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Abstract 31 

 32 

Subjects with Type 1 diabetes mellitus have decreased bone mineral density and an up to 6 33 

fold increase in fracture risk. Yet bone fragility is not commonly regarded as another unique 34 

complication of diabetes. 35 

 36 

Both animals with experimentally induced insulin deficiency syndromes and patients with type 37 

1 diabetes (T1DM) have impaired osteoblastic bone formation, with or without increased bone 38 

resorption. Insulin/IGF-1 deficiency appears to be a major pathogenetic mechanism involved, 39 

along with glucose toxicity, marrow adiposity, inflammation, adipokine and other metabolic 40 

alterations that may all play a role on altering bone turnover.  41 

 42 

In turn increasing physical activity in children with diabetes as well as good glycaemic control 43 

appears to provide some improvement of bone parameters, although robust clinical studies 44 

are still lacking. In this context, the role of osteoporosis drugs remains unknown. 45 

 46 

 47 

Keywords: Type I Diabetes, osteoporosis, fracture, treatment, bone assessment  48 

  49 
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I. Introduction 50 

 51 

Despite the wealth of information available concerning the various systemic complications of 52 

chronic diabetes, the effects of this disease on the metabolism of minerals and the integrity of 53 

bone, particularly bone fragility, are not yet fully appreciated. The earliest influence of the 54 

diabetic environment on bone is seen in the increased prevalence of skeletal malformations in 55 

the fetuses of diabetic mothers. Hypoplasia or deformities of the extremities, dislocation of 56 

the hips, and agenesis of the sacrum or lumbar vertebrae occur 3-5 times as frequently among 57 

these infants as among non-diabetic controls 
1
. The second category of bony abnormalities 58 

known to occur in those with diabetes results from the continuing trauma following diabetic 59 

neuropathy and is characterized by focal osteolysis, bone fragmentation, sclerosis and 60 

Charcot’s neurogenic arthropathy. This condition is usually evident in the small bones of the 61 

feet and less frequently involves the knees, upper extremities or vertebrae 
2
. Hand 62 

abnormalities, including carpal tunnel syndrome, sclerodactily, acroosteolysis, and 63 

Dupuytren’s contracture also occur more frequently in diabetes. Diabetic muscle infarction is a 64 

rare complication seen in poorly controlled diabetics with advanced microvascular 65 

complications 
3
.
 
Late complications of diabetes may also impact negatively on skeletal health 66 

e.g. renal osteodystrophy; falls and fractures secondary to poor vision, neuropathy, or 67 

cerebrovascular disease. 68 

 69 

As early as 1927 Morrison and Bogan 
4 

documented decreased skeletal mass and bone 70 

development in children with longstanding diabetes. In 1934 several cases of diabetes 71 

associated with vertebral crush fractures were reported from the Joslin clinic 
5
. Albright and 72 

Reifenstein 
6
 confirmed these findings and Hernberg

 7 
reported in 1952 that osteoporosis was 73 
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much more severe in young adults with diabetes at post mortem. Subsequently, Berney and 74 

others 
8, 9

 reemphasized the coexistence of diabetes and radiologic evidence of decreased 75 

bone mass. In 1970 Jurist 
10

, employing resonant frequency analysis, reported decreased 76 

skeletal strength in diabetic women compared with age-matched controls. Diabetes was found 77 

to occur in more than 20% of patients with vertebral crush fractures in a large epidemiologic 78 

study from Israel 
11

. Applying single photon absorptiometry, Ringe et al 
12

, Levin et al 
13

 and Mc 79 

Nair et al
 14

 documented a 31-48% decrease in bone mineral density (BMD) in insulin requiring 80 

diabetic patients. A 25-30% decrease in metacarpal cortical thickness was subsequently 81 

reported by Santiago et al
 15

 and Hough et al 
16

. 82 

It is, however, the role of diabetes and its treatment as the cause of a metabolic bone disease 83 

resulting in a generalised decrease in bone mass and/or compromised bone quality, with its 84 

increased propensity to fracture, that has attracted much attention of late. It is now well 85 

