin D and infertility

Infertility is a complex disorder with significant medical, psychosocial, and economic aspects, 
which affects about 15% of couples [146]. In accordance with preview findings, vitamin D 
deficiency has emerged as a factor that influences female infertility. The role of vitamin D in 
reproduction processes and its significance in infertility therapy covering topics of polycys-
tic ovary syndrome, endometriosis infertility, myoma infertility, male infertility, premature 
ovary failure, and in vitro fertilization (IVF) techniques will be discussed.

3.4.9. Vitamin D and polycystic ovary syndrome

PCOS is one of the most common female endocrinopathies in reproductive-aged women 
[147, 148] which is characterized by elevated ovarian and adrenal androgen production, 
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hyperandrogenic symptoms such as hirsutism, acne and/or alopecia, irregular menstruation, 
and polycystic ovaries morphology [149]. Women with PCOS typically produce an increased 
number of oocytes, often of poor quality, resulting in lower fertilization and implantation and 
higher miscarriage rate. In addition, insulin resistance is common in PCOS women who are 
therefore at an increased risk of type 2 diabetes [150, 151]. PCOS is the most common cause of 
anovulatory infertility in women [152].

There might be a relationship between vitamin D deficiency and PCOS phenotype. In this 
respect, several studies have demonstrated that vitamin D deficiency is more common in 
women with PCOS compared with control women [153, 154]. Also, vitamin D deficiency 
might be a contributing factor to insulin resistance, obesity, and metabolic syndrome, all of 
which are commonly observed in PCOS and associated with ovulatory dysfunction [151]. 
Interestingly, vitamin D supplementation might improve menstrual irregularity, follicular 
development, and pregnancy rate in women with PCOS [155, 156]. The mechanisms underly-
ing the association of low 25(OH)D levels with PCOS are not fully understood. It is briefly 
discussed in the subsequent text:

•	 Vitamin D and insulin resistance and obesity: There is some evidence suggesting that vitamin 
D deficiency might be involved in the pathogenesis of insulin resistance and the metabolic 
syndrome in PCOS [157]. Several studies have shown that there is an inverse correlation 
between 25OH-D and IR, obesity, and free androgen index [154, 158]. Additionally, sev-
eral studies have shown that vitamin D supplementation might improve IR and reduce 
serum androgens [159]. The mechanisms underlying the association of low 25(OH)D lev-
els and insulin resistance are unclear. As obesity is related to insulin resistance in PCOS 
[160], it may contribute to low circulating vitamin D levels by trapping vitamin D in fat 
tissues. There are some mechanisms explaining the correlation between low level of vita-
min D and insulin resistance. Vitamin D may have a positive influence on insulin action 
by inducing the expression of insulin receptors and so increasing insulin responsiveness 
for glucose transport [161]. In addition, vitamin D modulate extracellular and intracel-
lular calcium which is necessary for insulin-mediated intracellular processes in insulin-
responsive organ including skeletal muscle and adipose tissue. Moreover, changes in cal-
cium flux can have negative effects on insulin production, which is a calcium-dependent 
process.

•	 Vitamin D and sRAGE: Advanced glycation end products (AGEs) have been shown to be 
involved in the pathogenesis of PCOS, and their serum levels are elevated in women with 
PCOS. AGEs accumulate in ovarian theca and granulosa layers of women with PCOS. 
This accumulation may be implicated in worsening ovarian follicular growth [162, 163]. 
However, significant increase in serum 25OH-D following replacement was associated 
with a significant increase in receptor for advanced glycation end product (sRAGE) levels, 
and a significant decrease in the abnormally elevated serum AMH levels that are usually 
observed in PCOS. The increase in sRAGE is usually beneficial because it binds circulat-
ing AGEs and inhibits their inflammatory deleterious effects. Lower serum AMH level in 
PCOS might potentially improve the ovulatory process because it decreases intrafollicular 
androgens and increases follicular sensitivity to FSH [164, 165].
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•	 Vitamin D receptor polymorphism and PCOS: Vitamin D receptors modulate more than 3% of 
the human genome, including genes that are fundamental for glucose metabolism. In this 
atmosphere, it has been reported that VDR-related polymorphisms (Cdx2, Bsm-I, Fok-I, 
Apa-I, and Taq-I) are associated with vitamin D metabolism and might participate to PCOS 
susceptibility [166, 167]. It seems possible that variants in the VDR through their effect on 
luteinizing hormone, sex hormone-binding globulin (SHBG) levels, and testosterone are 
involved in the pathogenesis of PCOS.

