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Abstract 22 
Zika virus was discovered in Uganda in 1947 and is transmitted by Aedes mosquitoes, which 23 
also act as vectors for dengue and chikungunya viruses throughout much of the tropical world. In 24 
2007, an outbreak in the Federated States of Micronesia sparked public health concern. In 2013, 25 
the virus began to spread across other parts of Oceania and in 2015, a large outbreak in Latin 26 
America began in Brazil. Possible associations with microcephaly and Guillain-Barré syndrome 27 
observed in this outbreak have raised concerns about continued global spread of Zika virus, 28 
prompting its declaration as a Public Health Emergency of International Concern by the World 29 
Health Organization. We conducted species distribution modelling to map environmental 30 
suitability for Zika. We show a large portion of tropical and sub-tropical regions globally have 31 
suitable environmental conditions with over 2.17 billion people inhabiting these areas. 32 
 33 
Impact Statement 34 
This global map of environmental suitability for Zika virus and the estimated population living at 35 
potential risk can help refine public health guidelines, travel advisories, and intervention 36 
strategies at a crucial time in the global spread of this arbovirus. 37 
 38 
Introduction 39 
Zika virus (ZIKV) is an emerging arbovirus carried by mosquitoes of the genus Aedes (Musso, 40 
Nilles and Cao-Lormeau 2014). Although discovered in Uganda in 1947 (Dick 1952, Dick 1953), 41 
ZIKV was only known to cause sporadic infections in humans in Africa and Asia until 2007 42 
(Lanciotti et al. 2008), when it caused a large outbreak of symptomatic cases on Yap island in 43 
the Federated States of Micronesia (FSM), followed by another in French Polynesia in 2013-14 44 
and subsequent spread across Oceania (Musso, Cao-Lormeau and Gubler 2015a). In the 2007 45 
Yap island outbreak, it was estimated that approximately 20% of ZIKV cases were symptomatic. 46 
While indigenous transmission of ZIKV to humans was reported for the first time in Latin America 47 
in 2015 (Zanluca et al. 2015, WHO 2015), recent phylogeographic research estimates that the 48 
virus was introduced into the region between May and December 2013 (Faria et al. 2016). This 49 
recent rapid spread has led to concern that the virus is following a similar pattern of global 50 
expansion to that of dengue and chikungunya (Musso et al. 2015a). 51 
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 52 
ZIKV has been isolated from 19 different Aedes species (Haddow et al. 2012, Grard et al. 2014), 53 
but virus has been most frequently found in Ae. aegypti (Monlun et al. 1992, Marchette, Garcia 54 
and Rudnick 1969, Smithburn 1954, Pond 1963, Faye et al. 2008, Foy et al. 2011b, Dakar 1999). 55 
These studies were based upon ancestral African strains of ZIKV, but the current rapid spread of 56 
ZIKV in Latin America is indicative of this highly efficient arbovirus vector (Marcondes and 57 
Ximenes 2015). The relatively recent global spread of Ae. albopictus (Benedict et al. 2007, 58 
Kraemer et al. 2015c) and the rarity of ZIKV isolations from wild mosquitoes may also partially 59 
explain the lower frequency of isolations from Ae. albopictus populations. Whilst virus 60 
transmission by Ae. albopictus and other minor vector species has normally resulted in only a 61 
small number of cases (Kutsuna et al. 2015, Roiz et al. 2015), these vectors do pose the threat 62 
of limited transmission (Grard et al. 2014). The wide geographic distribution of Ae. albopictus 63 
combined with the frequent virus introduction via viraemic travellers (McCarthy 2016, Bogoch et 64 
al. 2016, Morrison et al. 2008, Scott and Takken 2012), means the risk for ZIKV infection via this 65 
vector must therefore also be considered in ZIKV mapping. 66 
 67 
The fact that ZIKV reporting was limited to a few small areas in Africa and Asia until 2007 means 68 
that global risk mapping has not, until recently, been a priority (Pigott et al. 2015b). Recent 69 
associations with Guillain-Barré syndrome in adults and microcephaly in infants born to ZIKV-70 
infected mothers (World Health Organization 2015, Martines et al. 2016) have revealed that ZIKV 71 
could lead to more severe complications than the mild rash and flu-like symptoms that 72 
characterize the majority of symptomatic cases (Gatherer and Kohl 2015). Considering these 73 
potentially severe complications and the rapid expansion of ZIKV into previously unaffected 74 
areas, the global public health community needs information about those areas that are 75 
environmentally suitable for transmission of ZIKV to humans. Being a closely related flavivirus to 76 
DENV, there is furthermore the potential for antigen-based diagnostic tests to exhibit cross-77 
reactivity when IgM ELISA is used for rapid diagnosis. Although ZIKV-specific serologic assays 78 
are being developed by the U.S. Centers for Disease Control, currently the only method of 79 
confirming ZIKV infection is by using PCR on acute specimens (Lanciotti et al. 2008, Faye et al. 80 
2008). Awareness of suitability for transmission is essential if proper detection methods are to be 81 
employed. 82 
 83 
In this paper, we use species distribution modelling techniques that have been useful for 84 
mapping other vector-borne diseases such as dengue (Bhatt et al. 2013), Leishmaniasis (Pigott 85 
et al. 2014b), and Crimean-Congo Haemorrhagic Fever (Messina et al. 2015b) to map 86 
environmental suitability for ZIKV. The environmental niche of a disease can be identified 87 
according to a combination of environmental conditions supporting its presence in a particular 88 
location, with statistical modelling then allowing this niche to be described quantitatively 89 
(Kraemer et al. 2016). Niche modelling uses records of known disease occurrence alongside 90 
hypothesized environmental covariates to predict suitability for disease transmission in regions 91 
where it has yet to be reported (Elith and Leathwick 2009). Contemporary high spatial-resolution 92 