established that osteoporotic fractures occur significantly more commonly in subjects with 86 

type 1 diabetes 
17

. Whether this merely reflects the common co-existence of the two diseases 87 

or whether involvement of the skeleton should be regarded as yet another unique 88 

complication of diabetes, needs to be ascertained.  89 

 90 

II. Fracture Risk 91 

 92 

Following earlier 
4-9

 suggestions of an increased prevalence of fractures in T1DM, the results of 93 

the Iowa Women’s Health Study, an 11 year follow-up of 32,089 postmenopausal women, 94 

were reported in 2001 
18

.
 
Hip fractures were found to be 12-times more common in women 95 

with T1DM compared to matched controls. Men with T1DM were found to have a 17.8 fold 96 

increased risk of hip fractures in a 6-year follow up of 27,159 Norwegian subjects 
19

.
 
Miao et al 97 
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20
 reported a similar 8-12 fold increase in hip fracture risk in a Swedish cohort of more than 98 

24,000 patients with T1DM. In 2007, two large meta-analyses were published, reporting a near 99 

identical 6.9 
17

 and 6.3 
21

 fold increase in hip fracture risk in patients with T1DM compared to 100 

subjects without diabetes. A less marked, but significant (OR=2.5 95%CI: 1.3-4.6) increase in 101 

vertebral fracture risk has also been reported in T1DM 
22

. While no large studies evaluating the 102 

risk of vertebral fracture in T1DM are available, there is data suggesting higher prevalence of 103 

morphometric vertebral fractures, assessed by VFA, in cross-sectional study 
23

. A more recent 104 

meta-analysis showed that T1DM was associated with a threefold higher risk of any fracture, - 105 

and up to 5 fold concerning hip fractures in women- 
24

. T1DM is also associated with higher 106 

fracture risk than T2DM 
17

. A retrospective cohort study from the THIN database in the UK 107 

determined that the association between T1DM and increased risk of fracture of lower 108 

extremities especially was lifelong, starting during childhood until advanced age 
25

.  109 

 110 

Fracture risk appeared to be related to the duration of diabetes with some studies revealing a 111 

near linear relationship between duration of diabetes and fracture risk 
18, 20

. Other studies 
19

 112 

failed to document any association with duration, whereas yet others 
22

 proposed a bimodal 113 

relationship with the highest incidence occurring within the first 2.5 years and again beyond 5 114 

years of diabetes being diagnosed. Most, but not all 
26

, studies failed to document a 115 

relationship between the risk of fracture and glycemic control. An association between the 116 

presence of microvascular complications of diabetes and the increase in fracture risk, was 117 

however reported in most studies 
17-22

. 118 

 119 

III Quantitative and structural bases of bone fragility  120 

 121 
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A.  Bone mineral density and ultrasound parameters 122 

Table 1 lists more recent studies, using more sensitive dual energy X-ray absorptiometry (DXA) 123 

techniques, to measure axial BMD in younger subjects with T1DM. Most 
27-44

, although not all 124 

45-49
, studies report a significant decrease in BMD at either the spine, hip or total body. The 125 

magnitude of the decrease in BMD varied quite markedly from 8-67%, and large gender 126 

differences appear to be present, with many studies documenting changes in BMD in either 127 

males or females only. A recent meta-analysis 
17

 reported an average decrease in spine BMD 128 

of -22% and a hip Z-score of -37% compared to that of age-and gender matched controls.
 

