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Abstract: Chronic hepatitis C (CHC) is one of the most common causes of liver diseases worldwide, affecting 3% of 
the world population and 3 to 4 million people acquire new infection annually. Despite the recent introduction of 
novel antiviral drugs for the treatment of CHC, these drugs are expensive and the access to them is not an option 
for many patients. Hence, the traditional therapy by pegylated interferon-α (Peg-IFN-α) and ribavirin may still have 
a role in the clinical management of CHC especially in developing countries. However, this standard therapy is as-
sociated with several severe extra-hepatic side effects and the most common adverse events are hematological 
abnormalities and thyroid disorders and they could result in dose reduction and/or termination of therapy. Vitamin 
D has been shown to be a key regulatory element of the immune system, and its serum concentrations correlate 
with the severity of liver damage and the development of liver fibrosis/cirrhosis. Furthermore, supplementation 
with vitamin D with Peg-IFN-α based therapy for the treatment of CHC could be beneficial in increase the response 
rate to Peg-INF-α based therapy. Vitamin D has also been shown to regulate the thyroid functions and the process 
of erythropoiesis. This review appraises the data to date researching the role of vitamin D during the treatment of 
CHC and the potential role of vitamin D in preventing/treating Peg-IFN-α induced thyroiditis and anemia during the 
course of treatment.
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Introduction

Infection with hepatitis C virus (HCV) is a major 
health problem and is one of the most impor-
tant causes of chronic liver diseases. According 
to the World Health Organization (WHO) at least 
170 million people are infected worldwide with 
HCV and 3 to 4 million new infections occur per 
year [1]. Only 20-30% of HCV infected individu-
als recover spontaneously while the remaining 
70-80% progress to chronic hepatitis C (CHC) 
infection, that is association with the develop-
ment of liver fibrosis, cirrhosis, end-stage liver 
disease, and hepatocellular carcinoma (HCC) 
[2-5].

The traditional treatment for CHC is a combina-
tion of a weekly injection of pegylated 

interferon-α (Peg-IFN-α) with daily oral ribavirin 
(RBV) [1-3] and the duration of the treatment is 
based on the viral genotype [1-3]. Although new 
direct acting antiviral (DAA) drugs have been 
developed, the treatment of CHC could still be 
based on a weekly injection of Peg-IFN-α-2a or 
-2b plus a daily weight-based dose of RBV with 
or without the new antiviral therapy depending 
on the progression of liver damage and the 
presence of other extrahepatic manifestations 
[2, 6-8]. Furthermore, the new antiviral drugs 
are expensive and therefore Peg-IFN-α based 
therapy could still be the standard of care espe-
cially for treatment naïve patients with no liver 
cirrhosis and/or for those living in developing 
countries and for whom access to the new 
drugs is not definite due to its high cost [9-12].
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Several disadvantages are associated with 
Peg-IFN-α based therapy during the treatment 
of CHC. These include low response rate (e.g. 
50% for genotypes 1&4) and the development 
of several drug induced side effects that could 
lead to dose reduction or termination of treat-
ment [2, 13-15]. CHC and its treatment with 
Peg-IFN-α based therapy are associated with 
several extra-hepatic complications including 
hematological and endocrinological abnormali-
ties. The most prevalent side effects associat-
ed with the traditional treatment of CHC are 
anemia and thyroid disorders [2, 16, 17].

Vitamin D (VitD) is involved in many biological 
processes beside its role in the regulation of 
bones and calcium homeostasis [18]. VitD sup-
plementation has recently been recommended 
by several research groups to increase the 
response rate and achieving sustained viral 
response (SVR) during the treatment of CHC 
with Peg-IFN-α based therapy [19-23]. 
Additionally, abnormal low levels of VitD has 
been shown to play an important role in the 
development of many autoimmune diseases, 
and a significant VitD deficiency has been 
detected in patients affected with autoimmune 
thyroiditis [24, 25]. VitD has also been shown to 
be involved in the process of hematopoiesis by 
regulating the production of erythropoietin hor-
mone (EPO) and its receptors, and erythrocyte 
progenitor cells [17]. Therefore, supplementa-
tion with VitD during the treatment of CHC with 
Peg-IFN-α and RBV could provide an alternate 
management option to increase the response 
rate and prevention/treatment of drug induced 
adverse effects, especially in those patients 
who require longer duration of treatment and 
cannot access to the new antiviral therapy due 
to financial limitations.

This review summarizes the role of VitD supple-
mentation in CHC and the potential mecha-
nisms by which it could increase the response 
rate to Peg-IFN-α based therapy and prevention 
of the secondary anemia and thyroid disorders 
during the course of treatment with Peg-IFN-α 
based therapy.