•	 Vitamin D and gene product of PCOS: Phosphoprotein enriched in diabetes gene product 
(PED/PEA-15), an antiapoptotic protein, has been shown to be overexpressed in insulin 
resistance, DM type 2, and PCOS. Recent data suggested that the low level of vitamin D 
may elevate the serum levels of this antiapoptotic protein, contributing to the impairment 
of the ovarian apoptotic mechanism. In addition, the low level of adiponectin that is pres-
ent in PCOS has been related to vitamin D concentrations, due to body mass index (BMI)-
dependent mechanisms. Further genes involved in vitamin D synthesis, hydroxylation, 
and transport, and their role in PCOS are currently under investigation [168–170].

3.5. Vitamin D and uterine leiomyoma

Leiomyoma (fibroids) are benign tumors that develop in the uterine muscle of premeno-
pausal women. The most common symptoms are pain and bleeding with associated anemia 
[171]. Although fibroids are hormonally dependent, factors that stimulate development are 
largely unknown. Vitamin D status has recently been related to the development of uterine 
leiomyomas, with observations showing that lower 25(OH)D levels correlate with a higher 
risk and a greater volume of uterine [171, 172]. Recent studies showed that both myometrial 
and leiomyoma cells are highly sensitive to the regulatory effect of 1,25-dihydroxyvitamin D3 
[173]. The signaling of 1,25(OH)2D3 is mediated via its ubiquitously expressed nuclear recep-
tor, the vitamin D receptor, which is expressed in both the myometrium and endometrium of 
the human uterus throughout the menstrual cycle [174].

The pathogenesis of fibroids has been hypothesized to involve a positive feedback loop 
between extracellular matrix production and cell proliferation, and vitamin D might act to 
block the positive feedback [175]. Vitamin D deficiency may stimulate cell proliferation [176]. 
The vitamin D [1,25(OH)2D3]-induced antiproliferative action is mediated predominantly 
through a G1/S phase block of the cell cycle. Because 1,25(OH)2D3 regulates many of the 
cell cycle–regulatory genes and reduces or increases the kinase activities of cyclin-dependent 
kinases (CDKs), this results in a decreased number of cells in the S phase and an accumula-
tion of cells in the G0–G1 phase [177]. The cyclin-dependent kinase inhibitors p21 and/or p27 
are genomic targets of the 1,25(OH)2D3-VDR complex in many cell types. Also, 1,25(OH)2D3 
blocks mitogenic signaling, including that of estrogen, epidermal growth factor (EGF), and 
insulin-like growth factor 1, and upregulates growth inhibitors such as transforming growth 
factor β (TGF-β) [178]. In addition, 1,25(OH)2D3 activates VDR-mediated apoptosis [179].

Myometrial and leiomyoma cells are clearly target cells of 1,25(OH)2D3. The data are consis-
tent with the observed expression of VDR protein in the myometrial and leiomyoma tissues 
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and cultivated cells and with our previous description of VDR mRNA expression in myome-
trial biopsies [180]. The punctuate pattern of expression within the nuclei of cultured cells has 
also been observed in other cell types and may display specific binding sites of VDR to target 
genes [181].

More research is needed to find out whether women with hypovitaminosis D also have more 
uterine leiomyomas than women with efficient vitamin D supplies.

3.6. Vitamin D and endometriosis

Endometriosis is one of the estrogen-dependent inflammatory problems characterized 
by the expression of endometrial tissue outside the uterine related to chronic pelvic pain 
and subfertility. The prevalence of this disorder is 10% of all women and 40% of infer-
tile women. Although endometriosis is not a malignant disorder, disturbances in cellular 
proliferation, cellular migration, cellular invasion, and neoangiogenesis are common [182]. 
Endometriosis is dependent on a following complex interaction of immunologic, hormonal, 
genetic, and environmental factors; however, the etiology of endometriosis is not com-
pletely understood [182].

