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Abstract 
 
Heritability is a fundamental characteristic of human disease essential to the development of a 
biological understanding of the causes of disease. Traditionally, heritability studies are a 
laborious process of patient recruitment and phenotype ascertainment. Electronic health records 
(EHR) passively capture a wide range and depth of clinically relevant data and represent a 
novel resource for studying heritability of many traits and conditions that are not typically 
accessible. In addition to a wealth of disease phenotypes, nearly every hospital collects and 
stores next-of-kin information on the emergency contact forms when a patient is admitted. Until 
now, these data have gone completely unused for research purposes. We introduce a novel 
algorithm to infer familial relationships using emergency contact information while maintaining 
privacy. Here we show that EHR data yield accurate estimates of heritability across all available 
phenotypes using millions familial relationships mined from emergency contact data at two large 
academic medical centers. Estimates of heritability were consistent between sites and with 
previously reported estimates. Inconsistencies were indicative of limitations and opportunities 
unique to EHR research. Critically, these analyses provide a novel validation of the utility of 
electronic health records in inferences about the biological basis of disease. 
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Introduction 
Family history is one of the most important disease risk factors necessary for the 

implementation of precision medicine in the clinical setting1. The predictive value of family 
history for any given trait is directly related to the fraction of phenotypic variance attributable to 
genetic factors, known as heritability2. Knowledge of disease heritability combined with family 
history information is clinically useful for identifying risk factors, estimating risk of disease, 
customizing treatment, and tailoring patient care. Moreover, by quantifying genetic contribution 
to a trait, heritability estimation represents the first step in gene mapping efforts for any disease. 

Estimating heritability has traditionally required in-depth family studies, with twin studies 
being the gold standard. By their nature these studies can be laborious, limiting their sample 
sizes and, subsequently, their power. A notable exception, and perhaps the largest single study, 
used 80,309 monozygotic and 123,382 same-sex dizygotic twins to conclude that there is 
significant familial risk for prostate, melanoma, breast, ovary, and uterine cancers3. Another 
study brought together 2,748 twin studies conducted since 1955 covering 14.5 million subjects. 
However, in such a meta-analysis individual data are not available, preventing any study of 
cross-sections, combinations of traits, or strata that were not analyzed in the original study4.  

Electronic Health Records (EHR) are in broad use and offer an alternative to traditional 
phenotyping. Everyday, the EHR records thousands of patient phenotypes from drug 
prescriptions and disease diagnoses to clinical pathology results and physician notes. Use of 
the EHR as an observational dataset presents a novel opportunity to conduct rapid and 
expansive studies of disease and phenotype heritability. In particular, they enable access to 
traits that otherwise might not be studied. In addition, data captured by these systems represent 
the diversity of the patient populations they serve, and, in ethnically diverse regions like New 
York City, make previously unattainable cohorts available for study.5 The caveat is that these 
data are known to contain many biases and errors that limit their use. Issues regarding 
missingness and accuracy are widely cited as the primary limitations6. However, the most 
critical limitation for genetic studies may be the uncontrolled ascertainment bias. The probability 
that a particular trait is recorded in the EHR is not uniform across disease conditions or across 
patients. For example, a patient seen for a routine checkup with no symptoms is unlikely to 
undergo an MRI, regardless of whether or not they have an unruptured brain aneurysm.  

The genetic relatedness between patients is not routinely captured in the EHR during clinical 
practice. In some hospitals, as is the case for the two we represent, a link is made between the 
mother’s and child’s medical records upon birth. In general, however, familial links are not 
present. Recent work has identified twins by comparing birth dates and surnames7, but there is 
a more comprehensive source of familial relationship data that is available at nearly every 
hospital across the country – the emergency contact information. Upon admission, each patient 
is asked to provide contact details to be used in case of emergency as well as how they are 
related to the individual provided. If accurate, this ubiquitous resource can be used to define a 
broad network of relatedness across a hospital’s patient population. 

In this study, we demonstrate the utility of the EHR as a genetics research resource by 
using extracted data to estimate the heritability and familial recurrence rates of over 700 
phenotypes -- both quantitative and dichotomous. We performed this analysis independently at 
two large academic medical centers in New York City. We present our algorithm for extracting 
relationships, called Relationship Inference From The Electronic Health Record (RIFTEHR), and 
use it to infer 4.7 million familial relationships among our patients. We then computed 
recurrence rates and heritability estimates for every available phenotype. Our derived heritability 
estimates accurately reflect those previously reported and we report heritability estimates for 
many traits that may otherwise never have been studied. 
 
Results 
Mining familial relationships from the EHR 
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We obtained the data for this study from the inpatient EHR used at the hospitals of 
Columbia University Medical Center and Weill Cornell Medical College. These hospitals operate 
together as NewYork-Presbyterian Hospital and herein, we will refer to the hospitals and the 
data associated with them as Columbia and Cornell, respectively. The study was approved by 
Institutional Review Boards at both Columbia and Cornell University. 

In total, 4,768,013 emergency contacts were provided by 2,388,455 patients at the two 
medical centers. Of these, we identified the emergency contact as a patient in 785,943 cases 
(488,932 and 297,011 at Columbia and Cornell, respectively). Using these next-of-kin data, we 
inferred an additional 2,614,657 relationships at Columbia and 1,200,977 at Cornell. Including 
inferences, a total of 3,103,589 unique relationships have been identified at Columbia and 
1,497,988 at Cornell. Inferred relationships include first to fourth degree relatives as well as 
spouses and in-laws (Table 1, Supplementary Table 1). We grouped individuals into families by 
identifying disconnected subgraphs (Materials and Methods). We found 223,307 families at 
Columbia containing 2 to 134 members per family. Similarly, we found 155,883 families at 
Cornell, with up to 129 members per family. This includes 127 families that span four 
generations (i.e. families that contain great-great-grandparents and great-great-grandchildren) 
at Columbia and 72 families that span four generations at Cornell. 

The relationship between mother and child was explicitly documented in the EHR for babies 
delivered at both medical centers. This ‘EHR mother-baby linkage’ provided a reference 
standard for maternal relationships, allowing us to compute sensitivity and positive predictive 
value (PPV) of the relationship inference method. For maternal relationships, we obtained 
92.9% sensitivity with 95.7% PPV at Columbia and 96.8% sensitivity with 98.3% PPV at Cornell 
(Figure 1A).    

We validated the identified relationships by comparison to genetic relatedness (Figure 1). 
We collected a dataset of 186 patients for which we have EHR-inferred relationships and who 
have genetic data available that was consented for reuse. We used PLINK to estimate 
relatedness. All 78 predicted parent/child relationships had the expected genetic relatedness of 
50% as well as the three grandparent/grandchild relationships. All 19 sibling relationships were 
genetically related, but four were identical twins and two were half-siblings. Overall, 
relationships extracted from the EHR significantly correlate with the expected genetic 
relatedness (r = 0.65, p = 6.26e-14, Figure 1B). 
 
Health records-based estimates of heritability 

To differentiate heritability estimates derived under uncertain ascertainment conditions, we 
introduce the concept of “observational h2” or h2

o. h2
o is an estimate of the narrow-sense 

heritability where the phenotypes (traits) come from observational data sources. Observational 
data are subject to confounding biases from physician and patient behaviors that will affect the 
probability that a particular trait is ascertained. These ascertainment biases can vary from 
patient to patient, family to family, and cases to controls. The consequence is that the estimated 
heritability will be highly dependent on the particular families and individuals upon which the 
estimate is based. To correct for this, we bootstrapped the heritability estimates. For each 
sampling we used SOLAR8 to estimate the heritability of the trait, in a procedure we call 
SOLARStrap (Materials and Methods). High sampling variance indicates the presence of 
heterogeneous biases. Heritability estimates are adjusted for age and sex. 