Methods

‘PubMed’ and ‘EMBASE’ databases were 
searched using the terms ‘hepatitis C virus’, 
‘chronic hepatitis C’, ‘pegylated interferon-α’, 
‘ribavirin’, ‘risk factors’, ‘prevalence’, ‘complica-
tions’, ‘adverse effect’, ‘side effect’, ‘response 

rate’ and ‘sustained viral response’ in combina-
tion with ‘hematology’, ‘anemia’, ‘endocrinolo-
gy’, ‘thyroid’ and ‘vitamin D’ for studies pub-
lished between 2004 and 2014.

Publications in English and within the past 6 
years were mostly selected, but commonly ref-
erenced and important older publications were 
not exclude. The reference lists of articles iden-
tified by this search strategy were also searched 
and those judged as relevant were also includ-
ed. For a study to be included, it needed to be 
focused on incidence, diagnosis, clinical man-
agement and side effects of CHC infections 
and its treatment with Peg-IFN-α based thera-
py. Studies that were solely focusing on the 
treatment of CHC using medical agents other 
than Peg-IFN-α based therapy were not 
included.

Treatment of chronic hepatitis C

CHC is the most predominant cause of liver cir-
rhosis, HCC and liver transplantation [26-29]. 
The choice Peg-IFN-α plus RBV was based upon 
the results of three randomized clinical trials 
that demonstrated the superiority of this com-
bination treatment over standard IFN-α and 
RBV [3, 14, 30-32]. Two types of pegylated IFN, 
which differ in their pharmacokinetic and chem-
ical properties, have been developed. Both 
have demonstrated significantly superior effi-
cacy to non-pegylated IFN in several controlled 
randomized clinical trials [2, 3, 8, 13, 33] with a 
significantly improved SVR as compared with 
standard IFN [3, 8]. 

HCV genotype is the most significant baseline 
predictor of response to therapy, and therefore 
the adjustment of HCV treatment, including the 
optimal duration and treatment protocol, is 
based on the genotype [2, 33]. Most of the pub-
lished literature on the management of HCV 
have shown that the benefit is mostly achieved 
in patients with HCV genotype 2 and 3 infec-
tions while genotype 1 and 4 have significantly 
lower response rates [34, 35]. If Peg-IFN-α 
based therapy to be used, the guidelines state 
that all patients infected with HCV genotypes 2 
or 3 should be treated for 24 weeks with an 
estimated SVR of about 80%. Coherently, 
patients with genotypes 1 and 4 could be treat-
ed with Peg-IFN-α plus standard weight-based 
RBV for 48 weeks with an estimated SVR of 
about 50% of cases [2, 3, 7, 8, 13, 14, 33, 35]. 
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Due to low response rate with viral genotype 
1&4 and the development of drug induced 
complications, new antiviral drugs sparing IFN 
have been developed. These drugs are NS3A 
and NS5A inhibitors and the reported success 
rate for these novel agents by several regis-
tered trials is promising, ranging between 
98-100% cure rate and the duration of treat-
ment is relatively short (3-6 months) compared 
with the traditional Peg-IFN-α based therapy 
[36, 37]. However, the new agents are expen-
sive and the cost of treatment is expected to be 
between 60,000-100,000 US dollars [9, 10, 
38-40]. Hence, it has been postulated that 
access to the new treatment will not be avail-
able for all patients, especially those living in 
developing countries. Peg-IFN-α based therapy 
could therefore still the only available option for 
those patients despite its associated disadvan-
tages [11, 17].

Almost all patients treated with Peg-IFN-α and 
RBV experience one or more adverse events 
during the course of therapy. One of the barri-
ers to adherence in combination therapy for 
CHC is the incidence of treatment associated 
adverse events that can lead to dose reduc-
tions or sometimes premature discontinuation 
[2, 3, 7, 8, 13, 14, 33, 35]. In the registered tri-
als of Peg-IFN-α-2a and 2b plus RBV, 10% to 
14% of patients had to discontinue therapy due 
to an adverse event [2]. 

Side effects associated with Peg-IFN-α based 
therapy during the treatment of CHC

The treatment regimen with Peg-IFN-α and RBV 
for either 24 or 48 weeks is associated with the 

tered trials using the combination of Peg-IFN-α 
with RBV and 2.5-3 g/dL decrease in hemoglo-
bin during the first 4 weeks of treatment was 
reported. Additionally, these studies have 
shown that the severity of anemia is mainly 
dependent on the dose of RBV [16, 48-50].

Several pathogenic mechanisms for the devel-
opment of anemia during the treatment of CHC 
by Peg-IFN-α and RBV have been proposed 
(Figure 1), including autoimmune hemolysis 
and suppression of erythropoiesis [16, 17, 50]. 
Peg-IFN-α have been reported to suppress the 
proliferation of progenitor cell, increase the 
destruction of erythroid precursor cells, induce 
autoimmune hemolytic reaction and reduce 
renal function [4, 16, 51-53]. 