129 

Many 
27, 30, 36, 43

, but not all 
29, 35

, studies suggested that a decrease in BMD occurred more 130 

frequently in those with longstanding diabetes. Some studies, however, documented the 131 

presence of osteopenia at diagnosis of diabetes 
35

. As depicted in Table 1, BMD correlated 132 

poorly with glycaemic control
 
in most 

29, 33-37 
but not all 

28, 31, 32
 studies. However many studies 133 

reported an association between the presence of microvascular complications of diabetes and 134 

the presence and/or progression of a decreased BMD 
27, 28, 38, 40, 42, 50

. In these studies, the 135 

nature of the microvascular complication ranged from nephropathy to neuropathy to 136 

retinopathy, and no consistent
 
pattern was apparent. The Vestergaard meta-analysis 

17
 also 137 

documented an association between the decreased BMD observed in patients with type 1 138 

diabetes and the presence of a microvascular complication, but failed to document an 139 

association between BMD and glycaemic (HbA1c) control.  140 

 141 

A few studies 
45, 51-57

 have employed peripheral quantitative computer tomography (pQCT) or 142 

peripheral DXA (pDXA) to study the BMD of the distal forearm or tibia in T1DM. Some 
45, 56

 143 

have reported no difference in the BMD between diabetics and controls, whereas others 
51-55, 

144 

57
 have documented a decrease in either trabecular and/or cortical BMD at these sites. 145 
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Although the decreased BMD reported in subjects with T1DM 
27-44, 50, 58

 may largely explain the 146 

higher fracture risk
 
observed in these patients 

17-22, 26
, alterations in bone quality, as described 147 

below, may also contribute and actually confer its specific nature to diabetic bone disease.  148 

Quantitative ultrasound (QUS) parameters, including speed of sound (SOS), broadband 149 

ultrasound attenuation (BUA), and derived variables like ultrasound BMD or stiffness index of 150 

the radius, tibia, calcaneus or phalanges, have been reported in patients with T1DM in a 151 

limited number of studies 
42, 59-63

. Low values for these parameters were reported in T1DM, 152 

which appeared to correlate with the duration of diabetes 
59-61

 and the degree of metabolic 153 

control 
61-63

.  154 

 155 

B. Bone size and microstructure  156 

A number of studies have documented a smaller cross-sectional radial or tibial bone area in 157 

T1DM compared to controls 
51, 56, 57

, especially during childhood 
57, 64

 but with a normalization 158 

with age 
65

, and reported an association between glycemic control and decreased bone size 
52, 

159 

54
.  160 

High resolution (HR)-pQCT measurements at the ultradistal radius and tibia showed in a cross-161 

sectional study that T1DM patients as a group have lower total and trabecular volumetric BMD 162 

compared to healthy subjects, and these alterations are more prominent in those subjects 163 

with chronic microvascular diseases (MVD). They also exhibit lower trabecular and cortical 164 

thickness at the tibia, resulting in decreased estimated bone strength compared to healthy 165 

patients with MVD 
66

. Of note, however, cortical porosity, another important determinant of 166 

bone strength, was not increased in T1DM subjects, even those with MVD. These data suggest 167 

that MVD may be independent risk factor of fractures. By magnetic resonance imaging (MRI), 168 

Adbalrahaman confirmed trabecular deficits with reduced bone volume and trabecular 169 
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number at the proximal tibia of young adults with childhood onset of T1DM, as well as 170 

increased medullary fat in the vertebrae 
67

. 171 

Fracture toughness, the ability of the bone material to resist to crack initiation and 172 

propagation is another determinant of fracture risk, besides bone strength. Nuclear 173 

magnetic resonance spectroscopy (NMR) and reference point identation (RPI) have been 174 

shown to be useful clinical surrogates to assess fracture toughness. In a study Granke et al 175 

showed that the fracture toughness properties decreased with age. NMR-derived properties 176 

such as pore water RPI-derived tissue stiffness correlated with fracture toughness on human 177 

femoral bone 
68

.  178 

 179 

 IV Bone turnover 180 

 181 

A variety of animal models of T1DM (streptozotocin – induced; spontaneously diabetic NOD 182 

mice) have been shown to exhibit bone loss/impaired bone strength. Both animals with 183 

experimentally induced diabetes and patients with T1DM demonstrate similar metabolic bone 184 

profiles , namely impaired bone formation, low levels of osteocalcin/bone specific alkaline 185 

phosphatase, whereas it is less clear whether increased bone resorption also occurs. 186 