We mined the literature for heritability estimates and found 91 phenotypes that mapped to 
phenotypes we curated from the EHR. We used the Columbia data to set the quality control 
parameters of the SOLARStrap procedure (Materials and Methods). 10 of the traits in the 
Cornell data passed these QC criteria and we found that they were significantly correlated with 
literature estimates for these traits (r=0.73, p=0.016, Figure 2A). On average, estimates from 
Columbia were 20% ± 9% lower than those reported in the literature and those from Cornell 
were 7% ± 9% lower (Figure 2B). Heritability estimates derived from Cornell data were highly 
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correlated with those derived from Columbia data (r=0.67, p=2.56e-12, Figure 2C). As a group, 
respiratory diseases had the highest average heritability for both dichotomous (Figure 2D) and 
quantitative (Figure 2E) traits. Genitourinary and gastrointestinal diseases had the lowest 
average heritability.  

For dichotomous traits, we explored the relative contribution of genetics and the 
environment to the phenotype by comparing heritability estimates to sibling recurrence rates 
(Figure 2F). Disease groups fell into four distinct regions: (1) those with greater than average 
genetic and environmental contribution (Figure 2F, top right) – respiratory and neurologic 
diseases fell into this quadrant; (2) those with high genetics and lower than average 
environment (Figure 2F, top left) – e.g. endocrine and metabolic diseases; (3) high environment 
and low genetics (Figure 2F, bottom right) – gastrointestinal and genitourinary diseases; and (4) 
low environment and low genetics (Figure 2F, bottom left) -- the general category of signs and 
symptoms is an example here.  

Using phenotypes from the EHR for heritability can provide clarity for poorly studied traits, 
reveal subtle differences between closely related conditions, and open up new avenues of 
heritability research. For example, two previous studies have shown conflicting evidence for the 
relative heritability of HDL cholesterol and LDL cholesterol 9,10. The larger of these two studies 
(N=378) found no difference in the heritability of these two traits when adjusting for age and sex, 
while the other found a slightly higher heritability for HDL, but was underpowered to detect 
significance. We present strong evidence that HDL is significantly more heritable than LDL 
(h2

o=0.49 vs 0.36, p=5.3e-41 at Columbia; h2
o=0.47 vs 0.25, p=6.2e-159 at Cornell; Figure 2G). 

At 96,241 patients in the Columbia cohort and 33,239 patients in the Cornell cohort, ours may 
be the largest heritability study of cholesterol ever conducted. In addition, subtle phenotypical 
variations that are routinely collected clinically can be studied. For example, we found that the 
heritability of “obesity” is significantly greater than for “morbid obesity” (h2

o =0.43 vs 0.36, 
p=2.1e-8, N=26,783 at Columbia and h2

o =0.63 vs 0.51, p=3.1e-9, N=11,220 at Cornell). Finally, 
the EHR can identify novel traits for genetic study. The most heritable trait we found was for 
“victim of child abuse,” h2

o=0.90 (0.73-1.00), N=1,142 (Table 2). This trait is unique in that it is 
not a trait of the individual with the diagnosis code, but of another individual with whom the child 
interacts. To account for a potential artifact introduced by several siblings abused by a single 
individual, we recomputed heritability excluding siblings (Materials and Methods). We found 
that, while the effect is mitigated, the heritability remains high at h2

o=0.80 (0.68-0.96) (Table S5). 
The familial trend of this behavioral trait has been well documented in the psychology 
literature11-13. Our findings provide additional evidence for a genetic role as well. Scientists 
studying child abuse and related conditions may consider performing a more traditional genetics 
analysis in the future. 
 
Recurrence Rates 

We estimate sibling and familial recurrence for 765 dichotomous traits at Columbia and 393 
traits at Cornell. When looking at sibling and familial recurrence, perinatal conditions are the 
most concordant between sites (r2 = 0.94 for sibling and 0.96 for familial). The least concordant 
were diseases of the digestive system (r2 = 0.02) for sibling and signs and symptoms for familial 
(r2 = 0). Sibling recurrence and familial recurrence are highly correlated (r = 0.71, p = 2.52e-40) 
as well as familial recurrence (r = 0.49, p = 1.99e-21) (Figure 3A and 3B). Sibling recurrence, on 
average, is greater than familial recurrence at both sites (Figure 3C). We also calculated 
recurrence by disease site and stratified by relationship type (sibling, cousin, first cousin once 
removed). We observe that disease recurrence among siblings is higher than among cousins, 
which is higher than among first cousin once removed (Figure 3D). 
 
Data accuracy and missingness 
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We evaluated the effect of the two most commonly cited limitations of EHR data, errors and 
missingness, on our estimates of observational heritability (Figure S1). Rhinitis is highly 
heritable in family studies (h2=0.95 CI=0.78-0.97) 14 and also has high observational heritability 
at both sites (h2

o=0.62 CI:0.49-0.73, h2
o =0.78 CI:0.61-0.91, Figure 3B). We evaluated the effect 

of errors and missingness on h2
o for rhinitis at Cornell. The estimates are robust to missingness 

(Figure S1B). When 30% of the data are removed, the estimates remain consistent. Note, that 
as more data are missing, power will become the major limitation. Heritability estimates are 
consistent until 20%, or more, of the data are noise, at which point the confidence intervals no 
longer overlap (Figure S1A). Injection of 5% noise reduces the estimate 13% (from h2

o =0.77 to 
h2

o =0.67) and 10% noise reduces the estimate 30% (from h2
o =0.77 to h2

o =0.53). This likely 
explains why our estimates are 7-20% lower than what would be expected from a carefully 
ascertained study, corresponding to around 5% misclassification in our EHR. 
 
Discussion 

Analysis of EHR data has yielded insight into drug effectiveness and allowed precise 
definition of phenotypes to investigate disease processes 15-20. For the first time on a large 
scale, we have used EHR data to infer pedigrees from patient-provided emergency contact 
information. We present our novel algorithm for performing this relationship extraction, 
RIFTEHR, and validated its performance. This approach has significant implications for 
estimating heritability of disease without direct genetic testing. The EHR data used in this 
research are nearly ubiquitous and, if privacy is adequately protected, could allow almost any 
research hospital to identify related patients with high specificity and sensitivity. Finally, we used 
EHR-inferred relationships to evaluate the heritability of 2,089 traits and found 328 with 
significant heritability. The heritability of many of these traits have never before been studied. 

Heritability is a key component in precision medicine, and is typically estimated based on 
family history. Collection of comprehensive and accurate family history is time-consuming and 
does not occur during the vast majority of clinical encounters. The construction of pedigrees by 
inference of relatedness from administrative records allows for rapid assessment of family 
history and heritability at scales that were previously impossible to achieve. The algorithm used 
in this study uncovered over 379,000 pedigrees within the medical records of two academic 
medical centers. We validated the inferred familial relationships against both clinical and genetic 
references and found PPV between 87% and 99%. One of the limitations of our method is the 
challenge to differentiate between direct blood relatives and adopted families. Emergency 
contact is not a biological construct; therefore, patients identify not only direct-blood relatives, 
but also adoptive family members and use familial labels for friends.  

Using EHR-inferred relationships we calculated heritability, sibling recurrence, and familial 
recurrence estimates among individuals with defined relationships. Previous research in this 
area has focused on family studies of known relatives, specifically twins. Mayer and colleagues 
used EHR data to create a cohort of 2,000 twins/multiple births and measured concordance 
among identified twins for two highly heritable diseases, muscular dystrophy and fragile-X 
syndrome.7 Our study looked not only at twins, but entire families across several generations. 
We evaluated 2,089 traits and computed high confidence heritability estimates for 328 of them. 
Importantly, most previous studies have predominantly involved White Europeans and may not 
be representative of other populations. However, our results reflect the diverse, multiethnic 
population of New York City.  