On the other hand, RBV is considered the main 
cause of anemia during the treatment. It is 
believed that the majority of anemia during the 
course of therapy are hemolytic in nature due 
to the intoxication of human red blood cells 
(RBCs) with RBV [50, 53-56]. Peg-IFN-α could 
also exaggerate the hemolytic effect of RBV in 
the currently applied treatment protocol [46, 
52, 57-59]. However, the prevalence of anemia 
was significantly lower in Peg-IFN-α monothera-
py compared to Peg-IFN-α and RBV dual thera-
py [31].

Anemia associated with RBV appears to be 
dependent on the plasma concentration of the 
drug rather than the dose/Kg body weight [16, 
50]. The accumulation of RBV and its metabo-
lites in RBCs, causes oxidative stress, mito-
chondrial toxicity and RBCs hemolysis [53-56, 

Figure 1. Summary of pathogenic mechanisms by which pegylated 
interferon-α (Peg-IFN-α) and ribavirin (RBV) induce anemia during the treat-
ment of chronic hepatitis C infection.

several adverse effects that 
could result in the termination 
of therapy [8, 13, 35]. The 
adverse effects include flu 
like syndrome, hematological 
disorders, thyroiditis and 
depression [2, 41-45].

Anemia associated with CHC 
and IFN-α therapy

Hematological side effects 
are common during Peg-IFN-α 
based therapy and anemia is 
the most frequent complica-
tion [4, 46-48]. The reported 
incidence of developing ane-
mia is about 12% by the regis-
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60]. However, the uptake rate of RBV by eryth-
rocytes has been reported to differ according 
to dose and species [61]. The largest accumu-
lation of RBV was observed in monkey, followed 
by human and the lowest accumulation was 
detected in rat erythrocyte [61]. Moreover, in 
vitro incubation of erythrocytes from the 3 spe-
cies with RBV showed that the retention rate of 
the drug was 77% in monkey, 45% in human 
and 20%, in rat red cells [61]. Nevertheless, 
exposure of RBCs to RBV in vitro did not alter 
the osmotic fragility and deformability of the 
cells [61-63].

RBV induced anemia could also be due the 
inhibiting effect of RBV on the process of eryth-
ropoiesis through the suppression of bone mar-
row and decreasing the expression of both EPO 
and its receptor [17, 47, 64]. RBV was also 
shown to decrease RBCs survival as well as 
inhibit the release of red cell from the bone 
marrow in monkey and rat [61-63, 65, 66]. 
However, RBV had no effect on erythrocyte 
mean cell volume, mean corpuscular hemoglo-
bin and mean corpuscular hemoglobin concen-
trations in both species [61-63]. 

The administration of Peg-IFN-α and RBV in 
human was also associated with a decrease in 
serum EPO concentrations [64]. RBV have also 
been reported to decreasing endogenous EPO 
in a rat experimental model at the kidney and 
serum levels and subsequently suppressing 
erythropoiesis and cause normocytic normo-
chromic anemia [17]. Therefore, the authors 
postulated that RBV produces normocytic nor-
mochromic anemia in rat by suppressing the 
bone marrow through decreasing the produc-
tion of EPO from the kidney.

Thyroiditis associated with CHC and IFN-α 
therapy

Liver diseases are known to induce thyroid dis-
orders and abnormal serum concentrations of 
thyroid hormones. Hypothyroidism and thyroid 
autoimmunity are more common in patients 
with CHC, even in the absence of cirrhosis, 
HCC, or IFN-α treatment in comparison with 
normal individual or those who are infected 
with hepatitis B infection [67, 68].

Strong correlations between liver damage and 
thyroid disorders have been also reported [69]. 
Non-alcoholic fatty liver diseases (NAFLD) and 
abnormal liver enzymes are significantly asso-

ciated with hypothyroidism and the prevalence 
of liver diseases and enzymes increase steadily 
with increasing grades of hypothyroidism [69]. 
Furthermore, a decrease in serum triiodothyro-
nin (T3) concentration and T3: thyroxine (T4) 
ratio is frequently observed in patients with 
liver cirrhosis probably due to impaired conver-
sion of T4 to T3 in the liver [70]. Thyrotoxicosis 
is also associated with a variety of abnormali-
ties of liver function [71] and results from a 
recent study suggests that low free T4 (FT4) 
concentrations are associated with hepatic ste-
atosis [72]. Serum thyroid stimulating hormone 
(TSH) level was also significantly higher in 
NAFLD and it has also been suggested that 
measurement of free T3 and T4 levels may all 
be useful as predictors of mortality in intensive 
care patients who have cirrhosis [73].