It is documented that the regulatory network of vitamin is involved in the pathogenesis of 
endometriosis [69]. The higher 25(OH)D levels in women with endometriosis are detected. 
The proposed associations of vitamin D status and endometriosis are as follows:

I: it has been shown that the VDR and 1a-hydroxylase are expressed in the endometrium [24], 
suggesting that endometrium is an extra renal site of vitamin D synthesis and vitamin D action 
which leads to overexpressing of them [183]. It has been shown that VDR and 1α-hydroxylase 
are expressed in both the orthotopic and ectopic endometria [183].

II: Genetic variation in the VDR could be involved as a potential link between the vita-
min D–regulatory network and endometriosis pathogenesis. VDR polymorphism has been 
investigated as a potential link between vitamin D–regulatory network and endometrio-
sis pathogenesis. It was indicated that VDR dysregulation compromises innate immune 
response, involving VDR in the pathogenesis of endometriosis. DNA methylation and 
transcriptional repression signaling have been suggested as the most affected pathways 
involving VDR dysregulation in women with endometriosis [69]. In this respect, the expres-
sions were the highest in the endometria of women with endometriosis involving the epig-
enome of steroid hormone response in the pathogenesis of the disease, and also VDRmRNA 
expression has the upregulation of VDRmRNA expression in the ovarian tissue of patients 
with endometriosis [184]. DNA methylation and transcriptional repression signaling have 
been suggested as the most affected pathways involving VDR dysregulation in women with 
endometriosis, involving the epigenome of steroid hormone response in the pathogenesis 
of the disease.

III: Vitamin D is involved in the regulation of the immune system, which may be speculated 
about an influence of vitamin D in the local immune suppression and development of endo-
metriosis. This finding may be explained by an influence of vitamin D on the local activity 
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of immune cells and cytokines maintaining endometriosis and an insufficiency to activate 
macrophage’s phagocytotic function in those carrying the GC*2 polymorphism.

However, the hypothesis of a beneficial effect of vitamin D supplementation in the treatment 
of patients with endometriosis has not yet been clinically tested.

3.7. Vitamin D and assisted reproductive technologies

Vitamin D has also been shown to be involved in the pathophysiology of some disorders of 
women of childbearing age that are most commonly encountered among women undergoing 
in vitro fertilization procedures [185].

The issue of whether vitamin D levels are reliable predictors of ART outcomes is still contro-
versial. In some studies, among infertile women undergoing IVF, women with higher serum 
concentration of vitamin D and follicular fluid were significantly more likely to achieve clini-
cal pregnancy following IVF, and also high serum vitamin D concentration was significantly 
related to improved parameters of ovarian hyperstimulation [186].

The mechanism by which vitamin D affects fertility is unclear. However, vitamin D acts 
through the endometrium to influence IVF success and is supported by biological evidence. 
Postulated mechanisms include its effect on ovarian steroidogenesis and implantation [186, 
187]. In addition, vitamin D signaling is involved in the cross-talk between the embryo and 
endometrium; in response to interleukin (IL)-1B secreted by the blastocyst, endometrial den-
dritic cells and macrophages produce 1-alpha hydroxylase and calcitriol (the active form of 
vitamin D) [188]. Calcitriol binds to the vitamin D receptor in the endometrium to regulate 
target genes such as calbindin, osteopontin, and HOX10A, genes critical for embryo implan-
tation and placentation [189]. Endometrial HOX10A expression parallels that of the vitamin 
D–signaling pathway; both increase mid-cycle shortly before expected implantation, at the 
time of maximal endometrial differentiation [189]. Vitamin D also has immunomodulatory 
effects that may contribute to implantation [190]. Calcitriol attenuates decidual T-cell func-
tion. Decidual natural killer cells treated with calcitriol show decreased synthesis of cytokines 
CSF2, IL1, IL6, and TNF. Calcitriol has also been shown to interfere with the production of 
cytokines in whole endometrial cells isolated from women with a history of recurrent mis-
carriage, leading some investigators to hypothesize that vitamin D could play a role in the 
treatment for recurrent miscarriage [191]. VDR and 1-alpha hydroxylase expression continue 
to increase in the first and second trimesters. In cultured syncytiotrophoblasts, calcitriol regu-
lates hCG expression and secretion, and it stimulates E2 and P secretion from trophoblasts 
in a dose-dependent manner [99]. Abnormal expression of 1-alpha hydroxylase has been 
observed in pregnancies complicated by preeclampsia, suggesting that calcitriol may regu-
late placental development. Thus, the impact of vitamin D deficiency may extend to the entire 
placental-decidual unit.