global data representing a variety of environmental conditions allows for these predictions to be 93 
made at a global scale (Hay et al. 2006). 94 
 95 
Results 96 
Figure 1a shows the locations of the 323 standardized occurrence records in the final dataset, 97 
classified by the following date ranges: (i) up until 2006 (before the outbreak in FSM); (ii) 98 
between 2007 (the year of the FSM outbreak) and 2014; and (iii) since 2015, the first reporting of 99 
ZIKV in the Americas. This map is accompanied by the graph in Figure 1b, showing the number 100 
of reported occurrence locations globally by year. These figures highlight the more sporadic 101 
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nature of reporting until recent years, with the majority of occurrences in the dataset (63%) 102 
coming from the recent 2015-2016 outbreak in Latin America. 103 
 104 
The final map that resulted from the mean of 300 ensemble Boosted Regression Tree (BRT) 105 
models is shown in Figure 2a (with greater detail shown for each region in Figures 2b-2d). Figure 106 
2 -- figure supplement 1 shows the distribution of uncertainty based upon the upper and lower 107 
prediction quantiles from the 300 models. We restricted our models to make predictions only 108 
within areas where i) mosquito vectors (in this case Ae. aegypti) were able to persist and ii) 109 
where temperature was sufficient for arboviral replication within the mosquito. The former of 110 
these was calculated by taking the Ae. aegypti probability of occurrence (Kraemer et al. 2015c) 111 
value that incorporated 90% of all known occurrences (Kraemer et al. 2015b) (giving a threshold 112 
value of 0.8 and greater) while the latter was evaluated using a mechanistic mosquito model 113 
(Brady et al. 2013, Brady et al. 2014), which identified regions where arboviral transmission could 114 
be sustained for at least 355 days (one year minus the human incubation period) in an average 115 
year. Figure 3 is a country-level map distinguishing between those countries that are currently 116 
reporting ZIKV, those which have reported ZIKV in the past, those which have highly suitable 117 
areas for transmission, and those which are unsuitable. Our models predicted high levels of risk 118 
for ZIKV in many areas within the tropical and sub-tropical zones. Large portions of the Americas 119 
are suitable for transmission, with the largest areas of risk occurring in Brazil, followed by 120 
Colombia and Venezuela, all of which have reported high numbers of cases in the 2015-2016 121 
outbreak. In Brazil, where the highest numbers of ZIKV are reported in the ongoing epidemic, the 122 
coastal cities in the south as well as large areas of the north are identified to have the highest 123 
environmental suitability of ZIKV. The central region of Brazil, on the other hand, has low 124 
population densities and smaller mosquito populations, which is reflected in the relatively low 125 
suitability for ZIKV transmission seen in the map. Although ZIKV has yet to be reported in the 126 
USA, a large portion of the southeast region of the country, including much of Texas through to 127 
Florida, is also highly suitable for transmission. Potential risk for ZIKV transmission is high in 128 
much of sub-Saharan Africa, with continuous suitability in the Democratic Republic of Congo and 129 
surrounding areas and several sporadic case reports in western sub-Saharan countries since the 130 
1950s. Although no symptomatic cases have yet been reported in India, a large portion of this 131 
country is at potential risk for ZIKV transmission (over 2 million square kilometres), with 132 
environmental suitability extending from its northwest regions through to Bangladesh and 133 
Myanmar. The Indochina region, southeast China, and Indonesia all have large areas of 134 
environmental suitability as well, extending into Oceania. While only representing less than ten 135 
percent of Australia’s total land area, the area shown to be suitable for ZIKV transmission in its 136 
northernmost regions is considerable (comprising nearly 250,000 square kilometres). 137 
 138 
Our models showed ZIKV risk to be particularly influenced by annual cumulative precipitation, 139 
contributing 65.0% to the variation in the ensemble of models. The next most important predictor 140 
in the model was temperature suitability for DENV transmission via Ae. albopictus, contributing 141 
14.6%. These are followed by urban extents (8.3%), temperature suitability for DENV via Ae. 142 
aegypti (5.7%), the Enhanced Vegetation Index (EVI; 3.8%), and minimum relative humidity 143 
(2.5%). Effect plots for each covariate are provided in Figure 2 -- figure supplement 2. Validation 144 
statistics indicated high predictive performance of the BRT ensemble mean map evaluated in a 145 
10-fold cross-validation procedure, with area under the receiver operating characteristic (AUC) of 146 
0.829 (±0.121 SD). Due to the uncertainty about Ae. albopictus as a competent vector for ZIKV, 147 
we also provide results for an ensemble of models which did not include temperature suitability 148 
for dengue via this mosquito species in Figure 2 -- figure supplement 3. 149 
 150 
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A threshold environmental suitability value of 0.397 in our final map was determined to 151 
incorporate 90% of all ZIKV occurrence locations. This was used to classify each 5km x 5km 152 
pixel on our final map as suitable or unsuitable for ZIKV transmission to humans. Using high-153 
resolution global population estimates (WorldPop 2015, SEDAC 2015), we summed the 154 
populations living in Zika-suitable areas and have identified 2.17 billion people globally living 155 
within areas that are environmentally suitable for ZIKV transmission. Table 1 shows a breakdown 156 
of this figure by major world region, also showing the top four contributing countries to the 157 
potential population at risk. Asia has the most people living in areas that are suitable for ZIKV 158 
