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Daily variations in the environment have shaped life on Earth,
with circadian cycles identified in most living organisms. Likewise,
seasons correspond to annual environmental fluctuations to which
organisms have adapted. However, little is known about seasonal
variations in human brain physiology. We investigated annual
rhythms of brain activity in a cross-sectional study of healthy young
participants. They were maintained in an environment free of
seasonal cues for 4.5 d, after which brain responses were assessed
using functional magnetic resonance imaging (fMRI) while they
performed two different cognitive tasks. Brain responses to both
tasks varied significantly across seasons, but the phase of these
annual rhythms was strikingly different, speaking for a complex
impact of season on human brain function. For the sustained
attention task, the maximum and minimum responses were located
around summer and winter solstices, respectively, whereas for the
working memory task, maximum and minimum responses were
observed around autumn and spring equinoxes. These findings
reveal previously unappreciated process-specific seasonality in
human cognitive brain function that could contribute to intra-
individual cognitive changes at specific times of year and changes in
affective control in vulnerable populations.
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Daily variations in the environment have constrained life on
Earth, with circadian cycles identified in most living organ-

isms, including in human physiology and cognition (1, 2). Seasonal
variations in the environment have also triggered annual adapta-
tions that are observed in the majority of species (for a review, see
ref. 1). However, seasonal variations may seem more limited in
our species or they are at least less recognized (3). Seasonality has
indeed been reported for several physiological aspects including
blood pressure (4), cholesterol (5), or calorie intake (6), with
higher levels seen in winter or fall for food intake. Recently,
seasonal variation in expression levels of a large set of genes has
been reported for human white blood cells and adipose tissue (7).
Furthermore, seasonal variations have been observed in several
behavioral dimensions with peaks occurring at different time of
year depending on the variable considered: conception (winter/
spring peak) and death [winter peak (8)] or violent suicide [spring/
summer peak (9)]. Mood has been the most extensively studied
aspect of human behavior, with a large portion of the general
population undergoing seasonal deteriorations in mood in winter,
but these do not reach clinical threshold [e.g., subsyndromal
seasonal affective disorder: up to 18% in North America (10)].
Furthermore, sparse studies suggest that, in addition to mood,
other cognitive brain functions show annual variations in healthy
individuals, but results are not consistent (11–13).
Animal research suggests that the suprachiasmatic nucleus,

site of the master circadian clock, is at least one of the sites me-
diating annual rhythmicity (14). The well-characterized circadian
genetic machinery is also implicated in tracking seasonal changes
(15). It is therefore likely that seasonality in human species involves
the circadian timing system and that the previously identified brain

correlates of the circadian variations in cognitive brain function (2)
play a role in annual changes in human cognition. Although seasonal
changes in photoperiod together with neurotransmitters and neuro-
trophic factors seem to mediate seasonal mood variation in humans
(16–20), the brain bases of seasonality in human cognition remain
elusive. This lack of evidence arises in part from the fact that genuine
seasonal rhythms of human brain function are difficult to measure. A
number of factors that could directly affect brain function have in-
deed to be controlled: light exposure, sleep/wake rhythm, external
temperature, food intake, physical exercise, and social interactions.
Here, we took advantage of a study completed in our laboratory

under strictly controlled conditions, devoid of seasonal cues for
4.5 d, to assess annual rhythms in human cognitive brain function.
The primary goal of the study was to assess the neural correlates of
two tasks probing different cognitive domains during total sleep
deprivation. Because the enrollment of participant was carefully
timed such that the assessments would span all seasons, annual
variations in the neural responses (assessed after recovery from the
sleep deprivation) could be assessed. We hypothesized that, follow-
ing 4.5 d under controlled conditions, brain responses to both tasks
would undergo seasonal variations with higher and lower responses,
respectively, around summer and winter solstices. In line with pre-
vious observations (13), we further postulated that annual variations
would be more evident in the more basic attentional task compared
with the more complex, higher-order executive task.

Significance

Evidence for seasonality in humans is limited. Mood probably
stands as the aspect of human brain function most acknowledged
as being affected by season. Yet, the present study provides
compelling evidence for previously unappreciated annual varia-
tions in the cerebral activity required to sustain ongoing cognitive
processes in healthy volunteers. The data further show that this
annual rhythmicity is cognitive-process-specific (i.e., the phase of
the rhythm changes between cognitive tasks), speaking for a
complex impact of season on human brain function. Annual var-
iations in cognitive brain function may contribute to explain
intraindividual cognitive changes that could emerge at specific
times of year.
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Results and Discussion
Twenty-eight young, healthy participants [age 21 ± 1.5 y (mean ±
SD); 14 women; Table S1] took part in a cross-sectional study

conducted in Liège (Belgium, latitude 50.633° N, longitude 5.567° E),
between May 2010 and October 2011. They were instructed to
follow a regular sleep/wake schedule for 3 wk before a 4.5-d