Further research is needed to elucidate the mechanism by which vitamin D acts to influence 
IVF success and to determine whether repleting one's vitamin D stores will improve preg-
nancy rates.
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3.8. Vitamin D and fetal outcomes

Although research into fetal origins of disease in later life remains in its infancy, there is 
increasing suspicion that gestational nutritional sufficiency may be a determinant of health 
in later life. Vitamin D deficiency has been related to various adverse maternal, fetal, and 
postnatal outcomes.

Recent research has focused on the role of gestational vitamin D status in modulating intra-
uterine growth, body composition, skeletal development, immune development, and respira-
tory health of the offspring:

•	 Intrauterine growth

It is shown that low vitamin D levels during pregnancy may account for reduced fetal growth 
and for altered neonatal development [192]. Variation in the maternal VDR gene polymor-
phisms contributes to vitamin D–related disparities in fetal growth [193]. Maternal VDR 
genotype was significantly and independently associated with the risk of SGA, with impli-
cated SNPs differing in white and black women. In this respect, single VDR SNP (rs7975232) 
has association with birth weight. rs7975232, an anonymous polymorphism, is part of a VDR 
gene haplotype associated with variation in mRNA stability. mRNA stability can directly 
affect the amount of protein produced, thus directly affecting vitamin D levels and calcium 
homeostasis [194]. In early pregnancy, more than 300 genes were differentially expressed in 
women indicating a role of vitamin D in the genetic regulation of processes contributed in 
fetal development [195]. Further research identifying the functionality of VDR gene polymor-
phisms in pregnant women will improve our understanding of the underlying mechanisms 
influencing birth weight.

•	 Body composition

Increasing evidence that vitamin D affects cell development and differentiation in tissues 
including bone, muscle, and fat suggests that the in utero vitamin D environment may influ-
ence body composition and cardiovascular disease risk factors in the offspring [196]. In this 
respect, greater adiposity was found for men and women born in winter-spring, possibly 
reflecting fetal exposure to low vitamin D during the second or third trimester of pregnancy 
[196]. Vitamin D deficiency is also emerging as a risk factor for the metabolic syndrome in 
adults. The evidence supports an inverse relationship between serum 25OHD and compo-
nents of the metabolic syndrome, including blood glucose concentration, insulin resistance, 
dyslipidemia, raised blood pressure, and abdominal obesity [197]. The highly active form of 
vitamin D, 1,25(OH)2D3, exerts a coordinated control over lipogenesis and lypolysis [198]. 
Given current concerns about childhood obesity and the increasing prevalence of vitamin D 
deficiency with urbanization, it is important to explore the hypothesis that maternal vitamin 
D level may affect later body size and composition.

•	 Skeletal development

Advances in bone assessment technology have prompted research on gestational vitamin D 
status and offspring skeletal development. It is reported that maternal serum 25(OH)D was 
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inversely correlated with fetal femoral distal metaphyseal cross-sectional area and splaying 
index. Fetal femoral splaying is analogous to that seen in childhood rickets, suggesting that 
effects of vitamin D deficiency on bone development may initiate early in gestation [199]. 
Because bone size is related to bone strength, it is hypothesized that lasting differences in fem-
oral distal metaphyseal cross-sectional area may have implications on future fracture risk [35].