transmission at 1.42 billion, accounted for in large part by those living in India. In Africa, roughly 159 
453 million people are living in areas suitable for ZIKV transmission, the largest proportion of 160 
which live in Nigeria. In the Americas, more than 298 million people live in ZIKV-suitable 161 
transmission zones, with approximately 40 percent of these people living in Brazil. Within the 162 
majority of environmentally suitable areas for ZIKV in the Americas, prolonged year-round 163 
transmission is possible. Southern Brazil and Argentina, however, are more likely to see 164 
transmission interrupted throughout the year, as is the case with the USA should autochthonous 165 
ZIKV transmission occur there. Using high-resolution data on births for the year 2015 (WorldPop 166 
2015), we also estimate that 5.42 million births will occur in the Americas over the next year 167 
within areas and times of environmental suitability for ZIKV transmission. 168 
 169 
Discussion 170 
A large number of viruses (circa 219) are known to be pathogenic (Woolhouse et al. 2012). Of 171 
the 53 species of Flavivirus, 19 are reported to have caused illness in humans (ICTV 2014). 172 
Some flaviviruses, such as DENV, YFV, Japanese encephalitis virus, and West Nile virus, are 173 
widespread, causing many thousands of infections each year. The remainder, however, have 174 
been recognized as being pathogenic to humans for decades, but have highly focal reported 175 
distributions and are only minor contributors to mortality and disability globally (Hay et al. 2013, 176 
Murray et al. 2015). As a result, many are of relatively low priority when research and policy 177 
interest are considered (Pigott et al. 2015b). The recent spread of ZIKV across the globe 178 
highlights the need to reassess our consideration of these other flaviviruses, to gain a better 179 
understanding of the factors driving their spread and the potential for geographic expansion 180 
beyond their currently limited geographical extents. 181 
 182 
Environmental suitability for virus transmission in an area does not necessarily mean that it will 183 
arrive and/or establish in that location. Arboviral infections in particular are dependent on a 184 
variety of non-environmental factors, with their movement having historically been largely 185 
attributed to human mobility from travel, trade, and migration, which introduce the viruses to 186 
places where mosquito vectors are already present (Murray, Quam and Wilder-Smith 2013, 187 
Weaver and Reisen 2010, Nunes et al. 2015, Gubler and Clark 1995). The identification of 188 
locations with permissible environments for transmission of emerging diseases like ZIKV is 189 
crucial, as importation could give rise to subsequent autochthonous cases in these locations 190 
(Hennessey, Fischer and Staples 2016, Zanluca et al. 2015). In order to identify places 191 
potentially receptive for ZIKV, we assembled the first comprehensive spatial dataset for ZIKV 192 
occurrence in humans and compiled a comprehensive set of high-resolution environmental 193 
covariates. We then used these data to implement a species distribution modelling approach 194 
(Elith and Leathwick 2009) that has proven useful for mapping other vector-borne diseases 195 
(Bhatt et al. 2013, Pigott et al. 2014a, Mylne et al. 2015, Messina et al. 2015b), allowing us to 196 
make inferences about environmental suitability for ZIKV transmission in areas where it has yet 197 
to be reported or where we are less certain about its presence. How the ongoing epidemic 198 
unfolds in terms of case numbers (or incidence) will depend on a range of other factors such as 199 
local transmission dynamics, herd immunity, patterns of contact among mosquitoes and 200 
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infectious and susceptible humans (Stoddard et al. 2013), and mosquito-to-human ratios as 201 
recently shown for dengue (Kraemer et al. 2015a) and chikungunya (Salje et al. 2016). 202 
 203 
Globally, we predict that over 2.17 billion people live in areas that are environmentally suitable for 204 
ZIKV transmission. We also estimate the number of births occurring in the Americas only, as it is 205 
the region for which the most accurate high-resolution population data on births exists (Tatem et 206 
al. 2014, Sorichetta et al. 2015) and because it is the focus of an ongoing outbreak, which is the 207 
largest recorded thus far. In the Americas alone, an estimated 5.42 million births occurred in 208 
2015 within areas and at times that are suitable for ZIKV transmission. It is important to 209 
recognize that not all individuals will be exposed to ZIKV. Like with other flaviviruses, a ZIKV 210 
outbreak may be temporally and spatially sporadic and, even in the most receptive environments, 211 
is unlikely that all of the population will be infected. Furthermore, increasing herd immunity of this 212 
likely sterilizing infection will rapidly reduce the size of the susceptible population at risk for 213 
infection in subsequent years (Dick, Kitchen and Haddow 1952) and work is ongoing to predict 214 
the likely infection dynamics after establishment. Instead, the estimates are intended as 215 
indicators of the total number of individuals or births that may require protection during the first 216 
wave of the outbreak. Specifically, these populations should be the focus of efforts to increase 217 
awareness and provide guidelines for mitigating personal risk of infection. In future analyses, our 218 
estimates could be extended to include ZIKV incidence and the virus’ effect on incidence of 219 
associated conditions such as Guillain-Barré syndrome and microcephaly. Before appropriately 220 
caveated estimates can be generated, however, more information is needed regarding: (i) the 221 
background rate of these conditions due to other causes; (ii) how risk may vary throughout the 222 
course of a pregnancy; (iii) the proportion of the population exposed during outbreaks; and (iv) 223 
