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Abstract  

 There is increasing evidence supporting dietary and alternative therapies for epilepsy, 

including the ketogenic diet, modified Atkins diet, and omega-3 fatty acids. Vitamin D3 is actively 

under investigation as a potential intervention for epilepsy. Vitamin D3 is fat soluble steroid which 

shows promise in animal models of epilepsy. Basic research has shed light on the possible 

mechanisms by which Vitamin D3 may reduce seizures, and animal data support the efficacy of 

Vitamin D3 in rat and mouse models of epilepsy.  Very little clinical data exists to support the 

treatment of human epilepsy with Vitamin D3, but positive findings from preliminary clinical trials 

warrant larger Phase I and II clinical trials in order to more rigorously determine the potential 

therapeutic value of Vitamin D3 as a treatment for human epilepsy. 
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Introduction 

 Epilepsy affects approximately two million Americans and 65 million people worldwide 

[1].  Among those with epilepsy, 22-30% have drug resistant epilepsy (DRE) [1, 2].  Drug resistant 

epilepsy causes cognitive and mood impairment, injuries, and increased risk of death including 

Sudden Death in Epilepsy (SUDEP) [1-3]. Antiepileptic Drugs (AEDs) are the primary medical 

treatment for epilepsy.  However, even for those whose seizures are well controlled by AEDs, 

allergies, neurological and systemic toxicity, depression, memory loss, and osteoporosis are 

common problems [4, 5].  Because of the limitations and potential toxicity of existing AED’s, 

there is significant clinical interest in finding alternative therapies for epilepsy.  

In the search for alternative epilepsy treatments, Vitamin D3 is an intriguing candidate.  

[6]. As early as 1974, Christiansen postulated that supplementation of Vitamin D might improve 

calcium and magnesium levels, and may decrease hyper-excitability in patients with epilepsy. In 

the four decades since, progress has been made in understanding the biochemical and cellular 

mechanisms of Vitamin D3’s anticonvulsant properties.  Animal data has supported the 

anticonvulsant effects of Vitamin D3 in mice and rats [7-11].  Existing evidence for the use of 

Vitamin D3 in treating human epilepsy has been positive [6, 12].  However, there is for larger 

clinical trials to corroborate safety and efficacy and to develop a much deeper, more intricate 

understanding of Vitamin D3 therapy for human epilepsy.  In this review, we will critically analyze 

the animal and human evidence to date supporting the use of Vitamin D3 as a treatment for 

epilepsy.  

Vitamin D3 Overview: Biochemistry and Role in Human Health  

 The most biologically active form of Vitamin D in humans is Vitamin D3 

(Cholecalciferol), which is a fat-soluble steroid hormone [13].  Dietary sources of Vitamin D3 
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include dairy, meat, fish, and mushrooms [14]. The primary source of Vitamin D3 is exposure of 

the skin to ultraviolet sunlight [14].  The metabolic pathway of Vitamin D3 is summarized in 

Figure 1. 7-dehydrocholesterol is converted to Vitamin D3 in the skin after exposure to sunlight. 

Vitamin D3 is converted to 25-Hydroxy-cholecalciferol (25-OH Vitamin D3) in the liver.  25-OH 

Vitamin D3 is the major circulating form of Vitamin D, but it itself is biologically inactive and 

must be converted to the active form 1,25-dihydroxy-Vitamin D3 (1,25 Vitamin D3) in the kidneys 

[13-15].  Vitamin D3 is important for calcium metabolism, bone health, cardiac function, and 

blood pressure maintenance, among other health benefits [14, 16, and 17].  Vitamin D3 deficiency 

is a marker of poor health and overall mortality [16].  However, 40-50% of Americans have 

insufficient Vitamin D3 levels, and insufficiency is even more prevalent in underserved 

populations, including Hispanics (69%) and African Americans (82%) [18]. 