The primary and most significant challenge when using traits defined from an observational 
resource, like the electronic health records (EHR), is incomplete phenotype information resulting 
in ascertainment bias. In a heritability study, the phenotype of each study participant is, ideally, 
carefully evaluated and quantified. This is infeasible, however, when the cohort contains millions 
of patients with thousands of phenotypes. The differential probability that a given individual will 
be phenotyped for a study trait is the ascertainment bias. The bias may depend on many latent 
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factors, including the trait being studied, the trait status of relatives, the proximity to the hospital, 
and an individual's ethnicity and cultural identification, among others. The consequence of this 
uncontrolled ascertainment bias is that heritability estimates will be highly dependent on the 
particular individuals in the study cohort. We used repeated sub-sampling to characterize this 
dependence quantitatively. EHR-based heritability estimates are particularly well-suited for 
complex traits that require large numbers of patients (e.g., Type 2 Diabetes Mellitus and 
Obesity). Most importantly, using the EHR can identify new avenues for research. We report 
very high heritability for child abuse, indicating a potential genetic role in this well studied 
condition. 

The unique nature of the relationships and phenotypes derived from the EHR may 
necessitate novel methods for estimating heritability. We used a mixed linear model 
implemented in SOLAR8 to estimate heritability and used repeated sampling to characterize the 
variance from ascertainment heterogeneities. There may be more accurate ways to estimate 
heritability from this unique data source. For example, in the case of child abuse, it is the victim 
of the abuse and not the abuser who will have the data coded. New methods designed for EHR 
data may be able to better control for the peculiar confounding effects of observational data. 

There are significant bioethical considerations regarding the use of the RIFTEHR method, 
including how best to balance the competing demands of protecting patients’ privacy with 
clinicians’ duty to warn relatives of potential genetic risks. The method could readily be applied 
in EHR systems, such that clinicians could easily access the health information of a patient’s 
family members. In the United States, accessing a family member’s health information in this 
manner may be considered a violation of the 1996 Health Insurance Portability and 
Accountability Act (HIPAA) Privacy Rule21. On the other hand, case law in the United States has 
established that healthcare providers have a responsibility to inform a patient’s relatives about 
heritable conditions that may reasonably put the relatives “at risk of harm” 22. These conflicts 
may need to be resolved before automatic relationship inference can be used clinically. 

We have described and validated a novel method for identifying familial relationships in 
patient's medical records, and used 4.7 million relationships inferred from the EHRs at two 
academic medical centers to estimate heritability of disease. We found that heritability estimates 
were concordant across the two centers, suggesting that the method may have broad 
applicability. An EHR that is linked to genetic information enables personalized disease risk 
prediction and facilitates heritability determination for EHR-captured phenotypes that have not 
been previously studied by family-based or twin studies. Identifying familial relationships is 
useful for all aspects of medicine, ranging from genetic research to clinical practice, making 
RIFTEHR a valuable tool for the advancement of precision medicine. The correspondence of 
our heritability estimates with family based estimates provides a direct and novel validation of 
the value of electronic health records in making inferences about disease which is now 
emerging as a central approach in precision medicine.  
 
Materials and Methods 
 
The data for this study was obtained from the inpatient EHR used at the hospitals affiliated with 
two large academic medical centers in New York City: Columbia University Medical Center and 
Weill Cornell Medical College. These hospitals operate together as NewYork-Presbyterian 
Hospital and herein, we will refer to the hospitals and the data associated with them as 
Columbia and Cornell, respectively. 
 
1. Relationship Inference from the Electronic Health Record (RIFTEHR) 
 

This research was approved by the institutional review boards at the two study sites. As is 
common practice, when patients received care at either site, they were asked to provide 
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information about an emergency contact. This information included the person's name, address, 
phone number, and their relationship to the patient (e.g., parent, sibling, friend). We used the 
emergency contact information to identify familial relationships in the EHR in cases where the 
emergency contact person had his or her own record generated by an encounter with the 
healthcare system. Algorithmically, we then inferred additional relationships from the 
connectedness of the identified individuals. This information was validated against genetic data 
and a separate module of the EHR which documented the linkage between mother’s and their 
newborn’s medical record. Using the relationships identified, we assigned phenotypes using 
clinical history, and subsequently evaluated familial recurrence for all available clinical 
phenotypes.   
 
1.1. Deriving familial relationships from emergency contact data 

 
1.1.1. Matching emergency contact to medical records. Our algorithm creates for each patient 
a list of all reported emergency contacts. Then, for each emergency contact, it attempts to 
identify a medical record by matching first name, last name, primary phone number and ZIP 
code. First we consider all cases with first name and filter the table that contains all patients’ 
information to identify records that contain the same first name. We then return the identified 
records and perform the same comparison with last name, primary phone number and ZIP 
code. Subsequently, we compare the combination of two variables at a time (i.e. first name and 
last name, first name and primary phone number, first name and ZIP code, etc.). We then 
perform combinations of three variables and then of all four variables. We only consider it 
successful when we identify a single patient that matches to the emergency contact information 
given. We also capture which variables were used in the matching process for each one of the 
emergency contacts (i.e. first name and last name; first name, last name and phone number, 
etc.). The output of this algorithm contains the patient’s identifier, the relationship between the 
patient and the matched emergency contact, the emergency contact’s identifier, as well as a list 
of the variables used to perform the matching process. We use as patient identifiers the 
Enterprise Master Patient Index (EMPI), when available or the medical record number (MRN). 
EMPIs are a unique identifier created to refer to multiple MRNs across the healthcare 
organization. Using EMPIs allow us to perform better in the matching process since duplicates 
from patients having more than one MRN are excluded.  
 
1.1.2. Quality Control of matches. Once the matches are identified, we exclude patients with 
non-biological relationships (i.e. spouse, friend). Specific relationships are mapped to 
relationship groups (e.g. the relationship “mother” is mapped to “parent”). We then calculate the 
age difference between two related patients and exclude parents that are less then 10 years 
older than their children, children that are less than 10 years younger than their parents, 
grandparents that are less than 20 years older than their grandchildren, grandchildren that are 
less than 20 years younger than their grandparent. Since parents and grandparents must be 
older than their children and grandchildren, we also flip relationships when the age difference 
between parent or grandparent and its child or grandchild is negative, specifically the 
relationship “parent” becomes “child” and the relationship “grandparent” becomes “grandchild”. 
The same process is done when the age difference between children and grandchildren in 
positive. We also exclude every patient that matches to 20 or more distinct emergency contacts. 
Finally, we generate the opposite relationship for every relationship pair. For example, if we 
have that A is parent of B, the opposite relationship is that B is child of A.  
 
1.1.3. Inferring familial relationships. Using the matches identified, we infer additional 
relationships. The inference process is made based on familial relationship rules. For example, 
if patient A is mother of patient B and patient B is mother of patient C, then by inference we 
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know that A is grandmother of C and C is grandchild of A. The rules used to perform these 
inferences are described on Supplementary Table 4.  
 
1.1.4.  Quality Control of inferred relationships. Once additional relationships are inferred, we 
remove ambiguous relationships such as “Parent/Aunt/Uncle” if the same pair contains a unique 
specific relationship, in this case, either “Parent” or “Aunt/Uncle”. The same is done for 
“Child/Nephew/Niece”, “Sibling/Cousin”, “Parent/Parent-in-law”, “Child/Child-in-law”, 
“Grandaunt/Granduncle/Grandaunt-in-law/Granduncle-in-law”, “Grandchild/Grandchild-in-law”, 
“Grandnephew/Grandniece/Grandnephew-in-law/Grandniece-in-law”, 
“Grandparent/Grandparent-in-law”, “Great-grandchild/Great-grandchild-in-law”, “Great-
grandparent/Great-grandparent-in-law”, “Nephew/Niece/Nephew-in-law/Niece-in-law”, and 
“Sibling/Sibling-in-law”.  
 
1.1.5. Identification of families. To identify families in the datasets, we exclude all non-
biological relationships such as spouses and in-laws, as well as ambiguous relationships such 
as “Parent/Parent-in-law”. Using both provided and inferred relationships, we created a network 
where each node corresponds to a patient and edges represent familial relationships. To 
identify different families, we decomposed network into individual connected components. 
 