whether or not immunity acquired through a mother’s prior exposure is protective. 224 
 225 
For all arboviral diseases, public health education about reducing populations and avoiding 226 
contact with mosquito vectors is required in at-risk areas. Specific to ZIKV is the risk of 227 
microcephaly in newborns, which has led public health agencies to issue warnings for women 228 
who are currently or planning on becoming pregnant in areas suspected to have ongoing ZIKV 229 
transmission and the declaration of a Public Health Emergency of International Concern 230 
(Heymann et al. 2016). Due to the sensitive nature and implications of these warnings, it is 231 
important that levels of risk are rigorously estimated, validated, and updated. Transmission of 232 
related arboviral diseases still occurs in many areas we defined as at-risk for ZIKV, which 233 
highlights the need for improved vector control outcomes, particularly those targeting Ae. aegypti. 234 
Predicted levels of risk for ZIKV transmission are potentially helpful for prioritized allocation of 235 
vector control resources, as well as for differential diagnosis and, if a vaccine becomes available, 236 
delivery efforts. It should be noted that instances of ZIKV sexual transmission have been 237 
reported (Patino-Barbosa et al. 2015, Musso et al. 2015, Foy et al. 2011a). We did not 238 
incorporate secondary modes of transmission into the models we described here, but our map 239 
can help inform future discussions about the potential impact of this mode of transmission as its 240 
relative importance becomes better understood. 241 
 242 
A great deal of basic epidemiological information specific to ZIKV is lacking. As a result, 243 
information must be leveraged from our knowledge about transmission of related arboviruses. 244 
Previous work has focused on mapping other vector borne diseases that share much of the 245 
ecology of Zika, such as DENV (Bhatt et al. 2013) and CHIKV, as well as for its primary vectors, 246 
Ae. aegypti and Ae. albopictus (Kraemer et al. 2015c). For this reason, temperature suitability for 247 
dengue (Brady et al. 2013, Brady et al. 2014) was entered into the models due to the greater 248 
number of field and laboratory studies available for parameterising this metric for DENV. Until 249 
more studies related to vector competence and temperature constraints on ZIKV transmission to 250 
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humans are conducted, this is the most accurate indicator of arboviral disease transmission via 251 
Aedes mosquitoes currently available. Indeed, all other covariates in our models could equally be 252 
applied to mapping DENV and CHIKV, and ZIKV-specific refinements to modelling covariates will 253 
be possible as the disease continues to expand to allow for improvements in future iterations of 254 
the map. The relatively smaller amount of occurrence data available for ZIKV (especially prior to 255 
recent outbreaks) means that this dataset should also be updated with new information as 256 
necessary, leading to a stronger global evidence base and improved accuracy of future maps. 257 
Better understanding of ZIKV transmission dynamics will eventually allow for further cartographic 258 
refinements to be made, such as the differentiation between endemic- and epidemic-prone 259 
areas. Still, all covariates included in the current study have been updated and refined since 260 
(Bhatt et al. 2013), and when combined with the most extensive occurrence database available 261 
for ZIKV, the resulting map we present here is currently the most accurate depiction of the 262 
distribution of environmental suitability for ZIKV. A map highlighting differences in predicted 263 
suitability for both diseases is provided in Figure 2 -- figure supplement 5. 264 
 265 
Conclusion 266 
In this study, we produced the first global high spatial-resolution map of environmental suitability 267 
for ZIKV transmission to humans using an assembly of known records of ZIKV occurrence and 268 
environmental covariates in a species distribution modelling framework. While it is clear that 269 
much remains to be understood about ZIKV, this first map serves as a baseline for 270 
understanding the change in the geographical distribution of this globally emerging arboviral 271 
disease. Knowledge of the potential distribution can encourage more vigilant surveillance in both 272 
humans and Aedes mosquito populations, as well as help in the allocation of limited resources 273 
for disease prevention. Public health awareness campaigns and advice for mitigation of 274 
individual risk can also be focused in the areas we have predicted to be highly suitable for ZIKV 275 
transmission, particularly during the first wave of infection in a population. The maps we have 276 
presented may also inform existing travel advisories for pregnant women and other travellers. 277 
The maps and underlying data are freely available online via figshare (http://www.figshare.com). 278 
 279 
Methods 280 
To map environmental suitability for ZIKV transmission to humans, we applied a species 281 
distribution modelling approach to establish a multivariate empirical relationship between the 282 
probability of ZIKV occurrence and the environmental conditions in locations where the disease 283 
has been confirmed. We employed an ensemble boosted regression trees (BRT) methodology 284 
(De'ath 2007, Elith, Leathwick and Hastie 2008), which required the generation of: (i) a 285 
comprehensive compendium of known locations of disease occurrence in humans; (ii) a set of 286 
background points representing locations where ZIKV has not yet been reported; and (iii) a set of 287 
high-resolution globally gridded environmental and socioeconomic covariates hypothesised to 288 
affect ZIKV transmission. The resulting model produces a 5km x 5km spatial-resolution global 289 
map of environmental suitability for ZIKV transmission to humans. 290 
 291 
Assembly of the geo-referenced ZIKV occurrence dataset 292 
Information about the locations of ZIKV occurrence in humans was extracted from peer-reviewed 293 