Thyroiditis is a major clinical problem especially 
for patients with chronic HCV infection [74-76]. 
Thyroiditis can also be associated with inter-
feron and it is known as interferon induced thy-
roiditis (IIT), which can be classified as autoim-
mune and non-autoimmune types (Figure 2) 
[77, 78]. The estimated prevalence of thyroid 
disorders induced by CHC and its treatment 
with Peg-IFN-α based therapy ranges between 
2.5% to 35% in different countries [42, 74, 76, 
79, 80]. This variability can be attributed either 
to an underestimation of the true prevalence of 
thyroid disorders or to the diverse genetic pre-
disposition of the subjects [42, 68].

Thyroid abnormalities following interferon ther-
apy have also been described in children receiv-
ing interferon for hepatitis C infection [81]. 
Some of these complications of IFN therapy, 
especially thyrotoxicosis, can be severe and 
may interfere with adequate interferon therapy 
in patients with hepatitis C infection [77, 81]. 
Moreover, because the symptoms of hypothy-
roidism such as fatigue, hair loss, myalgia, and 
weight gain may be attributable to hepatitis C 
or IFN therapy, the diagnosis of hypothyroidism 
in these patients may be delayed [82]. This 
delay may lead to development of further com-
plications. Thus, IIT represents a major clinical 
problem for patients with chronic HCV infection 
and who receive interferon for treatment that 
may interfere with their treatment course [43, 
76, 77].

Autoimmune thyroid diseases (AITD) are strong-
ly influenced by genetic factors and therefore 
they are likely to affect the etiology of IIT. 
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Actually, the presence of HCV infection and 
IFN-α therapy might induce thyroiditis in geneti-
cally inclined individuals [42, 79]. IFN-α and 
RBV could also act against thyroid cells by 
inducing a direct toxic effect [43, 68, 76, 80]. 
While it is not clear which factors contribute to 
the susceptibility to IIT, recent evidence sug-
gests that genetic factors, gender, and hepati-
tis C virus infection may play a role [82]. 
However, viral genotype and therapeutic regi-
men do not influence susceptibility to IIT [81].

IIT is more common in females than in males 
[43, 68, 76, 83, 84]. According to different 
studies, females appeared to have a 4.4 times 
higher risk of developing secondary thyroid dis-
ease to IFN-α based therapy in comparison 
with males [43, 68, 76, 84]. Females’ suscepti-
bility may be due to the effects of estrogenic 
sex steroids in promoting autoimmunity, or it 
could be due to the susceptibility gene on the 
X-chromosome, since females have two 
X-chromosomes, so males are less likely to 
inherit the gene [43, 76, 83]. IIT is considered a 
major complication for those who are treated 
with IFN-α based therapy [68, 76, 83]. IIT is 
classified mainly into two types: either autoim-
mune (i.e., Hashimoto’s thyroiditis and Grave’s 
disease) or non-autoimmune (e.g. destructive 
thyroiditis and non-autoimmune hypothyroid-
ism) [68, 76, 83]. 

of them had symptomatic thyrotoxicosis, which 
failed to resolve even after IFN-α cessation 
[83].

GD and HT are both known of formation of thy-
roid-reactive T cells that infiltrate the thyroid 
gland [77, 85]. HT is characterized by Th1 
switching of the thyroid infiltrating T cells, which 
induce apoptosis of thyroid follicular cells and 
clinical hypothyroidism. In GD, most of T cells 
undergoes a T helper (Th) 2 differentiation and 
activates B cells to produce antibodies against 
the thyroid stimulating hormone receptors, 
which are the hallmark of GD, and eventually 
they will cause clinical hyperthyroidism as a 
result of thyroid stimulation [86]. Indeed, IFN-α 
therapy in patients with hepatitis C has been 
strongly associated with both GD and HT, as 
well as the production of thyroid antibodies 
without clinical disease [77, 87].

Several studies have shown that the treatment 
of hepatitis C with IFN can induce the produc-
tion of Tabs de novo, or cause a significant 
increase in TAbs levels in individuals who were 
positive for TAbs prior to interferon therapy [43, 
84]. The incidence of de novo development of 
thyroid autoantibodies secondary to IFN thera-
py varied widely in different studies from 1.9% 
to 40% [43, 77]. The wide variations in the 
reported incidence of TAbs in interferon treated 

Figure 2. Types of thyroid disorders associated with chronic hepatitis C infec-
tions and its treatment with pegylated interferon-α based therapy.

The commonest of autoim-
mune IIT is Hashimoto’s thy-
roiditis (HT) and it is more 
likely in people who are posi-
tive to thyroid antibodies 
(TAbs) before starting the 
therapy with Peg-IFN-α based 
therapy [42, 43, 76]. However, 
development of HT could also 
occur in CHC patients and 
who are negative to TAbs dur-
ing the course of therapy [42, 
68, 80]. A less common mani-
festation of autoimmune IIT is 
Graves’ disease (GD) [41, 42, 
68, 80, 83]. In a retrospective 
study, 321 patients diag-
nosed with hepatitis B or C 
and treated with IFN-α, 10 
patients developed thyrotoxi-
cosis, which was character-
ized by a completely de- 
creased TSH [83]. Six of those 
patients developed GD and all 
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patients could be related to the used detection 
assays and different cut-off values applied in 
the different studies [88]. 