•	 Immune development

The role of prenatal vitamin D status in fetal and neonatal immune development comprises 
a growing area of research. Cord blood gene expression of tolerogenic immunoglobulin-like 
transcripts 3 and 4 (ILT3 and ILT4) was significantly higher when mothers were supplemented 
with vitamin D during pregnancy [200]. Also, a researcher showed that there is a weak but 
significant positive correlation between cord plasma 25(OH)D and cord blood mononuclear 
cell release of IFN-ɣ, a cytokine that plays a key role in Th1 cell development, upon stimula-
tion with lipopolysaccharide [200]. It suggests that prenatal vitamin D status could influence 
immune development and predisposition for allergy [201]. A recent body of work has begun 
to suggest that lower gestational vitamin D levels may also be associated with higher rates 
of pediatric atopic disease [202], food sensitivities [203], atopic dermatitis, eczema, asthma, 
impaired lung function, allergic disease, and other conditions frequently characterized by a 
hypersensitive immune state [204–206]. It appears that fetal vitamin D levels may play a mod-
ulating role in immune functions involved in atopic disorders. As hypersensitivity outcomes 
may also be seen in those children born to mothers contaminated with assorted xenobiotics 
in pregnancy [207, 208], however, it is not known whether the immune dysregulation and 
hypersensitivity may be the consequence of a primary gestational insufficiency of vitamin D, 
or whether various chemical toxicants might play a role by impairing vitamin D uptake, renal 
synthesis, and assimilation [209] while at the same time inducing immune compromise and 
hypersensitivity through other mechanisms [210].

•	 Respiratory health

Earlier findings of an inverse correlation between maternal intake of vitamin D during preg-
nancy and incidence of wheeze or asthma in the offspring [137] have raised interest in the 
role of vitamin D in childhood respiratory health. It is reported that maternal vitamin D defi-
ciency increases the risk of both respiratory and general infections in the first 3 months of life, 
and also cord blood vitamin D status was inversely associated with wheeze during the first 
5 years of life [211]. Similarly, infants born to mothers with a vitamin intake during pregnancy 
had significantly lower odds of developing wheeze or eczema [212]. It seems that vitamin D 
plays an essential role in myriad genes that encode for health and well-being in the offspring, 
it behooves the medical and public health community to endeavor to secure vitamin D ade-
quacy in the gestational period.

3.9. Vitamin D and lactation

Near-exclusive breastfeeding for 6 months leads, on average, to maternal calcium loss four 
times higher than in pregnancy because lactation can require 150–300 mgCa/kg/day. Vitamin D 
goes across easily into breast milk, but 25(OH)D passes very poorly, and 1,25(OH)2D does not 
seem to pass at all [213]. 1,25(OH)2D level decreases quickly after pregnancy and are normal 
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during lactation [213]. 25(OH)D concentrations were decreased during lactation [214]. In lactat-
ing rats and mice, 1,25(OH)2D levels remain elevated until weaning [213].

Studies have generally shown that providing vitamin D to lactating mothers increases their 
25(OH)D concentrations but has no significant effect on any other maternal outcome [215, 216]. 
Animal studies showed that skeletal resorption prepared most of the calcium required during 
lactation, irrespective of dietary calcium intake. The obligatory increase in PTHrP and decrease 
in estradiol program the lactational loss of skeletal calcium content, and vitamin D status does 
not affect this loss. Increasing calcium and vitamin D intake during lactation might simply 
increase urinary calcium and, thereby, increase the kidney stone risk [70].

4. Vitamin D and menopause

During menopause, the estrogen deprivation results in elevated bone turnover, reduction 
in bone mineral density, and increase in the risk of fracture. Musculoskeletal discomfort 
may impair health-related quality of life. Moreover, body composition changes including 
increased fat mass and decreased lean mass, which may be related to elevated risk of VD 
deficiency. However, we discuss the adverse health outcomes related to both menopause and 
VD deficiency and the possible interaction of both risk factors in these conditions.