literature, case reports, and informal online sources following previously established protocols 294 
(Kraemer et al. 2015b, Messina et al. 2014, Messina et al. 2015a). To collate the peer-reviewed 295 
dataset, literature searches were undertaken using PubMed 296 
(http://www.ncbi.nlm.nih.gov/pubmed) and ISI Web of Science (http://www.webofknowledge.com) 297 
search engines using the search term “Zika”. No language restrictions were placed on these 298 
searches; however, only those citations with a full title and abstract were retrieved, resulting in 299 
the review of 148 references ranging in publication dates between 1951 and 2015. In-house 300 
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language skills allowed review of all English, French, Portuguese and Spanish articles for 301 
useable location information for human ZIKV occurrence. ProMED-mail 302 
(http://www.promedmail.org) was also searched using the term “Zika”, resulting in the review of 303 
139 reports between 27 June 2007 and 18 January 2016. Additionally, the most current database 304 
of ZIKV case locations in Brazil was obtained directly from the Brazilian Ministry of Health. From 305 
all sources, only laboratory confirmation of symptomatic ZIKV infection in humans was entered 306 
into the dataset (mention of suspected cases was not entered). Serological evidence from 307 
healthy individuals could represent a past infection, with transmission potentially occurring in a 308 
different location to that where the individual currently resides (Darwish et al. 1983), or could be 309 
an artefact from possible cross-reactivity with a variety of different viruses (Smithburn et al. 310 
1954). As a result, these less reliable diagnoses of ZIKV were excluded. 311 
 312 
All available location information was extracted from each peer-reviewed article and ProMED 313 
case report. The site name was used together with all contextual information provided about the 314 
site to determine its latitudinal and longitudinal coordinates using Google Maps 315 
(https://www.maps.google.com). If the study site could be geo-positioned to a specific place, it 316 
was recorded as a point location. If the study site could only be identified at an administrative 317 
area level (e.g. province or district), it was recorded as a polygon along with an identifier of its 318 
administrative unit. If imported cases were reported with information on the site of infection, they 319 
were geo-positioned to this site; if imported cases were reported with no information about the 320 
site of infection, they were not entered into the dataset. Informal online data sources were 321 
collated automatically by the web-based system HealthMap (http://www.healthmap.org) as 322 
described elsewhere (Freifeld et al. 2008). Alerts for ZIKV were obtained from HealthMap for the 323 
years 2014-2016, and then manually checked for validity. In total, usable location information 324 
was extracted from 110 sources. Information was also collected about the status of symptoms in 325 
each reported occurrence, distinguishing between those where symptomatic cases were being 326 
reported, versus those where only seroprevalence was detected in healthy individuals. 327 
 328 
Due to the potential for multiple independent reports referring to the same cases temporal and 329 
spatial standardization was required, as we have described previously in detail for dengue 330 
mapping efforts (Messina et al. 2014). In brief, an occurrence was defined as a unique location 331 
with one or more confirmed cases of ZIKV occurring within one calendar year (the finest temporal 332 
resolution available across all records). Point locations were considered to be overlapping if they 333 
lay on the same 5km x 5km pixel, and polygon locations were identified by a unique 334 
administrative unit code. Furthermore, all polygons whose geographic area was greater than one 335 
square decimal degree (approximately 111 square kilometers at the equator) were removed from 336 
the dataset to avoid averaging covariate values over very large areas, and only those 337 
occurrences comprising symptomatic individuals were retained for modelling purposes to ensure 338 
an accurate location of infection. In total, the final occurrence dataset contained 323 unique 339 
occurrences to be entered into our BRT modelling procedure. A map of the final set of 340 
occurrence locations is provided as Figure 1a. 341 
 342 
Generation of the background location dataset 343 
Separate maps of the relative probability of occurrence of Ae. aegypti and Ae. albopictus 344 
(Kraemer et al. 2015c) were used to compute a combined metric of the relative probability of 345 
vector occurrence, by taking the maximum value from the two layers for all 5km x 5km gridded 346 
cells globally. The inverse of this combined-Aedes occurrence probability layer (higher values 347 
indicating greater certainty of absence) was then used to draw a biased sample of 10,000 348 
background locations. As such, a greater number of background points were sampled in areas 349 
where we are more certain that Ae. aegypti or Ae. albopictus do not occur, and therefore where 350 
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ZIKV is less likely to be transmitted to humans. While it has been demonstrated that predictive 351 
accuracy from presence-background species distribution models can be improved by biasing 352 
background record locations toward areas with greatest reporting probabilities (Phillips et al. 353 
2009), information on possible reporting biases, or proxies of such spatial bias, are currently 354 
unavailable for ZIKV. These 10,000 background locations were combined with the standardized 355 
occurrence dataset to serve as comparison data locations in the BRT species distribution 356 
modelling procedure. The background locations were weighted such that their total sum was 357 
equal to the total number of occurrence locations (n=237; pseudo-absence weighting=0.0237), in 358 
