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Abstract

There are no previous studies of the association between prediagnostic serum vitamin D 

concentration and glioma. Vitamin D has immunosuppressive properties; as does glioma. It was, 

therefore, our hypothesis that elevated vitamin D concentration would increase glioma risk. We 

conducted a nested case–control study using specimens from the Janus Serum Bank cohort in 

Norway. Blood donors who were subsequently diagnosed with glioma (n = 592), between 1974 

and 2007, were matched to donors without glioma (n = 1112) on date and age at blood collection 

and sex. We measured 25-hydroxyvitamin D (25(OH)D), an indicator of vitamin D availability, 
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using liquid chromatography coupled with mass spectrometry. Seasonally adjusted odds ratios 

(ORs) and 95% confidence intervals (95%CIs) were estimated for each control quintile of 

25(OH)D using conditional logistic regression. Among men diagnosed with high grade glioma 

>56, we found a negative trend (P=.04). Men diagnosed ≤ 56 showed a borderline positive trend 

(P=.08). High levels (>66 nmol/L) of 25(OH)D in men > 56 were inversely related to high grade 

glioma from ≥ 2 years before diagnosis (OR=0.59; 95%CI=0.38,0.91) to ≥ 15 years before 

diagnosis (OR=0.61; 95%CI=0.38,0.96). Our findings are consistent long before glioma diagnosis 

and are therefore unlikely to reflect preclinical disease.
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Introduction

Vitamin D consists of a group of steroid prohormones that regulate approximately 900 genes 

(1). It is stored in the body in the form of 25-hydroxyvitamin D (25(OH)D) and transformed 

into its active form,1,25 hydroxyvitamin D (1,25(OH)D). Measurement of the serum 

concentration of 25(OH)D is widely accepted as the best indicator of an individual’s vitamin 

D status (2). Serum vitamin 25(OH)D has a long half-life (three weeks) that reflects vitamin 

D stores from both dietary intake and ultraviolet irradiation. Alternatively, the active form of 

vitamin D (1,25(OH)D) is only present in the blood for approximately 24 hours, 

representing the most recent exposure to solar radiation or vitamin D intake.

There is an extensive body of experimental literature suggesting that vitamin D inhibits 

cancer progression through many signaling pathways including those that result in apoptosis, 

cell re-differentiation and inhibition of cell proliferation or angiogenesis (3–8). In contrast to 

the experimental literature, results from the epidemiological are inconsistent with less 

variation among studies of certain cancer sites than of others. Colon cancer is most reliably 

inversely related to elevated 25(OH)D levels while studies of prostate, breast, and 

esophageal cancer show both positive and negative associations (9, 10). A recent meta-

analysis (11) of 25(OH)D and total cancer incidence rates found reduced risk among people 

with elevated 25(OH)D levels (risk ratio (RR)=0.89, 95% CI=0.81, 0.97, RR of incidence 

per 50 nmol/L increase in circulating 25(OH)D concentration). Nonetheless authors of two 

recent papers (9, 12) conclude that the inverse association between 25(OH)D levels and ill 

health, found in observational studies but not in clinical trials, suggests that low levels of 

circulating vitamin D are indicators of preclinical disease rather than a reflection of the 

benefits of vitamin D. These two studies have been criticized for their disregard of problems 

of clinical trials including their low statistical power (13). In addition, in a cohort study of 

naturally randomly distributed genetic variants that affect plasma 25(OH)D levels, Afzal et 

al. (14) found an association between these variants and cancer mortality.

Glioma consists of a morphologically heterogeneous group of primary brain tumors possibly 

reflecting differences in germline genetic variation or etiology (15). Glioblastoma is the 

most common form of glioma among adults. There is presently no treatment that promotes 
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long term survival among patients diagnosed with this tumor and, as a result, median 

survival time from glioblastoma diagnosis is only between 12 and 14 months (16).

Vitamin D metabolites cross the blood- brain barrier (17) and its receptors are found 

throughout the brain (18) thus it is not unreasonable to study the role of this vitamin in 

glioma etiology. It has recently been determined that vitamin D is of central importance in 

the immune system (19) and many of its functions are related to its anti-inflammatory and 

immunomodulatory roles. At the same time, glioma is an immune suppressive tumor. For 

example, it is inversely related to, IgE (20), a biomarker of immune hyperactivity (i.e., 

allergy), and glioblastoma -initiating cells inhibit T-cell growth and increase proliferation of 

immune suppressive regulatory T cells (21). It was therefore our hypothesis that people with 

elevated levels of circulating vitamin D would be at increased risk for glioma.