4.1. Vitamin D and vasomotor climacteric symptoms

Hot flashes are the most common menopausal symptom. Although their exact pathophysi-
ological mechanism is unclear, estrogen deprivation is suggested to cause stimulation in nor-
adrenergic hyperactivity, which leads to a heat loss response and the sensation of warmth 
throughout the body followed by sweats [217]. There are several lines of evidence indicating 
shared complications of women affected by vasomotor climacteric symptoms and vitamin D 
deficiency such as accelerated bone turnover, increased loss of bone mass, hypertension, and 
depression. Also, it is suggested that decline in serotonin, as a neurotransmitter with known 
effects on thermoregulation, is an alternative underlying mechanism in vasomotor climacteric 
symptoms. In this respect, vitamin D can protect against experimental serotonin depletion; 
one proposed mechanism for symptom alleviation is the prevention of serotonin decline in 
menopause [218]. RCTs investigating the effect of VD supplementation using adequate doses 
in peri- or early postmenopausal women are warranted.

4.2. Vitamin D, obesity, and menopause

Some studies demonstrated that menopause is related to obesity and changed body fat distri-
bution. Obesity occurs because fat-free mass was lost after menopause, due to lesser exercise 
and greater increases in fat mass [219]. This could increase the risk of cardiometabolic disease, 
cancer, and consecutive mortality [220]. It has been related to estrogen effects on lipolysis and 
lipogenesis in visceral adipocytes [221] and the SHBG-lowering effect of estrogen deficiency 
resulting in elevated free testosterone levels. Hyperandrogenemia is related to visceral fat accu-
mulation [221]. Although the serum level of estrogens and androgen levels decrease during 
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menopause, but the more pronounced decrease in estrogen levels might result in increased vis-
ceral fat accumulation [219]. In addition, estrogen deprivation may also effect on energy balance, 
metabolic rate, fat oxidation, and total body weight [219]. It is well documented that obesity is 
associated with vitamin D deficiency. It is demonstrated that a higher degree of obesity leads 
to lower 25(OH)D, whereas any effects of lower 25(OH)D increasing BMI are likely to be small. 
Interestingly, vitamin D supplementation decreases body fat mass without any change in body 
weight or waist circumference [222]. Further, physical activity and thus sun exposure, which is 
essential for vitamin D production in the skin [223], decline during menopause [224].

4.3. Vitamin D, cardiovascular disease, and menopause

Cardiovascular diseases are not common among premenopausal women. Sex difference 
between cardiovascular outcomes in female and male may be associated with protective effects 
of endogenous estrogens. The estrogen deprivation during menopause may be related to the 
unfavorable changes of lipid and carbohydrate metabolism during menopause leading to the 
increased incidence of cardiovascular events [220]. There is large evidence from observational 
studies linking low vitamin D levels with cardiovascular risk factors as well as with cardiovas-
cular events [225]. Vitamin D has been suggested to be involved in insulin resistance, type 2 
diabetes, and the MetS in premenopausal as well as in postmenopausal women [225]. This asso-
ciation might in part be caused by the relation of hypovitaminosis D with obesity (Figure 3).

Figure 3. Menopause, low serum vitamin D, and cardiovascular diseases.
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There are, however, mechanisms beyond obesity such as a beneficial VD effect on insulin 
action and VD-related genetic variants are associated with insulin resistance and insulin sensi-
tivity [153]. Hypovitaminosis D has also been associated with hypercholesterolemia in several 
studies [226]. As low VD levels are associated with an unhealthy lifestyle such as few physical 
outdoor activities, a sedentary lifestyle, and obesity, it is difficult to interpret these findings.