Employing short-term (2-week) animal models of streptozotocin diabetes, the low BMD 187 

observed in insulinopaenic diabetes was earlier explained by secondary hyperparathyroidism 188 

and increased bone resorption resulting from a negative calcium balance (impaired intestinal 189 

calcium absorption; hypercalciuria) 
69, 70

. Using more appropriate animal models of chronic 190 

diabetes (8-10 weeks), and employing time-spaced tetracycline labelled bone 191 

histomorphometry, bone formation and resorption were found to be markedly suppressed 
71-

192 

74
.  193 
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Subsequently, low bone formation has been confirmed in patients with T1DM, using 194 

biomarkers of bone turnover like serum osteocalcin 
33, 75-79

. In some human studies, bone 195 

resorption in T1DM is either decreased or unaltered and does not explain the low BMD 196 

observed in this disease 
80

. In children and young adults, T1DM patients had lower PINP and 197 

CTX levels compared to controls 
67, 81

. However enzymatic cross-linking of collagen is reduced 198 

in diabetes 
82

 and thus bone resorption assessed with CTX assay may be underestimated, 199 

CTX measuring cross-linked telopeptides.  200 

 201 

Unfortunately bone histology data in patients with T1DM are scarse. Only one study with 2 202 

biopsies from patients with T1DM and 6 with T2DM showed markedly depressed bone 203 

formation rate compared to non-diabetic patients 
83

. Although a larger case-control study of 204 

18 patients with type 1 diabetes and relatively good glycemic control (average HbA1C 6.8%) 205 

showed no bone structural or dynamic differences between groups, bone formation was 206 

significantly less in the small group of subjects who had fractures compared with T1DM 207 

patients without fractures 
84

. A recent reanalysis of these biopsies further indicates an 208 

increased degree of bone mineralization and non-enzymatic collagen crosslinks in diabetes 209 

subjects, particularly those with fractures, which would be consistent with a lower bone 210 

turnover. Moreover these parameters were positively correlated with HbA1C, indicating that 211 

poor glycemic control has consequences on material bone properties 
85

  212 

 213 

 V Cellular and molecular mechanisms of diabetes bone disease 214 

 215 

The pathogenesis of diabetic bone fragility is probably multifactorial. T1DM can directly 216 

influence bone quantity and quality in a number of ways or indirectly impact on skeletal 217 
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health by causing hypogonadism 
86, 87

, hypercalciuria 
88, 89

, alterations in vitamin D 218 

metabolism 
89, 90 

or because of its association with certain diseases known to adversely 219 

influence bone (e.g. Coeliac disease 
91

) (Fig1). 220 

 221 

I. Insulin, incretin and IGF-1 222 

Insulin has been shown to have anabolic actions on bone in vitro 
92

. Furthermore, in 223 

knockout models of insulin receptor substrate 1 or 2 (IRS-1; IRS-2), the main intracellular 224 

substrates of the insulin receptor, bone formation and resorption are markedly reduced 
93, 

225 

94
. The administration of insulin to animals with experimental diabetes has also been shown 226 

to correct the decreased bone turnover that characterizes the chronic diabetic state 
71, 95

. 227 

Insulin deficiency, as a cause of the low bone formation in T1DM therefore appears 228 

attractive. However, no changes in bone turnover were observed in global knockout of the 229 

mouse insulin receptor (IR), subsequently rescued by transgenic expression of the human IR 230 

in the liver, pancreas, and brain, but not bone 
96

. Decreased insulin signalling alone cannot 231 

therefore account for the low bone turnover in T1DM. These knockout mice have elevated 232 

insulin levels which increase IGF-1 signalling. Sufficient signalling through either IR or IGF-1 is 233 

therefore required for optimal bone turnover 
80, 97

. Human data support the notion that the 234 

lack of insulin may affect negatively osteoblasts. In T1DM adolescents, bone phosphatase 235 

alkaline (ALP), osteocalcin and IGF-I levels were significantly lower compared to healthy 236 

controls 
75

 and lower IGF-I were associated with osteopenia 
33

. The decreased levels of IGF-I 237 

seen in T1DM but not in T2DM are not fully explained. 238 

Incretin peptides, especially glucose-dependent insulinotropic polypeptide (GIP) and 239 

glucagon-like peptide-I (GLP-I), are gut hormones known to potentiate the secretion of 240 

glucose-dependent insulin from the pancreas. GLP-I agonists and dipeptidyl peptidase-4 241 