Fig. 1. Schematic representation of the protocol. Following an 8-h baseline night of sleep in complete darkness, participants underwent a 42-h sleep deprivation under
constant routine conditions in dim light (<5 lx, 19 °C, semirecumbent position, regular liquid isocaloric food intake, no time cues, sound-proofed room). They were then
given a 12-h recovery sleep opportunity in darkness, an hour after which they completed fMRI recordings (red star). Functional MRI recordings were completed while
lying down in darkness and included PVT and n-back tasks. Relative clock time for participants habitually waking up at 8:00 AM. Striped blue box during sleep dep-
rivation represents the habitual sleep period. The figure represents the last ∼2.5 d of the protocol; see Fig. S1 for a description of the entire in-laboratory experiment.

Fig. 2. Seasonal variations inbrain activity associatedwith sustainedattention. (A) Significant (pcorrected<0.05) seasonal variations in PVTbrain responses displayedover the
meanstructural imageofallparticipants (displayatpuncorrected<0.001).Onlyclusters>30voxelsaredisplayed(seeTable1for full results).Vertical colorbarcorrespondstoF-test
values (B) Doubleplot of PVTbrain responseestimates in regionsofA in a sinusoidal representation.Day1 corresponds to January 1. First letter of eachmonth is displayedon
top.Thickblacklinecorrespondstoaverageofallresponseestimates.Grayarearepresentsdailydaylength(inminutes) inLiège.(C)SameasB inpolarcoordinates;arrowlength
representsseasonalvariationamplitude.Onedegreeisroughlyequalto1d(360° for365d).Maximumresponseswerelocatedbetween152°and188° (mean168.9) (i.e., June3
andJuly9) (meanJune20). (D)Doubleplotof individualactivityestimates ina representativeregionofA (amygdala)and its sinusoidal fit (red line). (E) Seasonalenvironmental
factorsrecordedinLiègein2011:temperature(Celsiusdegrees,blue),humidity(percent,red),daylength(minutes,green),andday-to-dayday-lengthgain/loss(minutes,violet).
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in-laboratory protocol devoid of seasonal cues (Figs. S1 and S2).
Functional MRI (fMRI) recordings were acquired 1 h after wake-
up time, following 63 h of strictly controlled experimental condi-
tions (Fig. 1). Each recording included a sustained attention task
[visual psychomotor vigilance task, PVT (21)], and a higher-order
executive function task [auditory n-back task, involving storage,
updating, and comparison of information in working memory (22)].
We first focused on the brain responses induced by the PVT

and found significant annual variations in areas involved in alert-
ness [thalamus (23) and amygdala (24)] and in executive control
[frontal areas (25) and hippocampus (26)] (Fig. 2A and Table 1).
Seasonal variations were also detected in the globus pallidus,
parahippocampal gyrus, fusiform gyrus, supramarginal gyrus, and
in the temporal pole recruited during PVT execution (27, 28) and
in the precuneus involved in visuospatial attention (29). As pos-
tulated, extraction of the seasonal variations in PVT brain re-
sponses revealed a similar rhythm in all these brain regions, with
maximal responses around mid-June, and minimal around mid-
December (i.e., around solstices) (Fig. 2B).
Variations in PVT brain responses were not related to sig-

nificant changes in PVT performance, which remained good and
stable throughout the year (P > 0.2; Table S2). This guarantees
that fMRI differences were not significantly biased by differences
in performance to the task and suggests that fMRI is more
sensitive than the behavioral tests we used in identifying seasonal
variations in cognition. Stable performance throughout the year
via distinct brain dynamics implies, however, that the “cost” of
cognition (i.e., the neural resources involved in or at disposal for

cognition) change with time of year. We hypothesize that the
seasonality in brain responses could predict some of the seasonal
variations in performance previously reported for potentially
more sensitive tasks (11–13).
We next investigated whether other behavioral and physiologi-

cal variables could account for the observed annual variations in
PVT brain responses. Subjective and objective neurophysiological
measures of alertness and subjective assessments of affective di-
mensions acquired immediately before fMRI acquisitions did not
change significantly across seasons. In addition, in our dataset we
could not replicate seasonal changes in melatonin secretion profile
that were reported in some (30–33), but not all (34, 35), publi-
cations (P > 0.05; Table S2). Only self-reported mood varied
significantly over season (P = 0.003; Table S2), but this variation
was not significantly related to the seasonal changes in brain re-
sponses (Table 1 and Fig. S3). In summary, sustained attention-
related brain activity fluctuates across seasons but these changes
were not related to variations in the behavioral, endocrine, or
neurophysiological parameters assessed in our study.
Photoperiod is the most obvious factor associated with season