1.1.6. Identification of twins. To identify twins we matched siblings that shared the same last 
name and the same date of birth. We do not have enough information to distinguish between 
monozygotic and dizygotic twins.  
 
1.2. Evaluation of automatically inferred relationships 

 
1.2.1. Evaluation using the EHR’s mother-baby linkage. We used the EHR’s mother-baby 
linkage as gold standard to evaluate identified maternal relationships. We consider true 
positives cases where maternal relationships present in the EHR’s mother-baby linkage table 
and also identified by our algorithm, false positives when we identified maternal relationships 
that are discordant with the one in the EHR’s mother-baby linkage and lastly, false negatives 
when a maternal relationship was captured by the EHR’s mother-baby linkage but not by our 
method. Overall performance was evaluated by calculating overall sensitivity and positive 
predictive value (PPV). In order to assess if matches identified by different variables perform 
differently, we also computed sensitivity and PPV stratifying the matches by the number of 
variables used to match the emergency contact to a patient in our healthcare system (Table 
S2), as well as by the combination of variables (i.e. last name only, first name and last name, 
etc.) used to perform the match (Table S3).  
 
1.2.2. Evaluation using genetic data with analysis for kinship. Genotype data was collected 
from existing sources for 186 individuals. Data was collected from three separate sources, the 
Institute for Genomic Medicine, The Columbia University Medical Center Pathology Department, 
and the Washington Heights/Inwood Informatics Infrastructure for Comparative Effectiveness 
Research (WICER) project, using whole exome sequencing, Affymetrix CytoScan HD array, and 
the Illumina Multi-Ethnic Genotyping Array, respectively. In order to select SNPs for kinship, 
minor allele frequency was filtered to >5%, and genotyping rate to 99% using PLINK 21. 
Independent SNPs were selected using the sliding window (100 SNPs) linkage disequilibrium 
approach. This resulted in a total of 24,752 variants from the Institute for Genomic Medicine 
data, 8,544 SNPS from the WICER data, and 32,938 SNPs from the Pathology Department 
data. PLINK was then used to calculate identify by descent by determining !	results 
(P(IBD=2)+0.5*P(IBD=1)(proportion IBD)) for each pair of individuals. We consider that the 
predicted relationship is correct if the blood relationship fraction between the two people is the 
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same as the one expected for the predicted relationship with a margin of error of 20% of the 
expected blood relationships. For example, for predicted mother-child pairs, two individuals in a 
pair share 50% (±10%) of their genetic information, then that gives us evidence to consider that 
the predicted relationship is correct. Likewise, for a predicted aunt-niece pair, the two individuals 
are expected to share 25% (±5%). Performance was evaluated by calculating PPV. 
 
1.2.3. Evaluation using clinical data. As a qualitative validation of all relationship types, 
including distant relationships such as great-grandparent, we calculated age difference between 
all pairs of family relatives and stratified it by relationship type. We compared the identified age 
differences to what would be expected in a real family structure. For example, great-
grandparents should be much older than their great-grandchildren.  
 
2. Phenotyping in the EHR 

 
We used clinical pathology reports as quantitative traits and diagnosis billing codes as 

dichotomous traits in our study. We extracted the top used clinical pathology reports and 
mapped them to LOINC codes so that they could be matched between institutions. Each patient 
may have multiple lab reports over time. To get a single phenotype value we collapsed all 
reports for each patient into a single value using the mean. This mean represents the average 
value for the report for the patient over all time available. For example, a patient's mean blood 
glucose value over their lifetime. 

For dichotomous traits we used any diagnosis billing code that was used for at least 1,000 
distinct patients. Any patient with evidence of that code in their medical record history was 
considered a "case." Controls were chosen as any patient that did not have that diagnosis nor 
any diagnosis that shared an ancestor according to the Clinical Classifications Software (CCS). 
This tool was developed by the Agency for Healthcare Research and Quality (AHRQ). CCS is 
composed of diagnoses and procedures organized in two related classification systems. In this 
study, we only used the diagnoses classifications. The single-level system consists of 285 
mutually-exclusive diagnosis categories. It enables researchers to map any of the 3,824 ICD9-
CM diagnosis codes into one of the 285 CCS categories. CCS also has a multi-level system 
composed of 4 levels representing a hierarchy of the 285 categories. The first level is broken 
into 18 categories. To define a control group, we linked the ICD9 codes associated to a 
phenotype of interest to their CCS categories using the top-level hierarchical categories. We 
also generated a table associating each patient to CCS categories they were diagnosed with. 
Once this mapping was done, each phenotype was associated to one or multiple distinct CCS 
categories. We matched these CCS categories in the multi-level system to identify the first level 
parent category. We considered these top level categories as our exclusion criteria: the control 
cohort for this phenotype should have no mention of any CCS under these categories in its 
medical records. For example, the controls for atrial fibrillation will exclude patients with 
cardiovascular diseases.  

We semi-manually curated a set of 85 phenotypes to use for training and testing the 
SOLARStrap algorithm (See Methods 3.3). For these 85 phenotypes, we grouped closely 
related diagnoses codes together to increase the total number of patients (Table S6).  
 
3. Estimation of heritability from the Electronic Health Records 
 
3.1. Rationale 
 

The primary and most significant challenge when using traits defined from an observational 
resource, like the electronic health records (EHR), is the lack of ascertainment. In a heritability 
study, the phenotype of each study participate is, ideally, carefully evaluated and quantified. 
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This is infeasible, however, when the cohort contains millions of patients with thousands of 
phenotypes. The differential probability that a given individual will be phenotyped for a study trait 
is the ascertainment bias. The bias may depend on many latent factors, including the trait being 
studied, the trait status of relatives, the proximity to the hospital, and an individual's ethnicity 
and cultural identification, among others. The consequence of this uncontrolled ascertainment 
bias is that heritability estimates will be highly dependent on the particular individuals in the 
study cohort. We used repeated sub-sampling to characterize this dependency quantitatively. 
We define the observational heritability, or h2

o, as the average of the statistically significant 
sample estimates (using median). For a given trait, the procedure, which we call SOLARStrap, 
involves sampling families, running SOLAR to estimate sample heritability, and rejecting or 
accepting the estimate based on a set of quality control criteria. Each step is detailed below. 
 
3.2. SOLARStrap Protocol 
 
3.2.1. Building pedigree files. Of the 223,307 families at Columbia there were 6,894 that 
contained conflicting relationships -- where two individuals were inferred to have two different 
relationships. At Cornell 3,258 families of 155,811 contained conflicts. These families were 
excluding from the heritability studies. In some cases, more than one mother or father is 
annotated for an individual. This could be because of duplicate patient records or errors in the 
EHR relationship extraction. We resolve these issues by choosing the mother or father that has 
more relationships in the family. The other relationship is discarded. We then constructed a 
master pedigree file for each site. To construct this pedigree file we iterate through each 
member of each family. For each individual we will either know the mother and father from the 
EHR derived relationships or not. If not known, then a new identifier is created to represent the 
parent. At this point we iterate through all other family members and record the relationships 
between the new individual and each family member. We repeat this process until the entire 
pedigree file is created. The master pedigree files contain 1,377,173 and 940,040 individuals for 
Columbia and Cornell, respectively. 
 
3.2.1. Sampling Families. The number of families that are sampled combined with the 
prevalence of the trait defines the power of the heritability analysis. A smaller heritability can be 
detected with larger sample sizes.  However, as the sample size increases toward the total 
number of families the variance in heritability that can be observed will decrease. This is 
because we are sampling without replacement. Since we do not know a priori what the 
magnitude of the heritability will be or what the variance will be we iterate through sample sizes 
from 100 to the total number of available families. The maximum sample size is defined by the 
limitations of SOLAR which can only handle a maximum of 32,000 individuals per pedigree file. 
For each sample size we perform 200 samplings. For each of these we build a custom pedigree 
and phenotype files and run SOLAR to estimate the heritability. We then aggregate the results. 
 