To investigate this hypothesis, we conducted a nested case-control study of prediagnostic 

25(OH)D concentration using stored serum samples from the Janus Serum Bank (Norway). 

Serum samples for the present study were collected, on average, 15 years before glioma 

diagnosis and would therefore probably not be subject to effects of nascent tumors (9, 12). 

The relative absence of solar radiation during the Norwegian winter might lead one to 

predict that Norwegian vitamin D status would be atypically low. However, on average, 

Norwegians consume enough fatty fish, fish oil, vitamin D fortified food and dietary 

supplements (22, 23) to produce less seasonal fluctuation in their vitamin D status between 

summer and winter (24) than is observed among comparable populations (25). Furthermore, 

their average annual vitamin D levels are similar to those found in countries at lower 

latitudes including the United States (23, 26).

Methods

Study Population

The Janus Serum Bank was established in 1972 to conduct epidemiological studies of cancer 

(27–29). This biobank is now owned by the Cancer Registry of Norway and contains serum 

samples from approximately 167,000 men and 158,000 women. Approximately 90% of the 

serum donors were participants in routine cardiovascular health examinations in Norwegian 

counties, conducted by the National Health Screening Services. They used questionnaire and 

physical examination inclusive of a blood draw for cholesterol and lipids. The residual 

volumes were stored in the Janus Serum Bank. The majority of these donors were between 

ages 35 and 49 years old at the time of blood donation. Approximately 10% of the samples 

came from male and female Red Cross Blood Bank donors. Most of these donors were 

between ages 20 and 65 years old at the time of blood donation.

Serum samples were stored at −25°C. To prevent exposure to ultraviolet radiation the room 

in which they were stored had no windows. In addition, vials were kept in cardboard boxes 

with lids. When samples were initially collected they may have been exposed to lamp light 

for short periods before they were placed in the freezer. Workers used the room where 

samples were stored infrequently allowing the lights to be turned off most of the time. As an 

added precaution, ultraviolet light was not used in the lab. Samples underwent one thaw–

freeze cycle in preparation for the present study.
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A recent Finnish study of the effects of long-term serum sample storage on the stability of 

25(OH)D concludes that storage for as long as 24 years at −25 degrees C does not affect 

25(OH)D levels (30). These results are consistent with those from a previous study showing 

25(OH)D stability in serum stored for as long as 40 years (31).

Personal identification numbers were initially used to link Janus Serum Bank project blood 

donors to the Cancer Registry of Norway. However, data sets created by this link and used in 

the present study, contained no personal identifiers. We found 594 blood donors who were 

subsequently diagnosed with glioma (International Classification of Disease, Oncology, 

Third Edition [ICD-O-3] morphology codes 9380–9411, 9420–9480, and 9505) between 

January 1, 1974 and December 31, 2007. Two of the cases were unsuccessfully analyzed for 

vitamin D, leaving 592 cases with glioma, 403 of them with high grade glioma (ICD-O-3 

morphology codes 9440 and 9401).

When available, two control participants for each glioma case were randomly selected 

according to an incidence density sampling scheme among blood donors. Controls were 

individually matched to cases on date of blood collection (±3 months), date of birth (±1 

year), county of residence at blood collection, and sex. As were cases, matched control 

participants were required to be alive and free from any cancer except non-melanoma skin 

cancer on the date of glioma diagnosis of the case to which they were matched. In addition, 

to save valuable serum for use in subsequent biobank studies, potential controls diagnosed 

with rare tumors (i.e., all tumors other than breast, prostate, and colorectal) after the case’s 

date of glioma diagnosis were rejected from the study. Of the 1114 control subjects 

identified, two were not included in the study because their vitamin D values for the case to 

which they were matched were missing. The total number of control participants in matched 

sets with glioma cases was 1112 and 756 of them were to high grade glioma cases.

The Regional Ethics Committee of Southern Norway and the Data Inspectorate of Norway 

approved all consent produces and the present research plan. During the Janus Serum Bank’s 

first years (1972–1996), in line with current Norwegian legislation at the time, participants 

gave their broad verbal consent for samples to be used for cancer research (32). Verbal 

consent was considered sufficient under Norwegian law at the time and therefore before 

1997 written consent was not obtained. Written and signed consent are archived by the 

Cancer Registry of Norway for participants from 1997 onwards, according to new 

regulations. As a general license for the biobank, the Norwegian Data Inspectorate has 

approved the use of all data and biological samples collected between 1972 and 2004, while 

requiring that participants may unconditionally withdraw their consent at any time. Should 

they wish to do so, their serum samples would be destroyed and their descriptive data 

deleted. All study data were de-identified.