However, up to 50% of patients who develop 
thyroid abnormalities during IFN-α therapy do 
not develop autoantibodies, which suggests 
that thyroid dysfunction may be caused by a 
direct effect on thyroid cells [89]. A previous in 
vitro study reported that TSH-induced gene 
expression of thyroglobulin was inhibited fol-
lowing the culture of human thyroid follicular 
cells with interferon type I [41].

Destructive thyroiditis is a self-limited inflam-
matory disorder is another form of thyroid 
abnormality associated with Peg-IFN-α based 
therapy during the treatment of CHC. This disor-
der consists of three phases: hyperthyroidism, 
followed by hypothyroidism phase, and finally 
normalization of thyroid function and usually it 
takes weeks to months to resolve [74, 80, 89]. 

Subacute thyroiditis due to IFN therapy for hep-
atitis C infection is usually benign. In addition, a 
subset of these patients may progress to per-
manent hypothyroidism, usually accompanied 
by the development of TAbs suggesting an 
underlying autoimmune thyroiditis [43, 77]. 
Alternatively, the hypothyroidism may be due to 
a direct toxic effect of IFN on the thyroid. Clinical 
and subclinical hypothyroidism without TAbs 
during IFN therapy have been described and in 
many of these cases thyroid insufficiency is 
transient but permanent hypothyroidism is like-
ly to develop if patients were positive for thyroid 
antibodies [90].

Vitamin D and CHC

VitD is synthesized in the skin following expo-
sure to ultraviolet B radiation or ingested with 
the diet and stored in fat cells. The production 
of the biologically active form involves two 
steps of hydroxylation of which the first occurs 
in the liver to form 25-OH vitamin D and the 
second in the kidney, which produces the active 
form known as 1, 25-OH vitamin D. The active 
form of vitamin D enters the cells and binds to 
its receptor and the complex then heterodimer-
izes with the retinoid X receptor and binds to 
vitamin D response elements in the promoter 
of target genes, there by affecting their tran-
scription [91]. The major circulating form of vita- 
min D is the 25-OH and its serum concentra-

tions are used as an indicator of vitamin D sta-
tus [92, 93]. Serum levels of vitamin D are 
affected by various parameters, including sea-
son, sunlight exposure, nutrition, and the meta-
bolic syndrome [92-95].

Serum concentrations of 25(OH)-Vit D < 50 
nmol/L (20 ng/mL) is accepted as a marker of 
deficiency, whereas a concentration of 51-74 
nmol/L (21-29 ng/mL) indicates insufficiency 
[91, 93, 96]. VitD deficiency has been shown to 
associate with increased susceptibility to both 
infections and cancer [24, 25, 96-101].

Recent findings in HCV mono-infected patients 
have also shown a correlation between low 
serum levels of 25-OH vitamin D3 and severe 
liver fibrosis [102-104]. Vitamin D deficiency is 
very common (92%) among patients with chron-
ic liver disease [91, 92, 105]. Significantly lower 
VitD levels have been observed in CHC patients 
with advanced fibrosis compared to those with 
mild or absent fibrosis. Inverse relationship was 
also reported between the viral load and VitD 
plasma concentrations [106-108]. Further- 
more, certain polymorphisms in vitamin D 
receptor gene have also been shown to either 
represent potential predictors for treatment 
outcome [104, 109-113] while others to be a 
risk of developing hepatocellular carcinoma in 
CHC [114-116]. 

Patients with severe VitD deficiency had signifi-
cantly lower chance to achieve SVR following 
the treatment of CHC with Peg-IFN-α based 
therapy [21-23, 91, 92, 104, 117, 118]. On the 
other hand, those with near-normal or normal 
vitamin D obtained an SVR rate in about half of 
the cases [103, 117-120]. A recent meta-analy-
sis has reported that the diagnosis of advanced 
liver fibrosis was doubled when plasma vitamin 
D levels were ≤ 10 ng/mL with an odd ratio of 
2.37 (95% confidence interval = 1.20-4.72). 
Additionally, SVR rates were twice in those 
patients with serum VitD levels > 20 ng/mL 
[108].

The latest reports have also shown that VitD 
supplementation improves the probability of 
achieving SVR following treatment with Peg-
IFN-α based therapy and these findings indi-
cate a potential causal relationship between 
VitD and HCV infection [21, 103, 117, 118, 
121]. Some studies have also suggested that 
VitD possesses antiviral activity, and that sup-
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plementation of VitD significantly improved 
Peg-IFN-α based therapy outcome in CHC 
patients, most probably by exerting a direct 
inhibitory effect on viral production (Figure 3) 
[92, 122-125].