3.2.2. Sample pedigree files. For each sampling a set of N families are selected. To construct 
the sample pedigree file we identify all lines from the master pedigree files that correspond to 
these families and create a new file from this subset. 
 
3.2.3. Sample phenotype files. Once the pedigree file is created, we iterate over every individual 
in the pedigree and use the reference trait data and demographic data to enter the phenotype 
status and age of the patient. If no phenotype data are available for the individual we enter it as 
missing. For dichotomous traits the trait values are either 0 (absence), 1 (presence), or missing 
and a "proband" is randomly assigned by selected a single individual from each family that has 
the trait. See "Phenotyping in the EHR" for a description of how these traits are assigned. For 
quantitative traits we enter the quantitative value or missing.  
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3.2.2. Running SOLAR. We use SOLAR to estimate both quantitative and dichotomous trait 
heritability using a mixed linear model.  In both cases sex and age are modeled as covariates. 
After the pedigree and phenotype files are loaded the heritability is estimated with the `polygenic 
-screen` command. We used the tdist command in SOLAR to adjust quantitative traits that are 
not normally distributed. For dichotomous traits one "proband" is chosen at random for each 
family. SOLAR will automatically detect the presence of a dichotomous trait and convert the 
estimate from the observed scale to the liability scale. The heritability, error on the heritability, 
and the p value are saved from each run for later analysis and aggregation. 
 
3.2.3. Quality Control of SOLAR heritability solutions. SOLAR does not converge on a solution 
for heritability for all samples. Errors in the pedigree or in the ascertainment of phenotypes are 
the most likely causes for these failures. First, we reject any runs of SOLAR that result in no 
solution for the heritability. We then consider two additional criteria that must be met in order for 
a solution to be considered legitimate: (i) edge epsilon (� e), any estimate within � e of 1 or 0 is 
rejected; and (ii) noise epsilon (� n), any estimate with implausibly low error is rejected (h2 error 
is less than � n of the h2 estimate). These hyperparameters are set using a set of phenotypes for 
which we have observational heritability estimates and high confidence literature reported 
heritabilities from other studies. 

POSA. After filtering the SOLAR solutions for the basic criteria, we define an additional 
quality control metric called the Proportion Of Significant Attempts, or POSA. POSA is defined 
as the number of solutions with a p value less than #POSA divided by the total number of 
converged solutions (or attempts). The POSA is important because it is closely related to the 
power of the analysis. A fully powered analysis will have a POSA of 1, meaning that all of the 
converged estimates are statistically significant. A POSA of 0.5 means that only half of the 
converged estimates are statistically significant. When the families were sampled the observed 
heritability was large enough to be detected with p < #POSA half of the time. In other words, we 
were powered to detect a heritability in 50% of samplings. We show that the higher the POSA, 
the more accurate the heritability estimates are (Figure S2). We chose a minimum POSA score, 
POSAlower and the #POSA using a set of phenotypes for which we have observational heritability 
estimates and high confidence literature reported heritabilities. 

 
3.2.4. Aggregation of sampling results (computing h2

o). For each sampling that passes quality 
control and meets the minimum POSA score, we compute the h2

o as the median. The median 
h2

o corresponds to a single run of SOLAR that has passed all of the quality control filters. We 
used the standard error reported by SOLAR for that run as the error of the h2

o. We found that 
this error is closely related to the sampling variance (Figure S3). All raw heritability estimates 
that pass the initial quality control are made publicly available for reanalysis. 
 
3.3. Fit and validation of hyperparameters 

Heritability estimates for 91 phenotypes were mined from the literature along with their 
corresponding confidence intervals, if they were available. We performed a brute force search 
through the parameter space. Possible values for edge epsilon (� e) were (0, 1e-9, 1e-8, and 1e-
7). Possible values for noise epsilon (� n) were (0.01, 0.025, 0.05, 0.075, 0.1, and 0.2). Possible 
values for #POSA were (0.03, 0.05, 0.1, 0.25, 0.5, and 1.0). Possible values for the POSAlower 
were (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.975). We evaluated each set of 
parameters for the correlation between the h2

o and the h2. Only a single site was used to fit 
these parameters, leaving data from the other site available for validation. The maximum 
correlation was 0.558 with #POSA = 0.05, � e = 1e-9, � n  = 0.05, and POSAlower = 0.7. At these 
parameter settings 19 traits passed quality control. The average difference between h2

o and h2 
was 17.7% ± 8%. 
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To evaluate the generalizability of the hyperparameters, we applied them to the validation 
site data. 10 traits passed the quality controls and we found that they were correlated with 
literature estimates of heritability (r = 0.73, p = 0.016). The average difference between h2

o and 
h2 was 7.6% ± 9%. 
 
3.4. Preparation of data for analysis on external computing clusters 

Due to the high number of heritability estimates that need to be computed, external 
computing resources are used: The Open Science Grid (OSG) and Amazon Web Services 
(AWS). The Open Science Grid (OSG) is a massive computing resource funded by the 
Department of Energy and the National Science Foundation.  The OSG is comprised of over 
100 individual sites throughout the United States, primarily located at universities and national 
laboratories.  The sites contain anywhere from hundreds to tens of thousands of CPU cores 
available for scientific research23,24. AWS is used to supplement this resource, which makes 
available on-demand compute instances with high performance capacity. Per institutional 
requirements, no protected health information or personally identifying information can be 
transferred to systems outside of our institutional networks. To leverage these resources for our 
computing task we prepared a data subset according to the Safe Harbor guidance provided by 
the U.S. Department of Health and Human Services (http://www.hhs.gov/hipaa/for-
professionals/privacy/special-topics/de-identification/index.html). Here is a point-by-point 
account of how we processed the data for Safe Harbor for each of the 18 identifiers: (A) we 
removed first, middle, and last names for all patients, (B) all patient address information is 
removed, (C) all dates are removed and all ages over 89 are coded as “90”, (D) telephone 
numbers and (E) fax numbers are removed, (F) there are no email addresses in our subset of 
the clinical data, (G) there are no social security numbers in our subset of the clinical data, (H) 
medical record numbers are mapped to a 10 digit random number and the mapping is stored on 
a limited access PHI-certified server within the institutional firewall and will never be made 
available, (I) there are no health plan beneficiary numbers in our data subset, (J) there are no 
account numbers in our data subset, (K) there are no certificate or license numbers, (L) there 
are no vehicle numbers or serial numbers in our data subset, (M) there are device identifiers or 
serial numbers, (N) there are no URLs in our data subset, (O) there are no IP addresses in our 
data subset, (P) there are no biometric identifiers in our data subset, (Q) there are no full-face or 
comparable images in our data subset, (R) there are no other uniquely identifying 
characteristics or numbers. All data were transferred using secure file transfer protocols using 
encryption and were destroyed immediately after retrieval of the results. In total we used over 
20,000 cpu-hours to compute heritability estimates for 2,089 traits.   
 