Measurement of 25-Hydroxyvitamin D

We sent 100 μL of serum from each of 1,708 biobank samples to Vitas Laboratory in Oslo, 

Norway for analysis of 25(OH)D levels (www.vitas.no). Laboratory personnel, unaware of 

the case-control status of the samples, used stable isotope dilution liquid chromatography 

coupled with tandem mass spectrometry to measure serum 25-OH-vitamin D2 and 25-OH-

vitamin D3 levels. 25-OH-vitamin D3 better represents vitamin D availability than 25-OH 
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vitamin D2, and is therefore most often used as an indicator of vitamin D status in the cancer 

epidemiology literature (2). For this reason, we restricted the analysis to 25-OH-vitamin D3, 

and 25-OH-vitamin D2 was not available for analysis, as only 282 of the 1,708 samples 

yielded values.

Statistical Methods

We compared case and control median and interquartile ranges of the matching variables and 

age and sex stratified serum 25(OH)D levels serum by inspection. We then identified the 

subgroup of cases diagnosed with high grade glioma (anaplastic astrocytoma (grade 3), 

glioblastoma (grade 4) and total glioma) and their matched controls. Next, we stratified this 

subgroup and the total sample by sex and the control median age at diagnosis (56 years) 

based on the distribution of genetic and histologic factors suggested by previous literature 

(33). To further evaluate our data we stratified cases into seven histologic subtypes (e.g., 

anaplastic astrocytoma, oligodendroglioma) and compared their median ages at diagnosis 

and 25(OH)D levels.

Exposure to ultraviolet radiation induces seasonal patterns in serum 25(OH)D concentration 

(34). To account for these effects we estimated seasonally adjusted values by first calculating 

residuals from a linear regression model with serum 25(OH)D level as the dependent 

variable and month of blood collected as independent indicator variables. Next, we added 

the residuals to the overall population mean thus producing seasonally adjusted values.

To estimate odds ratios and 95% confidence intervals for control quintiles of seasonally 

adjusted serum 25(OH)D, we used conditional logistic regression, conditioned on sets 

matched on age within two years, date of serum collection and sex. To test for linear trend 

over levels of histologic type, sex and age at diagnosis stratified quintiles; we used the 

median value of seasonally adjusted 25(OH)D for each quintile as a continuous variable 

(34). We also used odds ratios based on the upper two and lower three quintiles to determine 

whether there were associations between 25(OH)D levels and glioma risk within the seven 

refined histologic categories.

To determine whether the association between seasonally adjusted 25(OH)D and high grade 

or total glioma risk changes with proximity of date of blood collection to date of diagnosis, 

we divided time between blood collection and diagnosis into overlapping intervals. The 

category closest to time of diagnosis was at least two years before diagnosis and the 

subsequent five year intervals extended from five to 25 years before diagnosis. Analyses 

were conducted using SAS statistical software, version 9.3 (SAS Institute Inc, Cary, NC).

Figure 2 and Supplemental Figure 1 are based on graphs shown in Vinceti et al. (35) and 

were constructed to emphasize patterns in the data that are not readily apparent in the tables. 

For each of the subplots in these figures, a separate logistic regression model was fitted. For 

example, to create the plot in the first row and column of Figure 2 data were retained from 

both sexes and all ages, and a logistic regression model was fitted using high-grade glioma 

as the dependent variable and the natural log of 25(OH)D as the independent variable. From 

this model, we extracted the fitted value and 95% confidence intervals for the fitted value 

across the range of the observed natural log 25(OH)D. These fitted values are represented by 
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solid lines and the 95% confidence intervals for the mean by dotted lines. All graphs were 

constructed using R (R Core Team (2013)). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-

project.org/.)

Results

Characteristics of Study Population

Table 1 indicates that matching was successful, resulting in almost identical values of the 

matching variables for cases and controls for high grade glioma (cases=403, controls=756) 

and total glioma (cases=592, controls=1112). Figure 1 shows two similar curves, 

representing the distribution of mean values of 25(OH)D over month of blood collection 

among study participants whose time from blood collection to diagnosis (or time of 

diagnosis of the case to which the controls were matched) was 15 years (the median) or less 

and greater than 15 years.