Page 10 of 30



11 

 

11 

 

(DDP4) inhibitors are a new class of incretin-based therapies for the treatment of type 2 242 

diabetes, which play an important role in the regulation of bone turnover 
98

. Recent data 243 

suggest that incretins could also have a positive effect on bone quality in T1DM. In 244 

streptozotocin-treated mice, incretin peptides were able to prevent the alterations of 245 

cortical microarchitecture and the deterioration of bone quality 
99

. Clinical studies are 246 

needed to determine if the rodent data is applicable and to elucidate the effects of incretin 247 

on fracture risk.  248 

 249 

II.  Hyperglycaemia and AGEs 250 

Hyperglycaemia is known to suppress osteoblastic differentiation and signaling, potentially 251 

resulting in impaired bone formation 
80, 100

. Chronic hyperglycaemia may also result in the 252 

non-enzymatic glycosylation of proteins (e.g. collagen) and other cell components (e.g. 253 

DNA), collectively referred to as advanced glycation end products (AGES) 
101

. Various AGES 254 

and their receptors (RAGES) have been implicated in the development of complications of 255 

diabetes, including diabetic bone disease. In a cross-sectional study, T1DM people with 256 

fracture were having higher serum levels of pentosidine, an AGE product, compared to non-257 

fracture ones, although values largely overlapped with those of non-fractured diabetics 
102

.  258 

 259 

III.  Marrow adiposity 260 

In the bone marrow, mesenchymal stromal cells (MSC) are the common progenitors that 261 

give rise to osteoblasts, adipocytes and chondrocytes. A reciprocal relationship exists 262 

between adipogenesis, which is largely driven by the pro-adipogenic transcription factor, 263 

peroxisome proliferator-activated receptor (PPARγ2) and osteoblastogenesis. Stimulation of 264 

PPARγ2 expression in vitro has been shown to promote adipocyte maturation of MSCs and 265 
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to reduce the number of mature osteoblasts 
103

. Marrow adiposity has been demonstrated 266 

in a number of conditions where increased adipogenesis has occurred at the expense of 267 

impaired osteoblastogenesis e.g. glucocorticoid excess, old age. McCabe 
80

 and others 
103

 268 

have also demonstrated increased bone marrow PPARγ2 activity and increased bone 269 

marrow adiposity in mice with T1DM. Whether marrow adiposity is causally related to the 270 

low BMD observed in T1DM remains unclear. A direct link in all forms of bone loss appears 271 

unlikely, since PPARγ2 antagonists, capable of preventing marrow adiposity, did not prevent 272 

T1DM bone loss 
104

.   273 

 274 

IV.  Inflammation 275 

Type 2 diabetes is often referred to as a state of accelerated ageing and chronic low-grade 276 

inflammation (“inflammaging”). Type 1 diabetes is, however, also known to up-regulate a 277 

number of inflammatory genes, and the pathogenesis of various complications of T1DM is 278 

thought to have, at least in part, an inflammatory basis 
105

.  279 

Inflammatory cytokines like IL-1 classically stimulate osteoclastic bone resorption. However, 280 

inflammatory cytokines like TNF-α have been shown to inhibit osteoblastogenesis from 281 

mesenchymal stromal cells through several mechanisms 
106

. Moreover, the inflammatory 282 

milieu appears to dictate whether osteoblastic bone formation is impaired (e.g. in 283 

rheumatoid arthritis) or whether osteoblastic bone formation is stimulated (e.g. at sites of 284 

enthesis in ankylosing spondylitis) 
107

. Further studies are required to determine whether 285 

bone loss in T1DM has an inflammatory basis and whether anti-inflammatory agents impact 286 