3.5. Investigation of Heritability of “Victim of Child Abuse” 

The trait with the highest heritability in our study was “victim of child abuse” coded as 
V61.21. The heritability was 0.90 with the 95% confidence interval spanning from 0.73 to 1.00 at 
Columbia when sampling 600 families. There was not enough data at Cornell to estimate the 
heritability. At Columbia this trait was coded for 946 families where at Cornell it was available for 
only 134 families. None of the estimates from Cornell passed our primary QC screen. At 
Columbia, however, estimates are available and sampling sizes of 200, 300, 400, 500, and 600 
all passed the second QC stage (POSA > 0.7). The heritability estimates ranged from 0.76 
(0.45-0.97) to 0.90 (0.73-1.000) and are shown in Table S5. This trait is not actually a trait of the 
individual that the code is assigned, but to another individual with whom the patient interacts. 
We suspected that the high heritability may be an artifact of multiple siblings in a single family 
being abused by a single individual. To account for this, we chose only a single affected sibling 
for each family. All other siblings were coded as having their trait “missing.” We then ran 
SOLARStrap for sample sizes of 200, 300, 400, 500, and 600 for comparison (Table S5). 
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4. Estimation of sibling and familial recurrence for dichotomous traits 
We estimated sibling recurrence as the proportion of individuals with that trait given that they 

have a sibling with the trait. We randomized the choice of primary sibling that the probability is 
conditioned upon. We computed familial recurrence similarly, except that any relationship type 
was allowed. Both sibling and familial recurrence were only calculated for conditions with 10 or 
more concordant pairs. The recurrence rate is calculated by  $∗&'()'*+,(-	.,/*0

$∗&'()'*+,(-	.,/*012/0)'*+,(-	.,/*0	 

and the error by √ *4)5**4()4∗(78*4)5**4()4)
$∗)'()'*+,(-	.,/*01+/0)'*+,(-	.,/*0.  

To compare disease recurrence rates, we computed recurrence for each relationship type. 
To test if the groups were statistically different, we performed a Chi-squared test with Bonferroni 
correction.  
 
5. Preparation of clinical data for release 

Due to institutional restrictions, we cannot release the exact data as it was used in our 
analysis. However, we are sensitive to issues regarding reproducibility and replicability. 
Therefore, we have modified the dataset according to the rules of Safe Harbor as provided by 
the U.S. Department of Health and Human Services. The processing of the data for release was 
performed as described in section 3.4. However, in this case we took three additional 
precautions beyond what is required for Safe Harbor since these data will be made completely 
public. We are releasing data for a single trait (rhinitis). We will continue to release more traits 
as the data are reviewed to protect patient privacy with the ultimate goal of releasing all of the 
trait and relationship data for all phenotypes. No data are released for families containing more 
than five members. This will protect against identification through unique familial relationships 
situations. All aggregate data and their corresponding statistics are released without 
obfuscation. The data are available on the supporting website: http://riftehr.tatonettilab.org/. 

 
6. Computational and statistical software 

Statistical analysis, data preparation, and figure creation was performed using Python 2.7. 
The python system environment is described fully in the supplemental materials. Relationship 
inferences was implemented in Julia 0.4.3. All correlations are reported as Pearson correlation 
coefficients, unless otherwise noted. All code for RIFTEHR and SOLARStrap is available on the 
supporting website: http://riftehr.tatonettilab.org/. 
 
7. Literature review  

For validation purposes, we performed literature review on heritability estimates on 128 
traits. We started by analyzing studies that were included in the table available at 
http://www.snpedia.com/index.php/Heritability (accessed on March 2016). We then downloaded 
all papers we had access to and extracted the described trait with the respective heritability 
estimates as well as the confidence intervals, when available. 
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Figure 1. Validation of familial relationships inferred from the EHR. (A) The medical centers at both 
Columbia and Cornell have implemented a link between the electronic health records of mother and baby at 
the time of birth. We used these links as a gold standard to evaluate RIFTEHR, our algorithm for automatically 
inferring relationships from the EHR. Of 40,095 mother-baby links at Columbia, RIFTEHR correctly identifies 
35,775, falsely identifies 1,600 and misses 2,720. Positive predictive value (PPV) is 96% and sensitivity is 
93%. Of 39,691 mother-baby links at Cornell, RIFTEHR correctly identifies 37,797, falsely identifies 657, and 
misses 1,237. PPV is 98% and sensitivity is 97%. (B and C) Through biobanks at Columbia, 185 of the patients 
with identified relationships from RIFTEHR also had genetic data available and appropriately consented for use 
in our study. For these 185 patients, RIFTEHR predicted a total of 122 relationships: 78 parent/child 
relationships, 19 sibling relationships, 3 grandparent/grandchild relationships, 6 aunt/uncle/niece/nephew 
relationships, and one grandaunt/grandniece relationship. Genetic relatedness was determined for each pair of 
individuals. All 78 parent/child relationships had the expected genetic relatedness of 50% (49%±3%). Of the 
siblings predicted by RIFTEHR 13 were full siblings, 2 were half siblings (genetic relatedness of 25%), and 4 
were identical twins. The high rate of twins in our small sample is a result of the secondary use of existing data 
– which was originally collected for genetic studies. Excluding these twins yields a more accurate estimate of 
RIFTEHR’s performance (PPV=87%). Overall the RIFTEHR relationship and the genetic relationship were 
significantly correlated (r=0.65, p=6.24e-14). (D) Average age differences for each relationship type. We 
computed the age differences for each pair of individuals at both Columbia (blue) and Cornell (red). The age 
differences are consistent across sites. 
 
  

EHR-derived relationships compared to 79,786 known mother-child 
relationships

A

B

C

D

EHR-derived relationships versus genetically derived relationships for 
185 individuals and 122 relationships

EHR Relationship
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Figure 2. Estimating heritability of disease using electronic health records. We designed a method, 
called SOLARStrap, for estimating the heritability of traits where the phenotype is derived under unknown 
ascertainment biases, the h2

o. We trained the hyperparameters of the model on a small subset of manually 
defined phenotypes with available heritability estimates from the literature (Materials and Methods) using data 
from Columbia and tested these parameters at Cornell. (A) We found that performance was consistent across 
both sites and that h2

o is significantly correlated with literature estimates of h2. (B) Comparison of h2
o (from 

Columbia and Cornell EHR) and h2 (from Literature) for 28 traits used for fitting the hyperparameters. Median 
and 95% confidence interval are shown. (C) We evaluated the heritability of just over 1,494 traits at Columbia 
and 1,145 traits at Cornell (Materials and Methods). We performed the analysis independently each site. After 
quality control filters we found 216 traits with significant heritability at Columbia and 160 traits at Cornell, with 
85 traits falling in the intersection. These 85 traits were significantly correlated between the two sites (r=0.67, 
p=2.56e-12). (D) 124 dichotomous traits (from disease billing codes) grouped by disease category and sorted 
by heritability within each group. Disease categories are sorted by the median heritability of the diseases within 
the category. Respiratory disease has the highest average heritability and gastrointestinal disease has the 
lowest average heritability. (E) 92 quantitative traits (from clinical pathology reports) grouped by disease 
category and sorted by heritability within each group. Trait categories are sorted by the median heritability of 
the traits within the category. Respiratory disorders have the highest average heritability followed by metabolic 
and nutritional disorders. Gastrointestinal and genitourinary disorders have the lowest average heritability of 
their corresponding quantitative traits. (F) For the 124 dichotomous traits we have both estimates of heritability 
and sibling recurrence rates. The median heritability and recurrence rate were computed for each category and 
then normalized to the overall median heritability across all groups (y axis). The same was done for recurrence 
rates (x axis). Each category is shown as an open circle colored according to (D). The size of the circle 
indicates the number of traits within that category. Categories in the top right quadrant have higher than 
average heritability and higher than average recurrence rates while categories in the top left quadrant have low 
recurrence rates and high heritability, etc. (G) Observational heritability for morbid obesity and obesity at 
Columbia (light blue) and Cornell (red) as well as for for HDL cholesterol at Columbia (light blue) and Cornell 
(red).  
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Figure 3: Estimating Familial and Sibling Recurrence Rates using EHR data. (A) Correlation of familial 
recurrence estimates for 328 conditions (rho = 0.49, p = 1.99e-21) between Cornell and Columbia. Perinatal 
conditions (green) represent the most concordant (r2 = 0.96) and signs and symptoms (black) represent the 
least concordant (r2 = 0). (B) Correlation of sibling recurrence estimates for 250 conditions between Cornell 
and Columbia (rho = 0.71, p = 2.52e-40). Perinatal conditions (green) once again represents the most 
concordant (r2 = 0.94) and diseases of the digestive system (black) represent the least concordant (r2 = 0.02). 
(C) Sibling recurrence estimates versus familial recurrence estimates at Columbia (left, blue) and Cornell (right, 
red). Sibling recurrence and familial recurrence is significantly correlated at both sites and, on average, is 
greater than familial recurrence at both sites. (D) Sibling recurrence by disease category stratified by 
relationship type (sibling, cousin, first cousin once removed) for Columbia. Circles represent sibling recurrence 
rates, diamonds represent cousin recurrence rates and squares represent first cousin once removed along with 
the 95% confidence interval.   
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Table 1. Demographic data of the electronic health records at the medical centers of Columbia and Cornell 
University. 
 