Sex and Age-Specific Associations between High Grade Glioma, Total Glioma and 
Seasonally-Adjusted 25(OH)D

We found a statistically significant (P=.04) inverse association between quintiles of 

25(OH)D concentration and high grade glioma risk (Table 2) in men older than age 56 years 

at diagnosis. In contrast, we observed a positive trend of borderline statistical significance 

among younger men with high grade glioma (P=.08). Therefore, due to opposing directions 

of dose-response trends, when men were evaluated independently of age at diagnosis there 

was no association between 25(OH)D levels and high grade glioma risk. When all histologic 

subtypes were analyzed together (Table 3), results for men were comparable but non-

statistically significant. Supplemental Table 1 shows that median serum 25(OH)D levels for 

men with high grade glioma reflect a similar pattern. The odds ratio for men with high grade 

glioma diagnosed when they were older than age 56 is the only statistically significant odds 

ratio in this the table.

When men and women over age 56 years at diagnosis (the median age at diagnosis of the 

cases) were considered together, the inverse trend was of borderline significance (high grade 

glioma P=.08, total glioma P=.11). Figure 2 shows age and sex-specific relationships 

between the log odds of high grade glioma and the log of seasonally adjusted 25(OH)D. As 

in Table 2, among men age 56 years and younger at diagnosis, the trend with increasing 

levels of 25(OH)D is positive. Patterns in Table 3 and Supplemental Figure 1 (based on 

Table 3) for total glioma are consistent with those observed for high grade glioma which is 

to be expected because high grade glioma constitutes 68 percent of the total glioma cases in 

our sample.

Results for Analyses by Refined Histologic Subgroups

Supplemental Table 2 shows median ages and 25(OH)D levels and odds ratios for seven 

histologic types and controls for men old than 56 years when diagnosed. Only the odds ratio 

for glioblastoma (OR=0.60 (95%CI=0.39, 0.93)) is statistically significant while that for 

anaplastic astrocytoma, combined with glioblastoma in our analyses, is in the same direction 
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relative to the null. For this sex and age-specific subgroup only glioblastoma has a sufficient 

number of cases to be analyzed separately. Supplemental Table 3 contains median values 

and odds ratios for both sexes and all ages combined by histologic subtype. None of the 

odds ratios are statistically significant.

Time between Blood Collection and High Grade Glioma Diagnosis

To determine whether, among older men, proximity of the date of diagnosis to the date of 

blood collection alters the association between 25(OH)D and high grade glioma risk, we 

further stratified the analyses by overlapping intervals between times of blood collection and 

tumor diagnosis (Table 4). Each time stratum included all subsequent but not previous 

periods. We found that odds ratios were similar and statistically significant until at least 15 

years before diagnosis but continued to be consistent until at least 25 years before diagnosis.

Discussion

Ours is the first study to evaluate a potential association between prediagnostic serum 

vitamin D and glioma risk. Although because of opposing age-specific trends, we found no 

overall effect of serum 25(OH)D concentration on glioma risk, we observed a reduced risk 

of both high grade and total glioma among men over age 56 years at diagnosis. This 

relationship is consistent at least 15 years before high grade glioma diagnosis. In contrast, 

among men and women diagnosed at age 56 years or younger, we observed a weak positive 

association of borderline statistical significance. Although these positive trends were similar 

for younger men and women, in neither case were they strong enough to confirm our 

hypothesis that the immunosuppressive effects of vitamin D increase the risk of glioma.

There are no previous studies of circulating vitamin D and glioma risk; however, we can 

compare our findings to those of a related tumor, malignant melanoma, which shares 

common features with glioma. Both melanocytes and glial cells originate in the neural tube 

(36) and Scarbrough et al. (37) recently found that the risk of glioma is greater among 

people diagnosed with melanoma than among those not so diagnosed. Scheurer et al. (38) 

report that, among first degree relatives of people diagnosed with glioma, there is an 

elevated risk of malignant melanoma again suggesting common mechanisms. Risk for both 

tumors is elevated by specific SNP TERT variants (39, 40). Furthermore, mutations in the 

TERT promoter are also common in both glioma and melanoma somatic tissue, suggesting 

that telomerase activity plays a role in melanogenesis as it apparently does in gliomagenesis.