Vitamin D3 in the Brain & Nervous System 

 Among its variety of health benefits, Vitamin D3 plays an important role in the human 

brain and nervous system, as indicated by increasing evidence gathered over the past several 

decades.  Researchers have explored the role of Vitamin D3 in Alzheimer’s disease and dementias 

[19,20], Parkinson’s disease [19,21], multiple sclerosis [22-24], schizophrenia [25], affective 

disorders [13,26], cognitive decline [13,27] and epilepsy [6,12]. Vitamin D3 is also involved in 

neuroprotection [15, 28, 29], brain cell proliferation and differentiation [30, 31], and brain 

development [30, 32, 33]. A neurological role of Vitamin D3 is further supported by the presence 

of Vitamin D3-specific receptors and enzymes in neurons and glial cells throughout the brain, in 

the spinal cord, and in the peripheral nervous system [34-37]. The broad role of Vitamin D3 in the 

nervous system has engendered research into Vitamin D3’s anticonvulsant action in the brain, and 

the proposed mechanisms of action can generally be categorized as either genomic or non-genomic 
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. 

Genomic Mechanisms of Action 

 Genomic mechanisms behind Vitamin D3’s anticonvulsant effect are based on Vitamin 

D3’s ability to regulate the expression of genes, a process which is mediated by a nuclear Vitamin 

D3 receptor (VDR) [38].  VDR is a ligand-specific transcription factor, which is activated by 

Vitamin D3 and subsequently alters gene expression [28, 29].  Through this mechanism, Vitamin 

D3 lowers the expression of certain proconvulsant cytokines, such as IL-1 and TNF-. These 

cytokines can increase seizure susceptibility in several ways. IL-1 is involved in a pathway that 

results in phosphorylation of the NR2B subunit of the NMDA receptor, which is a glutamate 

receptor that is important in the generation of seizures [39]. The phosphorylation of this NMDA 

receptor subunit increases Ca2+ influx into neurons [40] and stabilizes the receptor in the membrane 

[41], leading to the hyper-excitability of neurons that can cause seizures [39, 42].  IL-1 can also 

cause neuronal hyper-excitability by increasing the release probability of glutamate [43], an 

excitatory neurotransmitter, and inhibiting its reuptake [39, 44]. In addition, IL-1 can reduce 

inhibitory GABA-ergic Cl- flux [45], furthering the proconvulsant effect of this cytokine [39].  The 

TNF- cytokine acts as a proconvulsant because it initiates both the recruitment of AMPA 

receptors to the neuronal membrane and the endocytosis of GABAA receptors away from the 

membrane [46, 47].  The TNF--induced overexpression of AMPA receptors and under-

expression of GABAA receptors on the neuronal membranes results in more excitatory synaptic 

transmission and less inhibitory signaling, which increases the likelihood of epileptic activity.  
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Through its nuclear Vitamin D3 receptor (VDR), Vitamin D3 can also increase the 

expression of anticonvulsant growth factors GDNF and NT3 [15, 29, 48-50].  NT3 leads to an 

anticonvulsant effect by down-regulating TrkA and TrkC receptors, which are receptors that 

regulate synaptic strength [50].  The mechanism behind GDNF’s anticonvulsant action remains 

largely unknown, but it is speculated that, similarly to that of NT3, it involves some modulation 

of synaptic transmission [51].  Vitamin D3-activated VDR also promotes expression of the 

calcium-binding proteins parvalbumin and calbindins, which inhibit epileptic episodes [15, 29, 

52]. By binding to Ca2+ in the presynaptic terminal, these calcium-binding proteins prevent 

excessive Ca2+-induced neurotransmitter release and thus protect against epileptic activity [52, 53].  

Non-genomic Mechanisms of Action  

Faster, non-genomic mechanisms of Vitamin D3’s anticonvulsant effect have been 

proposed as well. Vitamin D3’s ability to increase calcium uptake from the intestine can alter 

plasma and brain Ca2+ concentrations, which may decrease neuronal excitability and prevent 

seizures.  However, evidence suggests that Vitamin D3’s anticonvulsant effect is not wholly 

attributable to its role in altering calcium levels [6, 8, 9].  Rather, it is more likely that Vitamin 