Nevertheless, other research groups reported 
that the baseline 25(OH)D level is not associ-
ated with SVR to Peg-IFN-α plus RBV therapy in 
chronic HCV infection, regardless of genotype 
and there was no correlation between VitD lev-
els and the stage of liver fibrosis in these 
patients [126-130]. One possible explanation 
for the discrepancies between the previously 
reported study could be related to the methods 
applied for the measurement of VitD levels in 
clinical laboratories, which could generate dif-
ferent levels of plasma VitD levels depending 
on the used method and target molecule [131-
133]. Hence, further randomized controlled 
studies with sufficient number of patients and 
appropriate detection methods for both VitD2 
and VitD3 (total and free) are still required to 
reach a definite conclusion on whether VitD 
supplementation during the course of CHC 
treatment is beneficial in achieving SVR.

Vitamin D in the regulation of the immune re-
sponse to HCV

Infection with HCV leads to acute and chronic 
necro-inflammatory liver disease [134, 135]. 

lating the expression of interleukin (IL)-8 [135, 
137].

Natural killer (NK) and natural killer T (NKT) 
cells consist the first line of immune response 
against HCV [139]. Infected liver cells release 
IFN-α and -β to activate of NK and NKT cells 
[140]. Furthermore, dendritic cells (DCs) 
release IL-12 that also activates the NK cells 
[140-142]. NK cells produce their antiviral 
activities by producing IFN-γ and tumour necro-
sis factor-α (TNF-α), which inhibit the replica-
tion of the virus but without destroying normal 
liver cells [143, 144]. In addition, they stimulate 
T helper 1 (Th1)/T cytotoxic (Tc) 1 responses 
[139, 145]. However, their role in controlling the 
infection is usually eliminated by HCV through 
blocking the production of IFN-γ via an interac-
tion between HCV E2 protein and NK cell CD81 
molecule [135, 137, 146, 147].

DCs also process and present viral antigens to 
specific immune system cells via class I and 
class II major histocompatibility complex mole-
cules. Viral particles are captured by DCs 
through Toll-like receptors (TLRs) [148-150]. 
Activated DCs release a variety of cytokines 
including IL-12, TNF-α, IFN-α and IL-10. These 
cytokines subsequently regulate and polarize 
the response of adjacent cells [149-152]. 
Mature DCs enter the lymph nodes after collec-

The immune system is not 
always able to control the 
infection and 70-80% of 
cases progress to chronic 
stage due to the escape of 
HCV from the immune system 
[135]. The release of IFN-α 
and -β is essential for the con-
trol of HCV during the acute 
phase [136, 137]. IFN-α/β 
activates a number of cellular 
genes, known as INF stimu-
lated genes (ISGs), which 
inhibit the replication and 
spread of the virus to other 
non-infected liver cells [138]. 
However, HCV is able to block 
type 1 IFN induction by the 
non-structural proteins (NS3 
and NS5A) and structural pro-
tein E2. HCV NS5A protein 
also inhibits the actions of 
endogenous IFN-α by upregu-

Figure 3. Mechanisms by which vitamin D supplementation could increase 
the response rate during the treatment of chronic hepatitis C with pegylated 
interferon-α based therapy.
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tion of viral epitopes to activate T cells in the 
specific immune system [138, 153].

The progression to chronic/adaptive response 
is initiated by CD4+-T cells, which provide help 
in activating cytotoxic and humoral responses. 
These cells can secrete Th1-cytokines includ-
ing IFN-γ, leading to inflammatory response or 
Th2 cytokines (e.g. IL-4 and IL-10), which limit 
Th1 cytokine-mediated response and favour 
the development of humoral response [135, 
154]. A multi-specific, strong, sustained, CD4+-
T-cell-specific Th1 response may be seen in 
infections with HCV progressing to resolution 
[137, 155]. However, when infection becomes 
chronic, a weak CD4-T-specific response with 
few specificities and scarce type 1 cytokine 
production is observed [137, 145, 149].

When specific immune response fails to control 
viral replication, the infected liver cells releases 
chemokines resulting in the migration of non-
specific mononuclear cells into the liver, which 
are unable to control infection but lead to sus-
tained liver damage [155-157]. Persistent 
inflammation also stimulates hepatic stellate 
cells, myofibroblasts, and fibroblasts, which 
lead to the development of liver fibrosis [137, 
157].

The classical action of VitD is the regulation of 
calcium homeostasis and bone metabolism. A 
relationship has recently been suggested 
between VitD status and susceptibility to infec-
tious diseases and its role in the regulation of 
innate and humoral immunity in human has 
recently emerged [91, 93, 95, 101, 122, 158-
160]. The bioactive form of VitD is an important 
immune modulator as shown by the results of 
several studies that calcitriol is crucial for the 
functions of T cells, NK cells, DCs and macro-
phages in various conditions [161-163]. These 
cells are known to be involved in the immune 
response to HCV and play an important role in 
the eradication of the viral infection [11]. 