4.4. Vitamin D, musculoskeletal disease, and menopause

Estrogen deprivation in menopause has been suggested as risk factor developing musculo-
skeletal symptoms such as aches and pain, joint pain, muscle stiffness, and skull and neck 
aching [227, 228]. Accelerated loss of bone mass occurs during the menopause as a result of 
naturally decreasing estrogen levels, putting women at risk of osteoporosis and fracture. 
Lifestyle advice including adequate calcium and VD intake, physical activity, encourag-
ing nonsmoking, and only moderate alcohol consumption has been recommended for bone 
health in postmenopausal women [224]. It has been demonstrated that vitamin D has a dual 
effect on the musculoskeletal system: (i) on the bone mass, bone density, and bone quality 
and also (ii) on the muscle mass, muscle strength, and muscle function. In addition, adequate 
vitamin D status decreases the risk of falling in older individuals, due to improved neuro-
muscular function [225]. Hypovitaminosis D myopathy is a prominent symptom of vitamin 
D deficiency, and severely impaired muscle function may be present even before biochemi-
cal signs of bone disease develop [229]. There is evidence showing that hormones includ-
ing VD as well as sex hormones modulate the functional relation between bone and muscle 
tissues. Also, there is evidence suggesting a relationship between osteoporosis, cardiovas-
cular disease, and mortality, and low VD levels may be an underlying mechanism that are 
associated with increased bone turnover and increased risk of mortality and mortality [230]. 
Meanwhile, as both menopause and low level of vitamin D are related to musculoskeletal 
symptoms, it is suggested that vitamin D supplementation may benefit for joint pain, muscle 
mass, and function in peri- and postmenopausal women. Moreover, vitamin D supplementa-
tion might recover muscle function which leads to better bone mineral density and a lower 
risk of falling. Also, it has a positive effect on impaired cognitive function and depression, 
which may per se decrease the risk of falling [225]. Thus, randomized trials investigating 
vitamin D effects in peri- and early postmenopausal women on musculoskeletal symptoms 
and diseases are highly needed.

4.5. Vitamin D, cancer, and menopause

The incidence of cancer rises in women with increasing age. Besides other factors, this is 
aggravated by several lifestyle aspects such as reduced physical activity, a sedentary lifestyle, 
increased caloric intake, as well as obesity [224]. There is accumulating evidence suggesting 
that the low level of vitamin D is one of important risk factors for cancer and cancer-related 
mortality [231]. High 25(OH)D levels are related to reduction in mortality in patients suffering 
from colon, lung, and breast cancer [232, 233]. The underlying pathophysiology is not com-
pletely understood, but it is suggested that antiproliferative and apoptotic effects of vitamin 
D on cancer cells, inhibition of metastatic distribution and tumor invasion, and promotion of 
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sensitivity to radiation and chemotherapy influence on decreased mortality in cancers [233]. 
Since the increased risk of hypovitaminosis D in peri- and early postmenopausal women as 
well as the fact that underlying risk factors are also associated with an increased risk of cancer, 
one might speculate that an adequate vitamin D levels in those women might also be helpful 
regarding the risk of cancer.

4.6. Vitamin D, menopause, and mood disorders

It is well documented that women are more at a higher risk compared to men who develop 
psychological problems such as mood disorders and depression, which has been related to 
the effect of estrogen fluctuation during reproductive cycle. As well, some studies reported 
an increased prevalence of depression and anxiety in women across the menopausal transi-
tion [234]. It has been suggested that vitamin D may affect mood and cerebral function and 
the low level of vitamin D is related to vascular neuropathology [225]. Increased phagocy-
tosis of amyloid plaques, antioxidative effects, modulation of neurotrophins, neuronal cal-
cium regulation, immunomodulation and vascular protection [235], and changes in calcium 
homeostasis [236] are observed. Vitamin D deficiency and the decline in estrogens during 
menopausal transition are conditions associated with an increased risk of mood disorders 
such as depression. In this respect, more research is needed.

5. Vitamin D and male fertility

There is extensive evidence demonstrating that calcium is essential in the male reproductive 
system, where it is crucial for spermatogenesis, sperm motility, and acrosome reaction [237]. In 
this respect, the role of vitamin D, as an important modulator of calcium metabolism, in semen 
quality and spermatogenesis is not completely understood.

The basis of the interplay between vitamin D and reproduction lays on the presence of both 
VDR and 1α-hydroxylase (CYP27B1) in various tissues of the reproductive system in both 
sexes. VDR expression has been shown in the testis of rat [238]. Human studies demon-
strated that vitamin D receptors are found in testis, epididymis, prostate, seminal vesicles, 
and Leydig cells. The level of expression differs, which is higher in epididymis and seminal 
vesicles compared to others [239]. Vitamin D receptors were also expressed in normal and 
abnormal sperm [239]. Acrosomal region, head, especially the nucleus, and the neck of the 
sperm are the sites with the most numerous mRNA VDR expression [240].