order to aid in the discrimination capacity of the model (Barbet-Massin et al. 2012). 359 
 360 
Explanatory Covariates 361 
A set of six covariates hypothesized to influence the global distribution of ZIKV transmission to 362 
humans were used in our models to establish an empirical relationship between ZIKV presence 363 
or absence and underlying environmental conditions. These six covariates included: (i) an index 364 
of temperature suitability for dengue transmission to humans via Ae. aegypti; (ii) temperature 365 
suitability for dengue transmission to humans via Ae. albopictus; (iii) minimum relative humidity; 366 
(iv) annual cumulative precipitation; (v) an enhanced vegetation index (EVI); and (vi) urban 367 
versus rural habitat type. The underlying hypothesis behind each of the covariates is discussed 368 
in more detail below, along with a description of data sources and any processing that was 369 
undertaken before entering these covariates into our models. Maps of each covariate layer are 370 
provided in the supplementary information in Figure 1 -- figure supplement 1. 371 
 372 
Temperature suitability for dengue transmission to humans via Ae. aegypti or Ae. albopictus:  373 
Temperature affects key physiological processes in Aedes mosquitoes, including age- and 374 
temperature-dependent adult female survival, as well as the duration of the extrinsic incubation 375 
period (EIP) of arboviruses and the length of the gonotrophic cycle (Brady et al. 2013). While 376 
these parameters have yet to be measured experimentally for ZIKV, they have been for the 377 
closely related DENV. We obtained temperature data from WorldClim v1.03 378 
(http://www.wordclim.org), which uses historic global meteorological station data from 1961-2005 379 
to interpolate global climate surfaces. MARKSIM software (Jones and Thornton 2000) was then 380 
used to apply the coefficients of 17 Global Climate Models (GCMs) to estimate temperature 381 
values for the year 2015. This enabled us to incorporate the quantified effects of temperature on 382 
DENV transmission into a cohort simulation model that analysed the cumulative effects of both 383 
diurnal and inter-seasonal changes in temperature on DENV transmission within an average 384 
year, both for Ae. aegypti and Ae. albopictus separately. The models were then applied to the 385 
2015 temperature data for each 5km x 5km grid cell globally. This resulted in maps of 386 
temperature suitability for DENV transmission by either Aedes species ranging from 0 (no 387 
suitable days) to 1 (365 suitable days). These measures were then used as a proxy for 388 
temperature suitability for ZIKV transmission to humans. 389 
 390 
Annual cumulative precipitation: Presence of static surface water in natural or man-made 391 
containers is a pre-requisite for Aedes oviposition and larval and pupal development. While fine-392 
scale spatial and temporal heterogeneities have been observed between precipitation, vector 393 
abundance, and incidence of human DENV infections, there is evidence that areas with greater 394 
amounts of precipitation are generally associated with higher DENV infection risk (Chandy et al. 395 
2013, Chowell and Sanchez 2006, Dom et al. 2013, Pinto et al. 2011, Restrepo, Baker and 396 
Clements 2014, Sang et al. 2014, Sankari et al. 2012, Campbell et al. 2015). Although studies 397 
that directly connect levels of precipitation to ZIKV transmission have yet to exist, we assumed 398 
for Zika a similar association of precipitation as closely related flaviruses. WorldClim v1.03 399 
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precipitation data and MARKSIM software were used as described above for temperature, to 400 
estimate annual cumulative precipitation for the year 2015 for each 5km x 5km grid cell globally. 401 
 402 
Minimum relative humidity: Greater relative humidity has been found to promote DENV 403 
propagation in Ae. aegypti mosquitoes in several localized settings (Colon-Gonzalez, Lake and 404 
Bentham 2011, Thu, Aye and Thein 1998), and has also been found to be an important 405 
contributor when predicting DENV risk at a global scale (Hales et al. 2002). Therefore, we again 406 
assumed a similar association for ZIKV in the absence of any direct studies, and included the 407 
minimum annual relative humidity in our models as a potential limiting factor to ZIKV 408 
transmission. Relative humidity (RH) was calculated as a percent of saturation humidity, or the 409 
amount of water vapour required to saturate the air given a particular temperature, using the 410 
temperature data from WorldClim v1.03 described earlier. The saturation, or “dew”, point ( ௗܶ௪) 411 
was calculated using a tabular relationship (Linacre 1977). RH was then calculated as follows: 412 ܴܪ = ܸ( ௫ܶ)ܸ( ௗܶ௪) × 100 

 413 
Where ܸ( ௗܶ௪) = 611.21 × exp(17.502 × ଶସ.ଽା ) and ܸ( ௫ܶ) is the humidity at the given 414 
temperature. We then extracted the minimum annual RH for each 5km x 5km pixel globally for 415 
the year 2015. 416 
 417 
Enhanced Vegetation Index (EVI): A close association has been shown between local moisture 418 
supply, vegetation canopy development, and abundance of mosquito reproduction (Linthicum et 419 
al. 1999), with previous studies highlighting the importance of moisture-related measures such as 420 
relative humidity to DENV occurrence (Hales et al. 2002). Although resistant to desiccation, both 421 
Aedes eggs and adults require moisture to survive (Cox et al. 2007, Sota and Mogi 1992, 422 
Reiskind and Lounibos 2009, Costa et al. 2010, Luz et al. 2008), with low dry season moisture 423 
levels substantially affecting Aedes mortality (Russell, Kay and Shipton 2001, Trpis 1972, Luz et 424 
al. 2008). Vegetation canopy cover has previously been associated with higher Aedes larvae 425 
density (Fuller et al. 2009, Troyo et al. 2009, Bisset Lazcano et al. 2006, Barrera et al. 2006) by 426 
reducing evaporation from containers, decreasing sub-canopy wind speed, and protecting 427 
outdoor habitats from direct sunlight. To account for these factors, we included a 5km x 5km 428 