and both the intensity and spectral composition of light to which
people are exposed vary with season (36). Fig. 2, indeed, suggests
that PVT brain responses were closely related to photoperiod
(gray area, Fig. 2B). A formal analysis revealed that all PVT brain
responses showing seasonal variations were significantly associated
with day length. This finding could imply that there is a “physio-
logical memory” for the photoperiod to which participants were
exposed before admission to the laboratory. Indeed, before fMRI
recordings, participants had not seen sunlight for 4.5 d and had
been for 63 h in dim light during wakefulness and in darkness
during sleep episodes. Consistently, effects of prior light exposure
(“photic memory”) on cognitive brain responses have formerly
been demonstrated on a much shorter timescale in humans (37)
and photoperiod memory has previously been described as “after-
effects” of photoperiod on circadian clock neurons in rodents (38).
Whether our data reflect a true human photoperiod memory is,
however, not possible to ascertain because many other environ-
mental factors covary with season and photoperiod, including air
temperature and humidity (Fig. 2E).
Having established seasonal/annual variations in sustained-

attention-related brain responses, we then examined whether
such variations could be generalized to other cognitive domains
by considering the n-back task implemented in our protocol. We
found that brain responses to this executive task varied signifi-
cantly with season in the thalamus, including the pulvinar, and in
prefrontal and frontopolar areas, similar to the PVT results. In
addition, significant annual variation was observed in the insula,
a brain region involved in executive processes, attention, and
affective regulation (39) (Fig. 3A and Table 2). Compared with
PVT brain responses, significant seasonal variations seemed to
encompass a reduced set of brain areas, which could indicate a
relative decrease in seasonality on executive brain responses, in
line with previous suggestions of a reduced seasonal impact on
behavioral measures of more complex tasks (13).
This qualitative task-specific difference was complemented by a

statistically significant difference in the dynamics of brain response
estimates across the year, with maximum and minimum responses
being located ∼3 mo later for the n-back compared with the
PVT (i.e., around autumn and spring equinoxes, respectively)
(Fig. 3 B and C) (day of the year at responses maximum phase:
PVT, 168.9 ± 8.2; n-back, 265.7 ± 13; t11 = −20.16; P < 0.001).
Similar to the PVT, performance on the n-back was good and

stable throughout the year in our sample (Table S2). However,
covariation with photoperiod was not significant for any of the
executive brain responses that significantly varied with season.
As depicted in Fig. 3, there seems, however, to be a striking sim-
ilarity between annual dynamics in executive brain responses and
day-to-day variation in daylength (i.e., the number of minutes of

Table 1. Seasonal variation in PVT brain responses

Brain areas Side X Y Z Z score P value

Frontoorbital gyrus L −38 54 −6 3.43 0.017
L −26 52 −10 3.56 0.012

Medial frontoorbital gyrus R 10 56 −12 3.34 0.022
Superior frontopolar gyrus L −26 60 20 4.32 <0.01*
Superior frontal gyrus L −14 20 64 4.56 <0.01*
Middle frontal gyrus L −50 18 38 3.29 0.025
Pre-SMA R 2 20 48 3.11 0.042
Posterior cingulate gyrus L −4 −42 22 3.10 0.042
Precuneus L −18 −50 36 3.50 0.014
Supramarginal gyrus L −56 −36 30 3.93 0.004
Intraparietal sulcus L −30 −46 34 3.29 0.025

R 30 −42 36 3.37 0.021
Superior temporal sulcus L −48 −58 16 3.45 0.016
Temporal pole L −38 16 −36 4.66 <0.05*
Fusiform gyrus R 50 −56 −20 3.74 0.007

R 42 −58 −18 3.12 0.039
Parahippocampal gyrus L −32 −28 -24 4.61 <0.05*
Hippocampus R 28 −14 -24 4.58 <0.05*
Caudate nucleus L −6 4 −4 3.23 0.030
Amygdala L −22 −10 −24 4.87 <0.05*
Globus pallidus R 18 −2 0 4.21 0.001
Thalamus R 10 −6 8 3.86 0.005