on this process.  287 

 288 

V.  Osteocyte function 289 
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The low bone formation rate that is characteristic of T1DM (see above) suggests that in 290 

addition to its direct negative effects on osteoblasts, diabetes could also affect the function 291 

of osteocytes, i.e. the master regulator of bone cells functions. Sclerostin is an osteocyte-292 

derived inhibitor of Wnt signaling pathway, essential for osteoblast differentiation and bone 293 

formation 
108

. In humans, sclerostin levels have been shown to be higher in patients with 294 

T1DM compared to controls in a cross-sectional study 
102

. Catalano et al showed that 295 

sclerostin levels are higher in female with T1DM compared to males and that the duration of 296 

the disease was associated with higher levels of sclerostin 
109

. Sclerostin levels are also 297 

higher in prediabetic subjects 
110

. These findings suggest that sclerostin expression and/or 298 

osteocytes viability and functions could be impaired in diabetes. Whether the mechanostatic 299 

response to skeletal loading is impaired in these subjects however remains unknown. 300 

 301 

VI  Others 302 

Nutritional deprivation and keto-acidosis, still too commonly encountered in the patient 303 

with poorly controlled T1DM, are well known to impair bone formation 
16

. Poorly controlled 304 

T1DM is often attended by dyslipidaemia, which is associated with increased PPARγ2 305 

expression, impaired osteoblast differentiation and marrow adiposity 
80

. Finally, theories 306 

derived to account for the bone loss in T1DM must also acknowledge reports of 307 

abnormalities in circulating levels of the adipokines (leptin, adiponectin), amylin, 308 

prostaglandins and glucocorticoids in both experimental and human T1DM, which may 309 

negatively impact on bone health 
16, 111-113

.   310 

 311 

VI Evaluation and Management of bone fragility in T1DM 312 
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In children and adolescents with T1DM, diagnosis of low bone mass should follow paediatric 313 

guidelines, i.e., BMD Z-score below -2.0 and a fragility fracture 
114

. But it is not clear who 314 

should undergo a BMD test among T1DM patients. In young adults, diagnosis of 315 

osteoporosis rely not only on aBMD (T-score and not Z.-score) but also on multiple fragility 316 

fractures 
115

. Early onset of T1DM can negatively affect bone size and mass. The use of 317 

markers of bone turnover to investigate osteoporosis in this age category remains 318 

controversial 
116

. 319 

 320 

FRAX algorithm (www.shef.ac.uk/FRAX) was developed to estimate an individual’s ten-year 321 

probability of major osteoporotic fracture and hip fracture in subjects older than 40 years of 322 

age. T1DM is considered as one of the causes of secondary osteoporosis and not as risk 323 

factor and therefore it increases fracture probability only when BMD is not included in the 324 

calculation, as illustrated in table 2. Trabecular Bone score (TBS) is a new texture parameter 325 

derived from DXA image of the spine and provides information related to bone 326 

microarchitecture and fracture risk. TBS was shown not to be significantly different between 327 

T1DM and healthy persons but to be lower in T1DM patients with prevalent fractures 
117

. A 328 

low TBS value increases the predicted fracture probability in T1D to the same degree as in 329 

non-diabetic subjects (Table 2).  330 

In young adults, general recommendations should therefore be followed to diagnose low 331 

bone mass in T1DM individuals 
118

, whereas after the age of 40, fracture risk evaluation can 332 

be performed using FRAX, ideally including femoral neck BMD and other DXA-derived 333 

informations (TBS and VFA). 334 

 335 

Fracture prevention 336 
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It needs to be reiterated that no RCTs are available to guide the treatment of bone fragility 337 

in diabetes and that management is entirely empirical and derives from the good clinical 338 

practice and experience of the physician. Many osteoporosis guidelines mentioned T1DM as 339 

a risk factor for osteoporosis and fracture and suggest earlier bone evaluation in those 340 

patients. In contrast recommendations on osteoporosis screening are not found in most 341 

diabetes guidelines. In a recent publication Zhukouskaya proposed a flow chart for 342 

evaluation, management and treatment of T1DM patients at risk of poor bone health 
119