resolution measure of the EVI derived from NASA’s Moderate Resolution Imaging Spectrometer 429 
(MODIS) imagery (Wan et al. 2002, Lin 2012), summarized from gap-filled, 8-day, 1km x 1km 430 
resolution images acquired globally for years 2000 through 2014 (Weiss et al. 2014) to produce a 431 
mean annual EVI layer. This mean EVI product is indicative of amount of photosynthesis taking 432 
place in the environment over the course of a year, which is positively correlated with the density 433 
of vegetation, and is thus a proxy for the level of moisture available given the relationship 434 
between precipitation and vegetative growth. 435 
 436 
Urban versus rural habitat type: There is a well-established link between urban areas, some 437 
vector borne diseases, and their vectors. In particular, Ae. aegypti is found in close proximity to 438 
human dwellings often breeding in artificial containers (Brown et al. 2011, Powell and Tabachnick 439 
2013, Kraemer et al. 2015c). To identify the relationship between urbanisation and ZIKV 440 
presence we adapted probabilistic spatial modelling techniques to predict the spatial distribution 441 
of global urban extents at a 5km x 5km spatial resolution. We used urban growth rates from the 442 
United Nations Population Division (Division 2014), paired with urban extents measured and 443 
tested by the Moderate Resolution Imaging Spectroradiometer Collection 5 (MODIS C5) land-444 
cover product for Asia (Schneider et al. 2015, Schneider, Friedl and Potere 2009, Schneider, 445 
Friedl and Potere 2010). A set of spatial covariate datasets hypothesized to influence the spatial 446 
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patterns of urban expansion was generated, including the time to travel from each 5km x 5km 447 
pixel to a major city (Nelson 2008), the proportion of urbanised land within a buffer of 20 km, 448 
human population density (Linard and Tatem 2012, Stevens et al. 2015, Gaughan et al. 2013), 449 
slope (Becker et al. 2009), and distance to water (Arino et al. 2008). A BRT modelling approach 450 
was then used to predict areas that would become urban in 2015 (Linard, Tatem and Gilbert 451 
2013). Outputs were tested against a training dataset comprising points from Asia only, and 452 
showed good overall predictive performance (AUC=0.82). The output raster is a 5km x 5km 453 
gridded surface with urban (1) vs. rural (0) pixels. 454 
 455 
Ensemble Boosted Regression Trees approach 456 
The boosted regression tree (BRT) modelling procedure combines regression trees with gradient 457 
boosting (Friedman 2001). In this procedure, an initial regression tree is fitted and iteratively 458 
improved upon in a forward stagewise manner (boosting) by minimising the variation in the 459 
response not explained by the model at each iteration. It has been shown to fit complicated 460 
response functions efficiently, while guarding against over-fitting by use of extensive internal 461 
cross-validation. As such, this approach has been successfully employed in the past to map 462 
dengue and its Aedes mosquito vectors, as well as other vector-borne diseases (Bhatt et al. 463 
2013, Pigott et al. 2014b, Messina et al. 2015b, Kraemer et al. 2015c). To increase the 464 
robustness of model predictions and quantify model uncertainty, we fitted an ensemble (Araújo 465 
and New 2007) of 300 BRT models to separate bootstraps of the data. We then evaluated the 466 
central tendency as the mean across all 300 BRT models (Bhatt et al. 2013). Each of the 300 467 
individual models was fitted using the gbm.step subroutine in the dismo package in the R 468 
statistical programming environment (Elith et al. 2008). All other tuning parameters of the 469 
algorithm were held at their default values (tree complexity= 4, learning rate= 0.005, bag 470 
fraction= 0.75, step size= 10, cross-validation folds=10). Each of the 300 models predicts 471 
environmental suitability on a continuous scale from 0 to 1, with a final prediction map then being 472 
generated by calculating the mean prediction across all models for each 5km x 5km pixel. Cross-473 
validation was applied to each model, whereby ten subsets of the data comprising 10% of the 474 
presence and background observations were assessed based on their ability to predict the 475 
distribution of the other 90% of records using the mean area under the curve (AUC) statistic. This 476 
AUC value was then averaged across the ten sub-models and finally across all 300 models in the 477 
ensemble in order to derive an overall estimate of goodness-of-fit. Additionally, to avoid AUC 478 
inflation due to spatial sorting bias, a pairwise distance sampling procedure was used, resulting 479 
in a final AUC which is lower than would be returned by standard procedures but which gives a 480 
more realistic quantification of the model’s ability to extrapolate predictions to new regions 481 
(Wenger and Olden 2012). We restricted our models to make predictions only within areas where 482 
either Ae. aegypti probability of occurrence (Kraemer et al. 2015c) is more than 0.8 or 483 
temperature is conducive to transmission for at least 355 days in an average year. A second 484 
ensemble of 300 models was executed which did not take into account temperature suitability for 485 
dengue transmission via Ae. albopictus, due to the uncertainty of this species as a competent 486 
ZIKV vector. The results of this ensemble of models are provided in Figure 2 -- figure supplement 487 
3. 488 
 489 
Population and births at risk 490 
To calculate the number of people located in an area that is at any level of risk for ZIKV 491 
transmission, the global ZIKV environmental suitability map was combined with fine-scale global 492 
population surfaces (SEDAC 2015, WorldPop 2015). Firstly, the continuous ZIKV environmental 493 
suitability map (ranging from 0 to 1) was converted into a binary surface indicating whether there 494 
is any risk of transmission. To do this, we carried out a protocol previously used in (Pigott et al. 495 