  

Variable Columbia Cornell
N 682,267 437,375
Relationships 3,244,380 1,534,760
     N provided relationships 488,932 297,011
     N inferred relationships 2,755,448 1,237,749
Gender, Female 418,657 (61.29%) 261,482 (59.74%)
Age 40.15 (24.81) 39.85 (25.02)
Race/Ethnicity
     Black or African American   69,506 (10.19%)   30,975 ( 7.08%)
     White 123,800 (18.15%) 110,485 (25.26%)
     Hispanic or Latino 373,552 (54.75%)   52,087 (11.91%)
     Other   11,438 ( 1.68%)   26,687 ( 6.10%)
     Unknown/Declined to answer 103,971 (15.24%) 217,141 (49.65%)
Degree of relationship
     First (i.e. child, parent, sibling) 1,388,858 814,650
     Second (e.g. grandchild) 605,922 225,796
     Third (e.g. great-grandparent) 432,262 137,712
     Fourth (e.g. great-great-grandchild) 215,300 61,986
     Other
          None (e.g. spouse, in-laws) 172,158 127,748
          Unknown (e.g. parent/parent-in-law) 429,880 166,868
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Table 2. Heritability Ranges for Dichotomous and Quantitative Trait Categories. The median 
observational heritability and ranges are shown for each of the 12 dichotomous trait categories and the 12 
quantitative trait categories. Within each category the trait with the highest heritability and the trait with the 
lowest heritability are shown. 
  

Dichotomous Disease 
Category

Median h2
o 

(min-max)

Trait with Highest Heritability Trait with Lowest Heritability
ICD9 
Code Name Median h2

o 
(95% CI)

ICD9 
Code Name Median h2

o 
(95% CI)

Respiratory Diseases 0.38 
(0.19-0.55) 477.9 Allergic rhinitis 0.55 

(0.40-0.73) 786.2 Cough 0.19 
(0.11-0.35)

Endocrine and Metabolic 
Diseases

0.38 
(0.27-0.47) 250.01 Insulin dependent diabetes mellitus 0.47 

(0.25-0.67) 268.9 Vitamin D deficiency 0.27 
(0.15-0.46)

Neurologic Diseases 0.36 
(0.22-0.53) 367.1 Myopia 0.53 

(0.36-0.74) 780.4 Giddiness 0.22 
(0.15-0.37)

Infectious Diseases 0.34 
(0.25-0.78) 79.89 Specific viral infections 0.78 

(0.56-0.96) 41.86 Helicobacter-associated disease 0.25 
(0.16-0.42)

Injury and Poisoning 0.34 
(0.22-0.90) V61.21 Victim of child abuse 0.90 

(0.73-1.00) V82.9 Screening for disorder 0.22 
(0.13-0.28)

Mental Health Diseases 0.31 
(0.24-0.43) 309.28 Adjustment disorder with mixed 

emotional features
0.43 

(0.30-0.59) 300 Anxiety 0.24 
(0.15-0.33)

Skin Diseases 0.29 
(0.27-0.40) 706.1 Acne 0.40 

(0.22-0.57) 682.9 Abscess 0.27 
(0.17-0.49)

Signs and Symptoms 0.28 
(0.19-0.39) 919.4 Nonvenomous insect bite 0.39 

(0.21-0.57) 883 Open wound of finger without 
complication

0.19 
(0.13-0.40)

Cardiovascular Diseases 0.27 
(0.18-0.57) 411.1 Preinfarction syndrome 0.57 

(0.39-0.88) 786.59 Chest pain 0.18 
(0.12-0.35)

Musculoskeletal Diseases 0.26 
(0.19-0.44) 727.3 Inflammation of bursa 0.44 

(0.27-0.67) 724.2 Low back pain 0.19 
(0.11-0.32)

Genitourinary Diseases 0.26 
(0.17-0.41) 611.72 Breast irregular nodularity 0.41 

(0.22-0.63) 599 Urinary tract infectious disease 0.17 
(0.11-0.28)

Gastrointestinal Diseases 0.22 
(0.17-0.37) 533.9

Peptic ulcer without hemorrhage, 
without perforation AND without 
obstruction

0.37 
(0.20-0.65) 535 Acute gastritis 0.17 

(0.12-0.31)

Quantitative Disease 
Category

Median h2
o 

(min-max)

Trait with Highest Heritability Trait with Lowest Heritability
LOINC 
Code Name

Median h2
o 

(95% CI)
LOINC 
Code Name

Median h2
o 

(95% CI)

Respiratory Disorders 0.51 
(0.46-0.55) 19213-8 pH of Mixed venous blood 0.55 

(0.47-0.70) 11558-4 pH of Blood 0.46 
(0.39-0.55)

Metabolic and Nutritional 
Disorders

0.29 
(0.09-0.48) 2573-4 Lipoprotein.alpha [Mass/volume] in 

Serum or Plasma
0.48 

(0.41-0.56) 5810-7 Specific gravity of Urine by 
Refractometry

0.09 
(0.05-0.14)

Pulmonary Disorders 0.29 
(0.17-0.54) 19223-7 Carbon dioxide, total [Moles/volume] 

in Mixed venous blood
0.54 

(0.47-0.58) 14627-4 Bicarbonate [Moles/volume] in 
Venous blood

0.17 
(0.10-0.27)

Hemorrhage 0.26 
(0.12-0.46) 28542-9 Platelet mean volume [Entitic volume] 

in Blood
0.46 

(0.35-0.55) 20570-8 Hematocrit [Volume Fraction] of 
Blood

0.12 
(0.07-0.16)

Endocrine Disorders 0.26 
(0.09-0.50) 19123-9 Magnesium [Mass/volume] in Serum 

or Plasma
0.50 

(0.40-0.65) 5810-7 Specific gravity of Urine by 
Refractometry

0.09 
(0.05-0.14)

Metabolic Disorders 0.21 
(0.09-0.55) 19213-8 pH of Mixed venous blood 0.55 

(0.47-0.70) 5810-7 Specific gravity of Urine by 
Refractometry

0.09 
(0.05-0.14)

Renal Disorders 0.19 
(0.09-0.46) 28542-9 Platelet mean volume [Entitic volume] 

in Blood
0.46 

(0.35-0.55) 5810-7 Specific gravity of Urine by 
Refractometry

0.09 
(0.05-0.14)

Cardiovascular Disorders 0.19 
(0.09-0.50) 19123-9 Magnesium [Mass/volume] in Serum 

or Plasma
0.50 

(0.40-0.65) 5810-7 Specific gravity of Urine by 
Refractometry

0.09 
(0.05-0.14)

Reticuloendothelial 
Disorders

0.16 
(0.07-0.74) 2170-9 Deprecated Cobalamin [Mass/

volume] in Serum
0.74 

(0.28-0.93) 19048-8 Nucleated erythrocytes/100 
leukocytes [Ratio] in Blood

0.07 
(0.04-0.12)

Musculo_skeletal System 0.16 
(0.10-0.26) 3022-1 Deprecated Thyroxine free index in 

Serum or Plasma
0.26 

(0.12-0.46) 6768-6 Alkaline phosphatase [Enzymatic 
activity/volume] in Serum or Plasma

0.10 
(0.05-0.27)

Gastrointestinal Disorders 0.16 
(0.10-0.41) 1751-7 Albumin [Mass/volume] in Serum or 