D3’s rapid, anticonvulsant effect results from its ability to fine-tune Ca2+ and Cl- currents across 

neuronal membranes [54, 55].  Vitamin D3 initiates non-genomic signal transduction pathways 

that ultimately alter the conductance of L-type calcium channels and chloride channels, therefore 

affecting neuronal excitability and seizure susceptibility at the threshold level [55-57].  The details 

of these non-genomic signal transduction pathways are debated, and although it used to be thought 

that they were mediated by a distinct membrane Vitamin D3 receptor (VDRmem) [58], more recent 

evidence suggests that these rapid, non-genomic anticonvulsant pathways are actually mediated 

by the same protein—VDR—that mediates Vitamin D3’s genomic actions [54,57,59-61], with 
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different domains of VDR being involved in the genomic and non-genomic pathways that lead to 

Vitamin D3’s anticonvulsant effects. 

 

 

Vitamin D3 in Animal Models of Seizures  

  Rat Models 

 In 1984, Siegel et al. published a seminal paper describing the effect of Vitamin D3 on 

seizure thresholds in rat hippocampi [7].  Using artificial electrical stimulation to model seizures, 

they found that stereotactic injection of 50g or 100g of 1,25 Vitamin D3, into the hippocampus 

of rats significantly elevated the seizure threshold in all rats treated.  This elevation in threshold 

was noticeable 5-10 minutes after the injection of 1,25 Vitamin D3, and the effect lasted at least 

120-180 minutes.  Intravenous injection of 1,25 Vitamin D3 also significantly elevated seizure 

threshold, but the effect was transient, lasting only 30 minutes, perhaps due to limited uptake of 

1,25 Vitamin D3 in the brain.  Most rats were Vitamin D3-sufficient, but they found that in one 

Vitamin D3-deficient rat, a lower dose of 1,25 Vitamin D3 was required to raise the seizure 

threshold to a similar extent.   

 Mouse Models  

 Over two decades after Siegel et al.’s rat study, Kalueff et al. explored the anticonvulsant 

effects of Vitamin D3 in a mouse model of seizures [8].  Subcutaneous injection of 33g of 1,25 

Vitamin D3 incurred an anticonvulsant effect in a chemically-induced model of seizures.  

Compared to controls, mice injected with 1,25 Vitamin D3 40 minutes prior to the injection of 

pentylenetetrazol (PTZ), a seizure-inducing chemical, exhibited longer mean latency to seizure 

onset (77s vs. 55s), shorter mean duration of tonic-clonic seizures (10s vs. 32s), and lower 

mortality (18% vs. 55%).  However, the anticonvulsant effects of 1,25 Vitamin D3 were nearly 
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gone if Vitamin D3 injection occurred 3, 6, 12, or 24 hours before PTZ injection.  The acute 

efficacy of 1,25 Vitamin D3 suggests that the anticonvulsant effect in this model was due to non-

genomic actions of the steroid.  In addition, differences in Ca2+ levels between control and 

experimental mice were non-significant, suggesting that 1,25 Vitamin D3 exerted an 

anticonvulsant effect independent of its role in calcium metabolism [8].  

 In a separate study, Kalueff et al. found that the partial deletion of the Vitamin D3 receptor 

(VDR) gene in mice led to increased seizure severity in the model of PTZ-induced seizures [9].  

Compared to wild type mice, VDR-knockout mice demonstrated significantly shorter latencies to 

seizure onset (50.4s vs. 66.9s), higher Racine scores of seizure severity (5.9 vs. 4.9), and increased 

mortality (90% vs. 40%).  Of note, none of the mice in either the control or experimental condition 

showed spontaneous seizure activity, suggesting that the VDR gene acts at the threshold level of 

seizures.  Both wild type and VDR-knockout mice had normal calcium levels, suggesting that the 

partial deletion of the VDR gene increases seizure intensity via a non-calcium mechanism and 

providing further evidence of an anticonvulsant effect of Vitamin D3 that is independent from its 

role in calcium metabolism [9].  

 In two studies, Borowicz et al. have shown that certain doses of Vitamin D3, enhance the 

efficacy of several AEDs in a mouse electroshock model of epilepsy without altering the 

concentrations of the drugs, suggesting a synergistic pharmacological interaction [10, 11].  The 

authors also reported some anticonvulsant action of Vitamin D3in its own right [10], and they 

found that treatment with Vitamin D3 led to no deleterious changes in motor coordination, long-

term memory, or anxiety [10,11]. 