Immunomodulatory roles for VitD during HCV 
infection have recently been proposed [164, 
165]. VitD is a critical regulator of immunity, 
playing a role in both innate and cell-mediated 
immune responses [100, 101, 166]. VitD regu-
lates the production of Th-1 cytokines, such as 
IFN-γ and IL-2, and also Th2 cytokines, such as 
IL-4 and IL-5. VitD also endorses innate immu-
nity by directly inducing gene expression of 
antimicrobial peptides, cathelicidin and β-de- 

fensin, in various human cell types [97, 159, 
160, 167]. Additionally, VitD supplementation 
could increase the sensitivity to Peg-IFN-α 
based therapy by downregulating the produc-
tion of IP-10, increasing the production of Th-1 
cytokines and ISGs by the hepatocyte and 
peripheral blood mononuclear cells [168]. It 
has also been suggested that VitD could also 
enhance the response to the conventional ther-
apy by modulating the production of Th-17 cell 
including IL-17 and -23 [169, 170].

How could vitamin D enhance response rate to 
Peg-IFN-α based therapy?

INF therapy stimulates a large number of ISGs 
including TLRs [171], TNF-α [172] and ILs [173]. 
IFN-α also enhances the activity of lympho-
cytes, macrophages, and NK cells and it acti-
vates neutrophils and monocytes [139, 145, 
155, 174]. IFN-α alters the immune response in 
patients with CHC from Th-2 to a Th-1 mediated 
pattern [175]. Th-1 cytokines mediate response 
and favour the eradication of the virus [135, 
155]. INF-α promotes Th-1 response through 
the increase in the production of IFN-γ, IL-2 and 
TNF-α by the hepatocyte and immune cells 
[138, 157]. IFN-α also inhibits the release of 
IL-6 and IL-10, which regulates Th-1/Th-2 
Cytokine balance, in patients with CHC [176, 
177]. Additionally, IFN-α alters the production 
of immunoglobulin and decreases T-regulatory 
cell function [137, 178].

As mentioned earlier, VitD plays crucial roles in 
the regulation of immune system. NK, NKT cells 
and DCs are known to be major regulators of 
immune response against HCV and their activa-
tion is essential to prevent viral replication and 
spread [139]. VitD modulates the production of 
NK cells in vitro [179], functions of both NK and 
NKT cells and significantly lower numbers of 
NKT cells was observed in vitamin D receptor 
null mice [180, 181]. VitD3 also enhanced and 
facilitated the immune-attack of NK cells 
against malignant cells in vitro [182]. The active 
metabolite of vitamin D3, calcipotriol, also aug-
mented the lysis effects of NK cells in vitro 
[183].

VitD3 has recently also been reported to pro-
mote the development of human DCs and to 
enhance their antimicrobial properties [184]. It 
also modulates the response of human DCs 
and their produced cytokines during their matu-
ration [185, 186]. VitD has also been shown to 
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be a major modulator of the tolerogenic DCs 
functions by modulating its metabolic pathways 
[187]. Furthermore, 1,25-dihydroxyvitamin D3 
promotes the generation of CD4+CD25+Foxp3+ 
regulatory T cells by treated mouse DCs [188]. 

Vitamin D has also been shown to regulate the 
release of several cytokines that are known to 
be involved in the immune and/or treatment 
response to IFN-α therapy. Several studies 
have demonstrated that vitamin D3 decreases 
the production of IL-8 [189-191], which is 
known to be induced by HCV NS3 and NS5A to 
inhibit the effects of INF-α on the production of 
IFN-γ [135, 137]. VitD2 and D3 also modulates 
the production of IL-6, IL-10, TNF-α and IFN-γ in 
a dose dependent manner [192-196]. Hence, 
supplementation with VitD could enhance the 
response to Peg-IFN-α based therapy by 
increasing the production of TNF-α and IFN-γ 
and decreasing the levels of IL-6, IL-10 and IL-8 
[197]. Further studies are still required to iden-
tify the mechanisms by which vitamin D levels 
modulate the immune system during CHC.

Role of vitamin D in the prevention/treatment 
of anemia

Vitamin D regulates the process of erythropoi-
esis by stimulating erythroid progenitor cells in 
a synergistic fashion with other hormones and 
cytokines, including EPO, and it has been 

especially in hemodialysis patients, where 
administration of VitD has been associated 
with dose reductions in ESA and increased 
reticulocytosis [201, 202]. Furthermore, vita-
min D3 (calcitriol), in synergism with EPO, 
increases the production of EPO receptor at the 
mRNA and protein levels in vitro [198]. A recent 
study has also reported that 1,25-dihydroxyvi-
tamin D3 was associated with decreased hepci-
din and increased ferroportin expression in 
vitro. The authors further reported that VitD 
decreased the release of pro-hepcidin cyto-
kines, IL-6 and IL-1β, which are also known to 
be associated with the development of anemia 
[203]. In vivo, high-dose vitamin D therapy also 
decreased systemic hepcidin levels in subjects 
with early stage chronic kidney disease [203].