L −8 −8 10 3.79 0.006

P values corrected for multiple comparisons over a priori small volume of
interests, except *corrected over the entire brain. X Y Z: coordinates (millime-
ters) in Montreal Neurological Institute stereotactic space. All regions survived
to an inclusive mask (puncorrected = 0.001) consisting of a brain map of the
potential PVT brain responses covarying with day length, suggesting that an-
nual variations in all regions are significantly driven by the seasonal changes in
day length. No region survived to an inclusive mask (puncorrected = 0.001),
whereas all regions survived exclusive masking (puncorrected < 0.05) with a brain
map of the potential executive brain responses covarying (i) subjective mood
and (ii) PVT performance (median, 20% fastest, 20% slowest reaction times),
suggesting that annual variations in all regions are not significantly driven by
the seasonal changes in these variables. L, left; R, right.
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day length gained or lost from one day to the next, which peaks at
the equinoxes). This similarity is indeed confirmed statistically
(Table 2). As for photoperiod, however, factors such as air tem-
perature and humidity (Fig. 2E) covary with day-to-day day-length
variations such that these are equally likely to contribute to sea-
sonality in cognitive brain function.
Overall, the results provide clear evidence for seasonality in

diverse types of cognitive processes and suggest that the annual
dynamics are process-specific. One might postulate that more basic
cognitive processes, such as attention, are more tightly related to
basic environmental changes (e.g., day length), whereas higher
cognitive processes are related to more complex cues, such as, for
instance, social interactions (e.g., summer holidays usually en-
compass usually July and August in Belgium). This speculation
cannot be tested here but would imply that brain response sea-
sonal dynamics would be different in countries with different en-
vironmental and social constraints.
Interestingly, seasonal variations have been found in mono-

amines that are often related to cognitive functions, notably at-
tention and executive processes (40, 41). Seasonal changes in
serotonin levels in cerebrospinal fluid and blood as well as sero-
tonin transporter binding have been repeatedly observed (but not
systematically; see refs. 42 and 43), mostly leading to higher se-
rotonin levels in summer (19, 44, 45) (i.e., with a pattern poten-
tially similar to the annual variations we observed in PVT brain
responses). As a matter of fact, sunlight-dependent variations
in serotonin levels have been detected in cortical (frontal,
cingulate, and insular cortex), limbic (amygdala and hippocampus),

and subcortical (thalamus) areas (44–46), similar to those de-
tected here in response to a PVT task. In contrast, the emerging
seasonal pattern for dopamine brain concentration is charac-
terized by higher levels in fall and lower levels in spring (47, 48),
that is, with a pattern reminiscent of the annual variations in
executive brain response observed in our sample. Similarly,
seasonal variation in serum brain-derived neurotrophic factor
concentration, a protein involved in learning and the regulation
and plasticity of neuronal network, has been reported to undergo
annual dynamics leading to higher circulating levels in the fall
(49). Whether brain responses to learning tasks would have a
similar annual pattern as the brain activity related to a working
memory task remains to be investigated. As a whole, it seems
that key modulators of brain function show at least some sea-
sonality, potentially contributing to the seasonal changes in
cognitive brain response we detected.
Influence of season is broad in the animal kingdom and en-

compasses locomotion, body mass, endocrine function (melato-
nin secretion), pelage, and sexual activity (1, 50, 51). Expression
of at least part of the human genome seems to be seasonal (7),
speaking for a potential broad impact of season also in humans.
Our findings indicate that, in addition to time of day (2), time of
year influences higher cognitive brain function in healthy par-
ticipants. Our results have direct and important bearing on our
understanding of intraindividual cognitive changes that could
emerge at specific times of year.

Fig. 3. Seasonal variations in executive brain activity. Display as in Fig. 2. (A) Significant (pcorrected < 0.05) seasonal variations in auditory three-back brain
responses minus control task brain responses (simple letter detection). (B) Executive brain response estimates in regions of A. Gray area represents day-to-day
change in photoperiod in Liège (minutes). (C) Same as B in polar coordinates. Maximum responses were located between 243° and 282° (mean 265.75) (i.e.,
September 3 and October 12) (mean September 22). (D) Double plot of individual activity estimates in a representative regions of A (middle frontal region)
and its sinusoidal fit (red line).
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Materials and Methods
Additional methodological descriptions are provided in SI Materials
and Methods.

The study was approved by the local Ethics Committee of the University of
Liège and participants gave their written informed consent. Participants
underwent first 3 wk of a controlled sleep–wake schedule before the in-
laboratory procedure which began in the evening of day 1 and ran over four
nights (Fig. S1). This period was completed in the absence of seasonal cues
(no access to daylight or external information such as internet access or
cellular phones). Starting on the morning of day 3, participants remained
awake for 42 h under constant routine (CR) conditions during which endo-
crine, neurophysiology, and neuropsychological measures were regularly col-
lected. Sleep deprivation was followed by a 12-h recovery night in darkness.
Day 5, while the participant were still in dim light, was devoted to an fMRI
session that was carried out 1 h after wake up and is the main focus of the
current paper. Subjective sleepiness and affective dimensions were assessed
hourly throughout the protocol.