 Overall, existing evidence from rat and mouse studies supports an acute anticonvulsant 

effect of Vitamin D3 in electric shock and chemically induced models of seizure.  Further research 
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is needed to explore the longer-term effects of Vitamin D3 therapy in diverse animal models of 

epilepsy. 

Vitamin D3 in Human Epilepsy 

 People with epilepsy are often Vitamin D3 deficient, along with having decreased bone 

density and higher rates of osteoporosis [62].  Furthermore, certain AEDs, such as carbamazepine 

and phenytoin, are known to decrease Vitamin D3 levels in people who are taking them due to 

increased metabolic clearance of Vitamin D3 and conversion to inactive forms [63, 64].  People 

with epilepsy face a six-fold risk for bone fracture compared to the normal population, likely an 

interplay between frequent falls, reduced bone density, and low levels of Vitamin D3 [62].  

Maternal Vitamin D3 deficiency during pregnancy has also been associated with hypocalcemia-

induced seizures in neonates, which have been successfully treated with calcium and Vitamin D3 

supplementation in several case studies [65-68].  

 In humans, little clinical data exists about the effect of Vitamin D3 supplementation on 

seizures.  In 1974, Christiansen et al. conducted a pilot study in which they treated 23 epilepsy 

patients with Vitamin D3 [6].  Subjects were divided into two groups (A and B) for the duration 

of the 12-week study, which was broken down into a 4-week observation phase (T1) followed by 

two 4-week treatment periods (T2 and T3). Group A (n = 9) received 4,000 IU/day Vitamin D3 

during T2, followed by 16,000 IU/day Vitamin D3 during T3.  Group B (n = 14) received placebo 

pills during T2, followed by 8,000 IU/day Vitamin D32 during T3.  During T2, Group A (being 

treated with 4,000 IU/day Vitamin D3) experienced a mean reduction in seizure frequency of 32% 

from baseline, while Group B (being treated with placebo) experienced an 8% reduction in mean 

seizure frequency from baseline.  During T3, Group A (being treated with 16,000 IU/day Vitamin 

D3) experienced a 29% reduction in mean seizure frequency from baseline, while Group B (being 
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treated with 8,000 IU/day Vitamin D3) experienced a 33% reduction in mean seizure frequency 

from baseline.  The authors concluded that high dose Vitamin D3 significantly reduced the number 

of seizures in patients with poorly controlled epilepsy, and, contrary to the authors’ hypothesis, it 

did so independently of calcium or magnesium levels [6].   

Nearly 40 years after Christiansen et al.’s findings, Hollo et al. conducted the most recent 

clinical study of Vitamin D3 therapy in human epilepsy [12].  Their subjects consisted of 13 

patients with drug resistant epilepsy.  At baseline, low 25-OH-Vitamin D3 levels <30ng/ml, were 

present in 12/13 patients, and deficient levels (<12ng/ml) were present in 8/13 patients; 1/13 

patients had a normal Vitamin D3 level at baseline.  Treatment consisted of Vitamin D3 

supplementation aimed at normalizing the serum Vitamin D3 levels of all the subjects. To the 12 

patients with low or deficient Vitamin D3 levels at baseline, an oral dose of 40,000-200,000 IU 

bolus of Vitamin D3 was administered, and treatment was continued with a daily maintenance 

dose of 2,000-2,600 IU/day of Vitamin D3.  The one subject with normal baseline Vitamin D3 

level only received the daily maintenance doses. Vitamin D3 levels were rechecked 3 months after 

treatment onset to determine successful normalization of Vitamin D3 levels and rule out potential 

Vitamin D3 toxicity.  Vitamin D3 supplementation was determined to be safe, as no subjects 

showed toxic levels of Vitamin D3 at the 3-month follow-up [12].  Median Vitamin D3 level rose 

from 11.8ng/ml at baseline (range: <4-34.2ng/ml) to 38.0ng/ml at 3-month follow-up (range: 23.3-