Despite the aforementioned observations on 
the effects of VitD in the treatment of CHC and 
the prevention of anemia, few studies have only 
reported on a potential beneficial effect of add-
ing vitamin D to Peg-IFN-α based therapy to 
prevent the associated anemia. Vitamin D 
could prevent anemia during the course of CHC 
treatment by modulating the immune system, 
increasing erythrocyte production and prevent-
ing RBV induced oxidative stress (Figure 4) 
[17]. Although these observations are promis-
ing, the results need to be confirmed in human 
as the rate of RBCs absorption and intoxication 
by RBV is species dependent [61-63].

Figure 4. Possible mechanisms by which vitamin D supplementation could 
prevent the development of anemia during the treatment of chronic hepatitis 
C with pegylated interferon-α based therapy.

reported that vitamin D is cru-
cial for normal production of 
RBCs [198]. VitD3 stimulates 
the proliferation of erythroid 
progenitor cells independent-
ly from EPO [17, 199] and vita-
min D responsive element 
has been localized on the pro-
moter region of the EPO 
receptor gene [198]. 

The prevalence of anemia 
and the use of erythropoiesis-
stimulating agents (ESA) have 
been found to be negatively 
correlated with serum VitD 
levels regardless of kidney 
function in the general popu-
lation [200]. The role of vita-
min D in erythropoiesis has 
also been suggested by sev-
eral clinical observations, 
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Role of vitamin D in the prevention/treatment 
of thyroid disorders

Vitamin D has been shown to have important 
immunomodulatory properties [100, 101]. The 
most active natural vitamin D metabolite, 
1,25-Dihyroxyvitamin D3, effectively prevents 
the development of autoimmune thyroiditis. 
1,25(OH)2D3 exerts its immunomodulatory 
actions by inhibiting HLA class II expression on 
endocrine cells, proliferation of T cell and secre-
tion of inflammatory cytokines [24, 25, 204, 
205].

Deficiency of vitamin D was also found to cor-
relate with an increased incidence of autoim-
mune diseases [206]. Vitamin D supplementa-
tion enhances innate immunity and reduces 
the severity of autoimmunity [94, 100, 101]. 
Vitamin D levels were found to be lower in 
patients with AITDs than in healthy people [24, 
25, 206]. Deficiency of vitamin D was also 
linked to the presence of anti-thyroid antibod-
ies and abnormal thyroid functions [95, 206]. 
Hence vitamin D supplementation during the 
treatment of CHC with Peg-IFN-α based therapy 
could be beneficial in the prevention/elimina-
tion of the associated thyroid disorders; espe-
cially that VitD is inexpensive and carries mini-
mal side effects [24, 25, 95, 206].

Conclusions

Infection with HCV is a worldwide health prob-
lem and it is one of the most common causes 
of end stage liver diseases. The conventional 
treatment of chronic hepatitis C consists of a 
weekly injection of Peg-IFN-α and a daily oral 
dose of ribavirin. Although new directly acting 
antiviral agents have been introduced and they 
achieve better cure rates, these medications 
are expensive and a large proportion of patients 
may not have access to them. The recent find-
ings that vitamin D supplementation could 
have a potential role in improving the success 
rate of Peg-IFN-α during the treatment of CHC 
merit further research especially that it is wide-
ly available and inexpensive, and it could pro-
vide an alternative option to treat those patients 
who have limited financial support and/or 
access to the new antiviral treatment. 

Besides its long duration and low response 
rate, Peg-IFN-α based therapy is also associat-
ed with several extrahepatic adverse effects 

and the most common are the development of 
anemia and thyroid disorders during the course 
of treatment, which could lead to termination of 
CHC treatment. Vitamin D has recently been 
reported to play significant roles in the regula-
tion of immune system, the process of erythro-
poiesis and thyroid functions. Several studies 
have indicated that VitD supplementation is 
useful for the prevention/treatment of anemia 
and thyroid disorders. However, little is known 
about the potential effect(s) for vitamin D as a 
prophylactic/treatment agent against these 
side effects during the treatment of CHC with 
Peg-IFN-α based therapy. Further studies with 
large number of patients are required to deter-
mine whether supplementation with vitamin D 
during the treatment of CHC with Peg-IFN-α 
based therapy is useful in increasing the rates 
of SVR and preventing the development of 
associated adverse effects.
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