In a study of dietary vitamin D consumption (adjusted for energy consumption, calcium 

intake, skin phototype, history of sunburns, skin sun reaction and education) and risk of 

malignant melanoma, Vinceti et al. (35) found age specific patterns for men similar to those 

in our study. That is, they report that an inverse association between vitamin D consumption 

and melanoma risk among men age 60 years and older. Furthermore, this association was 

weaker among older women than among older men. Whether the similarity of these age-

specific patterns in the two studies is meaningful will have to be determined by subsequent 

research.
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The previous glioma literature is also consistent with our age and sex-specific findings. For 

example, Walsh et al (41) observed that glioma characterized by risk alleles in telomerase-

related genes, TERT (rs2736100) and RTEL1 (rs6010620) occurs most frequently among 

people diagnosed at older ages. Furthermore, TERT promoter mutations, present in 83% of 

primary glioblastoma somatic tissue (42) share a similar age distribution (43). These somatic 

promoter mutations are associated with increased telomerase activity (44, 45). Vitamin D 

down-regulates telomerase (6, 46–50) and may therefore inhibit growth of tumors associated 

with telomerase risk alleles. Thus subsequent studies should evaluate the effects of vitamin 

D on glioma risk by genetic subtype.

Suggesting a rationale for the differential distribution of the effects of vitamin D among men 

and women in our data set there are fewer women (n=74) than men (n=147) with high grade 

glioma over age 56 in our sample indicating that we had a higher probability of identifying 

associations between prediagnostic vitamin D and glioma among older men than older 

women. A more elaborate rationale for age and sex specific differences in our study is based 

on work by Correale et al. (51) who found that 17-β estradiol, in premenopausal women, 

enhances the immunomodulatory effects of activated vitamin D. Supporting these findings, 

in a cohort study of plasma 25(OH)D and risk of female breast cancer (52), the authors 

report an inverse association between 25(OH)D concentration and breast cancer risk only 

among hormone replacement therapy (HRT) users (OR=0.62, 95% CI= 0.42–0.90) and no 

association among HRT non-users (OR=1.14, 95% CI=0.80–1.62) or all women combined. 

Menopause results in a drastic lowering of plasma estradiol among women (53) but estradiol 

continues to be produced from testosterone in men (54). Thus older men have higher plasma 

estradiol levels than do menopausal women of the same age (e.g., (55)) and plasma estradiol 

crosses the blood-brain barrier (56). Therefore, in theory, older men have relatively greater 

access to the immunomodulatory effects of vitamin D than do menopausal women of the 

same age. These data and literature-derived hypothesis based on complex interactions 

between vitamin D and estrogen should be empirically examined in future studies.

The major limitation of the present study is that our statistically significant results are 

restricted to older men, while those in younger men are of borderline significance in the 

opposite direction. Although a positive association between vitamin D and glioma was 

hypothesized in advance, an age and sex specific inverse association between vitamin D and 

glioma risk among older men was not. In addition, our findings are based on a single value 

of vitamin D using serum collected from participants who were on average 41 years old at 

the time of blood donation. Unless we posit that vitamin D levels at age 41 years affect 

subsequent glioma risk, we implicitly assume that our single vitamin D value accurately 

represents that available during a critical period when it might inhibit or enhance 

gliomagenesis. Unfortunately, this critical period has not yet been identified. Supporting the 

assumption that our samples represent averages that extend beyond age 41 years is the 

similarity of our averages to those reported in large surveys of vitamin D status of the 

Norwegian population (23). Although Norwegian vitamin D status decreases with age and 

body mass index (57) if it does so equally among age-matched cases and controls this 

decrease this may pull the odds ratios toward their null values although this depends on 

additional conditions (58). Furthermore in the present study the similarity of the odds ratios 

from two to 25 years before high grade glioma diagnosis for men over age 56 years suggests 
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that a single vitamin D value provides information about subsequent values. Nonetheless, 

our findings require replication to determine their validity.

In the first large study of the association between serum 25(OH)D and glioma risk, we found 

that older men with higher levels of serum 25(OH)D had a reduced risk of glioma. Vitamin 

D regulates approximately 900 genes (1) whose functions could reasonably be expected to 

either increase or decrease glioma risk. We therefore suggest that the complex relation 

between vitamin D and glioma development accounts for the restriction of the observed 

effects, in the present study, to one age and sex-specific subgroup. Given the functional 

complexity of vitamin D, we propose there may not be an average effect of vitamin D on 

cancer risk but rather a variety of effects depending on age at diagnosis, tumor heterogeneity 

and other factors resulting from vitamin D’s multiple biological functions. To test our 

hypotheses concerning interactions of vitamin D with telomerase and estrogen, future 

studies of the relation between vitamin D and glioma risk should, at a minimum, be 

evaluated by genetic subtype and include information about hormone replacement therapy 

use (59).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
25(OH)D by month of blood collection for both glioma cases and controls combined 

separately by median time (15 years) between blood collection and tumor diagnosis.
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FIG. 2. 
Log 25(OH)D against log odds of high grade glioma (astrocytoma and glioblastoma) by sex 

and median age at diagnosis.
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