The precise role of vitamin D receptors in the sperm nucleus is unclear. It has been shown that 
it has a protective genomic factor, which is essential for the proper control of sperm DNA integ-
rity and maintenance of genome stability [240]. The 1,25 (OH) 2D3 molecules seem to regulate 
cholesterol efflux in human sperm, affect tyrosine and threonine phosphorylation of sperm 
proteins, and enhance sperm bioavailability. Further, it increases intracellular calcium levels, 
sperm mobility, and acrosin activity, and decreases triglyceride in sperm to contribute in fertil-
izing capacity within the female reproductive system [241]. Vitamin D receptors are also found 
in the cytoplasm of epithelial cells of the epididymis and ductal prostate epithelium [242].
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Meanwhile, it is shown that the mRNA encoding CYP2R1 [243] and CYPB1 is presented in 
all tissues of the reproductive tract [243]. The exact role of CYPR1 is unclear, but it has been 
suggested that it is related to vitamin D functions, as its expression progressively reduces 
in testicular damage [243]. Vitamin D appears to be implicated in amino acid accumula-
tion, which is achieved either through its genomic effect, triggered by protein kinase A and 
C (PKC), or by a rapid, nongenomic effect, contributing in calcium/potassium channels in 
the plasma membrane [244]. The cyclic AMP/PKA complex is a mediator of 1,25(OH)2D3 
in both genomic and nongenomic actions. As such, 1,25(OH)2D3, membrane depolarization 
occurs, inducing the opening of L-calcium channels and entry of calcium [241]. However, 
in sertoli cells, vitamin D could induce calcium uptake through an unknown receptor activ-
ity [245]. Further, vitamin D acts on sertoli cells through chloride channel activation, which is 
mediated through a PKA/PKC-dependent, nongenomic pathway [246]. Vitamin D enhances 
gamma-glutamyl transpeptidase activity, an enzyme contributed in the synthesis of pro-
teins produced by sertoli cells. Literature supported a protective effect of vitamin D from 
oxidative stress and cellular toxicity, as well as maintenance of the number and motility of 
sperm [247]. Lastly, it has been suggested that vitamin D induces the expression of calcium-
binding protein CaBP28k in testis, which is contributed in the process of spermatogenesis 
and steroidogenesis [248].

Recent literature suggested that men suffering from severe hypospermatogenesis or idio-
pathic sertoli cell-only syndrome (SCOS), despite normal levels of total testosterone and 
estradiol, had lower plasma 25(OH)D concentrations, higher concentrations of bone resorp-
tion markers, and lower T-scores both in femoral neck and in lumbar spine compared to 
healthy controls [240, 249]. Researchers showed that there are positive correlation of 25(OH)
D serum levels with sperm motility and progressive motility. Moreover, men with vitamin 
D deficiency (<10 ng/ml) had a lower proportion of motile, progressive motile, and morpho-
logically normal spermatozoa [250]. Further investigations are needed to evaluate the positive 
role of vitamin D supplementation in men’s infertility.

6. Vitamin D supplementation

There are no specific guidelines regarding vitamin D supplementation for women or men 
affected by endocrine disturbances. Thus, according to positive vitamin D effects on bone 
health, the Institute of Medicine [251] and the Endocrine Society [22] suggest a vitamin D 
level of at least 50 nmol/l (20 ng/ml). Based on the Recommended Daily Allowance (RDA, 
covering requirements of R97.5% of the population), the daily intake of vitamin D should 
be 600 IU/day for each person up >70 years and 800 IU/day for older adults. The Endocrine 
Practice Guidelines Committee [22] recommend a daily intake of 1500–2000 IU vitamin D3 
daily for adults older than 18 years up to 70 years in order to raise the blood level of 25(OH)
D to more than 30 ng/ml. It is documented that vitamin D supplementation with 1000 IU/day 
increases 25(OH)D levels/10 ng/ml [133]. However, in severe vitamin D deficiency, higher 
doses of vitamin D 50,000 IU weekly for up to 8 weeks are recommended. Notably, vitamin D 
intoxication, which leads to hypercalcemia, renal damage, and vascular calcification, occurred 
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in 25(OH)D levels to more than 150 ng/ml [18]. Regarding several adverse effects of the low 
level of vitamin D on different health aspects, vitamin D supplementation in order to reach an 
adequate vitamin D level is highly recommended.
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