45.0ng/ml). This elevation in Vitamin D3 levels was significant (p = 0.001, sign test), and the post-

treatment Vitamin D3 levels of all subjects were within or close to the normal range [12].  The 

efficacy of the Vitamin D3 treatment in reducing seizures was determined by comparing the 

number of seizures experienced during the 90 days prior to treatment onset to the number of 

seizures experienced in the 90 days after treatment onset. Among all subjects, 10/13 experienced 
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fewer seizures after initialization of Vitamin D3 treatment, 2/13 had more seizures, and 1/13 had 

the same number of seizures. The median reduction in seizure number following treatment onset 

was 40% and was significant (p = 0.04).  In addition, 5/13 patients experienced a >50% reduction 

in number of seizures.  The existing clinical evidence suggests a therapeutic effect of Vitamin D3 

in human epilepsy, but there is a need for larger Phase I trials and phase II randomized, placebo-

controlled trials to investigate optimal dosing and short-term and long-term efficacy.  

Does Vitamin D3 have a potential role in reducing SUDEP risk? 

Vitamin D3 status is strongly associated with risk of sudden cardiac death in heart disease 

and patients with severe kidney disease on hemodialysis. In a large prospective study of 2300 

patients in the Cardiovascular Health Study, the risk of sudden cardiac death was 2-times higher 

in those with Vitamin D3 levels < 20 ng/ml (4 events/1000) than in those with Vitamin D3 levels 

> 20 ng/ml (2 events/1000) [69]. Similarly, in a study of 1108 patients with chronic kidney disease, 

very low levels of Vitamin D3 (25-hydroxy-Vitamin D3 levels < 25 nmol/L) were 3-times more 

likely to sustain sudden cardiac death than those with high levels > 75 nmol/L (hazard ratio = 2.99) 

[70].  

Common to severe heart and kidney disease is impaired Heart Rate Variability (HRV), 

particularly vagus-mediated high-frequency HRV.  Patients with drug resistant epilepsy, who are 

at high risk for sudden death in epilepsy (SUDEP) have impaired vagus-mediated HRV, similar in 

magnitude to patients with heart failure [69, 70].  Recently, subjects with drug resistant epilepsy, 

at high risk of SUDEP, as measured by the SUDEP-7 inventory, were found to have severe 

impairment in RMSSD, a measure of vagus-mediated HRV [69, 70]. In a recent study linking 

SUDEP risk in patients with drug resistant epilepsy, those with the highest  SUDEP-7 inventory 

risk scores in the highest quartile had RMSSD values of 17.6 ms, versus 32.0 ms for those with 
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the lowest SUDEP-7 inventory scores (p= 0.03, trend test).  This finding is relevant since Vitamin 

D3 supplementation improves vagus-mediated HRV. Recently, Vitamin D3 supplementation 

ranging from 5000-10000 IU’s in normal controls resulted in significant improvements in high 

frequency HRV, as measured by the Low Frequency/High Frequency HRV ratio. A similar result 

was recently found in patients with IGA nephropathy, where high frequency HRV, as measured 

by the LF/HF HRV ratio, also increased after Vitamin D3 supplementation [75].    

Conclusion and Future Directions 

 The weight of evidence from basic research and animal models over the past several 

decades supports an anticonvulsant effect of Vitamin D3.  Vitamin D3’s anticonvulsant action may 

be via genomic and non-genomic mechanisms. Epidemiological data as well as a variety of case 

studies also point to a connection between Vitamin D3 and epilepsy and support the use of Vitamin 

D3 as a potential therapy for human epilepsy, both in its own right and in conjunction with existing 

AEDs.  However, the clinical data that exists is limited by small sample size and/or lack of 

randomization and double-blind placebo control.  Despite these limitations, existing clinical data 

has, in the opinion of this review, been positive enough to warrant larger Phase I and Phase II 

clinical trials in order to more rigorously determine the potential therapeutic value of Vitamin D3 

as a treatment for human epilepsy. Recently, our group has received an IND for a Phase I study of 

Vitamin D3 in drug resistant epilepsy to study the safety, preliminary efficacy and potential cardiac 

benefits of Vitamin D3 5000 IU/day in drug resistant epilepsy.  
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