Cognitive Tasks. The fMRI session included two cognitive tasks separated in
two acquisition runs. The PVT required pressing a button as quickly as possible
when a stopwatch pseudorandomly started in the center of the screen. Mean
interstimulus interval was set to be between 2 and 10 s and trial duration was
a maximum of 10 s. The auditory three-back implies to state whether or not a
consonant was identical to the consonant presented three stimuli earlier.
Stimulus onset interval was set at 2 s. Letters were presented in block of 30
consonants separated by 10 to 20 s of rest. Six blocks of three-back were
presented to each participant in addition to four blocks of a letter detection
task consisting of identifying the letter “k” in a stream of consonants (same
block duration and stimulus interval).

fMRI Data Analysis. Data were spatially preprocessed (standard parameters)
and analyzed using SPM8 (www.fil.ion.ucl.ac.uk/spm) implemented in
MATLAB 7.10 (MathWorks Inc.). Statistical analysis proceeded in two steps, a
fixed and a random effects analysis, to take into account the variance at the
individual and at the group level, respectively. Each trial type of the PVT and
each hit of the three-back and letter detection task were modeled using

stick functions, convolved with a canonical hemodynamic response function.
For the PVT 20% fastest, 20% slowest, and intermediate reaction times and
lapses were modeled as separate regressors. For the n-back, three-back, and
letter detection task trial types were modeled separately. The design matrix
also included regressors for movement parameters, derived from re-
alignment of functional volumes, which were considered as covariates of no
interest. A high-pass filter was implemented using a cutoff period of 128 s.
Contrasts of interest consisted of the main effect of the intermediate re-
action times of the PVT and the executive component of the three-back
(three-back hits minus letter detection hits). These individual contrast im-
ages were entered in the second-level analysis. This latter random effects
analysis included two covariates consisting of year-long period sine and
cosine functions for which each day of the year (day 1 = January first) is
almost equivalent to 1° (365 d for 360°).

Statistical inferences were performed using F test combining both sine
and cosine covariates and thresholded at P < 0.05 after corrections for
multiple comparisons (familywise error method) over the entire brain vol-
ume or over small spherical volumes (10-mm radius) around a priori locations
of interest taken from literature (SI Materials and Methods).

Significant F tests indicate voxels with a response showing a seasonal
variation with annual periodicity. From the parameters of the sine and co-
sine regressors, the phase and amplitude of the seasonal effect are esti-
mated as the arctangent of the ratio of the parameters and the square root
of their sum of square, respectively:

RðtÞ  =  betas*sinð2*π*t=TÞ+betac * cos
�
2 * π * t=T

�
+ «

  =  Α* cosð2*π*t=T� φÞ+ «

and

φ= atan2ðbetas,betacÞ

A= sqrt
�
betas2+betac2

�
,

where R is the voxel response, betas/betac are the parameters for the sine/
cosine regressors, T is the period of 1 y, « is the residual of the model, φ is the
phase of the seasonal response [R is maximum at tMAX = φ*T/(2*π)], and A is
the amplitude of the seasonal response.

Four additional separate random effects analyses included (i) day length,
(ii) subjective mood, (iii) day-to-day day-length variation, and (iv) behavioral
performance (PVT performance: median, 20% fastest, and 20% slowest re-
action times; three-back performance: d-prime) as covariates to constitute
maps of the brain areas covarying with each variable. Maps were used as
inclusive or exclusive masks over the results of the seasonality analyses
thresholded at P < 0.001 or P < 0.05 uncorrected, respectively.

Behavioral and Physiological Data Analysis. Multiple regression analyses
searching for seasonal variation in behavioral measures were performed
(STATISTICA 10; StatSoft) using sine and cosine as independent variables.
We tested their influence on (i ) the subjective sleepiness alone, (ii ) the
six affective dimensions of the visual analog scale, (iii ) PVT median re-
action time, lapses, per 20 and per 80 together, and (iv) and three-back
d-prime and criterion together.

Similar multiple regression analyses searching for seasonal variation in
physiological and endocrine measures were also performed. Dependent
variables were grouped as follows: (i) theta and alpha power on Cz together;
(ii) melatonin amplitude, DMOn, DLMOff, midpoint, and width; (iii) total
sleep time, sleep efficiency, stage-two and slow wave, each one separately,
for baseline night and recovery night; and (iv) the timing of the last fMRI
session relatively to DLMon and DLMoff.
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