Plasma
0.41 

(0.34-0.48) 6768-6 Alkaline phosphatase [Enzymatic 
activity/volume] in Serum or Plasma

0.10 
(0.05-0.27)

Genitourinary Disorders 0.11 
(0.10-0.12) 2756-5 pH of Urine 0.12 

(0.08-0.19) 2160-0 Creatinine [Mass/volume] in Serum or 
Plasma

0.10 
(0.06-0.21)

�1
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Supplemental Figure 1. SOLARStrap sensitivity analysis. (A) The effect of noise injection on the estimate of 
observational heritability of rhinitis. We injected noise into the data by randomly shuffling a subset of the patient 
diagnoses. This simulates misclassification (misdiagnosis or missed diagnosis) in the medical records. When 
no noise is injected the estimate is 0.77 (0.60-0.92). As noise is introduced the estimate of the heritability 
decreases to 0.36 (0.23-0.49) once one quarter of the data are randomized. (B) The effect of missingness 
injection on the estimate of observational heritability of rhinitis. We injecting missingness into the data by 
randomly removing a subset of the patient diagnoses. This simulates data that are missed by the medical 
records – an event that is common, especially at tertiary medical centers. When no data are removed the 
observational heritability is 0.75 (0.58-0.91). The heritability estimate remains consistent until 30% of the data 
are removed at which time the estimate is 0.54 (0.37-0.68).  

 

Supplemental Figure 2. Accuracy of heritability estimates relies on the proportion of significant attempts 
(POSA). The POSA score is a measure of how reliable the heritability estimate is that is generated by 
SOLARStrap. If none of the sample estimates are statistically significant then the POSA will be 0 indicating that 
the analysis is underpowered. As the sample size increases the power will increase and so does the the POSA 
score. At a POSA of 0.5 or above, the correlation of the observational heritability estimates to the reference 
standard jumps significantly. A POSA of 0.7 or above was found to yield the maximum correlation between 
SOLARStrap heritability estimates and the reference standard. 
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Supplemental Figure 3. SOLAR error versus SOLARStrap variance. The error estimate from SOLAR is 
significantly correlated to the sampling variance of the heritability estimates (r=0.63, p=3.3e-10).  
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Supplemental Table 1. Relationships by degree. 

 

Degree of relationship Relationship N Columbia N Cornell

First
Child 482,308 298,136
Parent 482,308 298,136
Sibling 424,242 218,378

Second

Aunt/Uncle 185,822 65,410
Grandchild 117,139 47,488
Grandparent 117,139 47,488
Nephew/Niece 185,822 65,410

Third

Cousin 148,806 37,370
Grandaunt/Granduncle 96,675 31,764
Grandnephew/Grandniece 96,675 31,764
Great-grandchild 45,053 18,407
Great-grandparent 45,053 18,407

Fourth

First cousin once removed 94,404 19,596
Great-great-grandchild 17,854 7,531
Great-great-grandparent 17,854 7,531
Great-grandaunt/Great-granduncle 42,594 13,664
Great-grandnephew/Great-grandniece 42,594 13,664

Other

     None
Child-in-law 0 278
Parent-in-law 0 278
Spouse 172,158 127,192
Aunt/Uncle/Aunt-in-law/Uncle-in-law 13,220 5,234

     Unknown

Child/Child-in-law 52,186 24,733
Child/Nephew/Niece 31,818 8,078
Grandaunt/Granduncle/Grandaunt-in-
law/Granduncle-in-law 12,035 4,278

Grandchild/Grandchild-in-law 12,876 4,578
Grandnephew/Grandniece/
Grandnephew-in-law/Grandniece-in-
law

12,035 4,278

Grandparent/Grandparent-in-law 12,876 4,578
Great-grandchild/Great-grandchild-in-
law 5,799 2,346
Great-grandparent/Great-grandparent-
in-law 5,799 2,346
Nephew/Niece/Nephew-in-law/Niece-
in-law 13,220 5,234

Parent/Aunt/Uncle 31,818 8,078
Parent/Parent-in-law 52,186 24,733
Sibling/Cousin 41,270 9,142
Sibling/Sibling-in-law 132,742 59,232
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Supplemental Table 2. Performance by number of paths. 

 
  

Columbia Cornell

N of Paths True Positive False Positive PPV True Positive False Positive PPV

1 4340 1021 0.8096 2979 391 0.884

2 3911 355 0.9168 4114 95 0.9774

3 2438 55 0.9779 4753 53 0.989

4 2696 89 0.968 2089 63 0.9707

5 3075 16 0.9948 4219 29 0.9932

6 5840 30 0.9949 10170 19 0.9981

7 3892 10 0.9974 4100 12 0.9971

8 3105 13 0.9958 1739 19 0.9892

9 2575 6 0.9977 1451 3 0.9979

10 2460 8 0.9968 1217 5 0.9959

11 857 1 0.9988 532 3 0.9944

12 308 0 1 156 0 1

13 34 0 1 29 0 1

14 12 0 1 6 0 1
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Supplemental Table 3. Performance by matched path. 
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Supplemental Table 4. Relationship inference rules. 

 

Person 1-2 Person 2-3 Person 1-3
Parent Aunt/Uncle Grandaunt/Granduncle
Parent Child Sibling
Parent Grandchild Child/Nephew/Niece
Parent Grandparent Great-grandparent
Parent Nephew/Niece Cousin
Parent Parent Grandparent
Parent Sibling Aunt/Uncle
Child Aunt/Uncle Sibling/Sibling-in-law
Child Child Grandchild
Child Grandchild Great-grandchild
Child Grandparent Parent/Parent-in-law
Child Nephew/Niece Grandchild/Grandchild-in-law
Child Parent Spouse
Child Sibling Child
Sibling Aunt/Uncle Aunt/Uncle
Sibling Child Nephew/Niece
Sibling Grandchild Grandnephew/Grandniece
Sibling Grandparent Grandparent
Sibling Nephew/Niece Child/Nephew/Niece
Sibling Parent Parent
Sibling Sibling Sibling
Aunt/Uncle Aunt/Uncle Grandaunt/Granduncle/Grandaunt-in-law/Granduncle-in-law
Aunt/Uncle Child Cousin
Aunt/Uncle Grandchild First cousin once removed
Aunt/Uncle Grandparent Great-grandparent/Great-grandparent-in-law
Aunt/Uncle Nephew/Niece Sibling/Cousin
Aunt/Uncle Parent Grandparent/Grandparent-in-law
Aunt/Uncle Sibling Parent/Aunt/Uncle
Grandchild Aunt/Uncle Child/Child-in-law
Grandchild Child Great-grandchild
Grandchild Grandchild Great-great-grandchild
Grandchild Grandparent Spouse
Grandchild Nephew/Niece Great-grandchild/Great-grandchild-in-law
Grandchild Parent Child/Child-in-law
Grandchild Sibling Grandchild
Grandparent Aunt/Uncle Great-grandaunt/Great-granduncle
Grandparent Child Parent/Aunt/Uncle
Grandparent Grandchild Sibling/Cousin
Grandparent Grandparent Great-great-grandparent
Grandparent Nephew/Niece First cousin once removed
Grandparent Parent Great-grandparent
Grandparent Sibling Grandaunt/Granduncle
Nephew/Niece Aunt/Uncle Sibling/Sibling-in-law
Nephew/Niece Child Grandnephew/Grandniece
Nephew/Niece Grandchild Great-grandnephew/Great-grandniece
Nephew/Niece Grandparent Parent/Parent-in-law
Nephew/Niece Nephew/Niece Grandnephew/Grandniece/Grandnephew-in-law/Grandniece-in-law
Nephew/Niece Parent Sibling/Sibling-in-law
Nephew/Niece Sibling Nephew/Niece/Nephew-in-law/Niece-in-law
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Supplemental Table 5. Observational heritability of child abuse. 
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Supplemental Table 6. 85 semi-manually created phenotypes. 
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