2015a), choosing a threshold environmental suitability value that encompasses 90% of the ZIKV 496 
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occurrence point locations. This threshold cut-off of 90% was chosen (rather than 100%) to 497 
reflect potential errors or inaccurate locations in the occurrence point dataset. Every 5km x 5km 498 
pixel in the suitability map with a value above this threshold value was considered at risk for ZIKV 499 
transmission. Finally, to estimate the population at risk, we multiplied this binary ZIKV risk map 500 
by the global population counts (aligned and aggregated to the same 5km x 5km grid) for the 501 
year 2015 and summed across all cells. 502 
 503 
We next estimated the maximum number of births potentially affected by ZIKV in Latin America, 504 
as this region is the focus of the recent outbreak and the first to point to a possible association 505 
with microcephaly in newborn infants to mothers infected with ZIKV. In order to do this, we first 506 
identified the proportion of the year that is suitable for ZIKV transmission within areas that are 507 
predicted to be suitable in the binary ZIKV risk map. This proportion was derived from existing 508 
temperature suitability models (Brady et al. 2014, Brady et al. 2013), which predict the total 509 
number of days within an average year that arbovirus transmission can be sustained in Ae. 510 
aegypti, assuming there is a local human reservoir of infection. While the intra-mosquito viral 511 
dynamics in this model were parameterised for dengue virus, the limited information currently 512 
available on other arboviruses suggests that their dynamics are similar (Lambrechts et al. 2011). 513 
Using the resulting 5km x 5km map showing the proportion of the year suitable for ZIKV 514 
transmission to humans, we then multiplied this by a map (also at a 5km x 5km resolution) of the 515 
number of births in the Americas for the year 2015, updated from (Tatem et al. 2014, UNFPA 516 
2014). The resulting map indicates the number of births in the Americas potentially at risk for 517 
ZIKV (for 2015), assuming ZIKV currently fully occupies its environmental niche and that births 518 
are evenly distributed throughout the year. 519 
 520 
 521 
 522 
 523 
 524 
 525 
 526 
 527 
 528 
 529 
 530 
 531 
 532 
 533 
 534 
 535 
 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 
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Figure Legends 547 
 548 
Figure 1: (a) Map showing the distribution of the final set of 323 ZIKV occurrence locations 549 
entered into the ensemble Boosted Regression Tree modelling procedure. Locations are 550 
classified by year of occurrence to show those which took place (i) prior to the 2007 outbreak in 551 
Federated States of Micronesia; (ii) between 2007-2014; and (iii) during the 2015-2016 outbreak; 552 
(b) the total number of locations reporting symptomatic ZIKV occurrence in humans globally over 553 
time. 554 
 555 
Figure 2: Maps of (a) global environmental suitability for ZIKV, ranging from 0 (grey) to 1 (red), 556 
showing greater detail for (b) the Americas, (c) Africa, and (d) Asia and Oceania. 557 
 558 
Figure 3: Status of ZIKV reporting as of 2016 by country, showing countries that are highly 559 
environmentally suitable (having a suitable area of more than 10,000 square kilometres) but 560 
which have not yet reported symptomatic cases of ZIKV in humans. “Currently reporting” 561 
countries are those having reported cases since 2015. 562 
 563 
Supplementary information: 564 
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Figure 1 -- figure supplement 1 588 
 589 
Maps of all covariates entered into the 300 BRT models: (a) probability of being urban, 2015; (b) enhanced 590 
vegetation index; (c) minimum relative humidity; (d) cumulative annual precipitation (mm); (e) temperature 591 
suitability for dengue via Ae. aegypti; (f) temperature suitability for dengue via Ae. albopictus 592 
 593 
Figure 2 -- figure supplement 1 594 
 595 
Uncertainty around Zika suitability predictions displayed in main manuscript – Figure 2, ranging from less than 596 
0.01 (very little uncertainty) to 0.94 (greatest uncertainty). 597 
 598 



13 
 

Figure 2 -- figure supplement 2 599 
 600 
Effect plots for each covariate entered into the ensemble of 300 BRT models: (a) minimum relative 601 
humidity; (b) cumulative annual precipitation (mm); (c) enhanced vegetation index; (d) probability of 602 
being urban (%); (e) temperature suitability for dengue via Ae. aegypti; (f) temperature suitability for 603 
dengue via Ae. albopictus 604 
 605 
Figure 2 -- figure supplement 3 606 
 607 
Environmental suitability for Zika virus transmission to humans, not taking into account temperature 608 
suitability for dengue via Aedes albopictus. Covariate effects are as follows: cumulative annual 609 
precipitation (67.4%); temperature suitability for dengue via Ae. aegypti (16.9%); probability of being 610 
urban, 2015 (8.2%); enhanced vegetation index (5.1%); minimum relative humidity (2.4%). 611 
 612 
 613 
Figure 2 -- figure supplement 4 614 
 615 
Map showing areas predicted to have greater dengue suitability (from Bhatt et al. 2013, Nature) vs. 616 
those which are predicted to have greater Zika suitability in the current study. These values are 617 
restricted to areas where both diseases had non-zero predictions. 618 
 619 
 620 
Tables 621 

Region/Country 
 

Population living in areas suitable for 
ZIKV transmission (millions) 

Africa 452.58 
Nigeria 111.97 
Democratic Republic of the Congo 68.95 
Uganda 33.43 
United Republic of Tanzania 22.70 

Americas 298.36 
Brazil 120.65 
Mexico 32.22 
Colombia 29.54 
Venezuela 22.22 

Asia 1,422.13 
India 413.19 
Indonesia 226.04 
China 213.84 
Bangladesh 133.29 

World 2,173.27 
 622 
Table 1. Population living in areas suitable for ZIKV transmission within each major world region 623 
and top four countries contributing to these populations at risk. 624 
 625 
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