. 343 

 344 

1. Non-pharmacologic measures 345 

General measures to prevent osteoporosis also apply to the patient with T1DM, especially to 346 

children with early onset of diabetes, who could have difficulties reaching peak bone mass 347 

during growth 
120

. These include a balanced diet rich in dairy, ensuring an adequate calcium 348 

(1000mg/day) and vitamin D (1000 IU/day) intake, regular weight-bearing exercise (40 min 349 

walk 3x/week), limiting alcohol to <3 units per day, stopping smoking, the avoidance of other 350 

bone toxins and the prevention of falls 
121

. In children and adolescents, physical activity is 351 

the best way to build-up bone mass and strength. Maggio and al have shown that regular 352 

weight-bearing exercise increases bone mineral accretion in T1DM children similarly to non 353 

diabetic children 
81

. In the older patient with T1DM, especially those with neuropathy, poor 354 

vision or gait and balance problems, fall prevention is paramount.  355 

  356 

2. Optimise metabolic control 357 

Controversy exists as to the role of glycaemic control on BMD and fracture risk. Given the 358 

fact that, much in vitro data 
80, 100

 suggest that hyperglycaemia and hyperlipidaemia are toxic 359 

to osteoblasts, and at least some clinical reports 
18-20

 have confirmed a relationship between 360 
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glycaemic control and fracture incidence, it is our contention that every effort should be 361 

made to optimise metabolic control in patients with T1DM at risk of fracture – this is 362 

especially relevant to T1DM in the young. Optimization of the insulin treatment remains a 363 

major point for normalization of glycaemia, prevention of diabetic complications and even 364 

prevention of bone health. In a prospective study, there was a trend for higher BMD in 365 

T1DM young adults treated with insulin for 7 years 
50

. However, in order to avoid 366 

hypoglycaemia, insulin is given at a dose that produces a slight hyperglycaemia compared to 367 

non diabetic subjects. Thus it is possible that this slight chronic hyperglycaemia may affect 368 

bone quality and account for the increased risk of fracture. 369 

 370 

3. Management of associated disorders 371 

T1DM is associated with a number of disorders known to impact adversely on skeletal 372 

health. Hypogonadism, although more commonly encountered in T2DM and the metabolic 373 

syndrome, also occurs more commonly in T1DM and should be assessed and managed if 374 

present. In poorly controlled diabetes, excessive renal loss of calcium, magnesium may 375 

occur. Coeliac disease occurs in 4-11% of patients with T1DM as opposed to <1% in the 376 

general population and should be screened for with serum endomysial antibody assays in 377 

those at risk of fracture 
91, 122, 123

. If the diagnosis is confirmed with intestinal histology, a 378 

gluten free diet is indicated.  379 

 380 

4. Bone active medications 381 

None of the anti-osteoporotic agents have been tested for their antifracture efficacy in 382 

T1DM subjects. Given the fact that bone formation is generally impaired in T1DM, one would 383 

intuitively think that treatment with anti-resorptive agents would be less effective and that 384 
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an anabolic agent should be preferred. Intermittent parathyroid hormone, known to have 385 

bone forming effects on bone, and more generally to increase bone turnover, has in fact 386 

been shown to improve trabecular bone volume in animals with experimental type 1 387 

diabetes 
124

. To date however there are no human data on the effect of intermittent PTH in 388 

T1DM patients. Sclerostin antibody has been tested in animal models with T2DM, where it 389 

increased bone mass and strength, but not in the setting of T1DM 
125

. Unfortunately no 390 

clinical studies are yet available to confirm this in humans. Bisphosphonates, known for their 391 

anti-fracture effects in high-turnover (e.g. postmenopausal) as well as low-formation (e.g. 392 

glucocorticoid - induced) osteoporosis are usually recommended as first-line treatment for 393 

diabetic bone disease, but no studies are available to support this contention. A cohort study 394 

showed no difference in antifracture efficacy of biphosphonates in patients with diabetes 395 

compared to control non diabetic patients, or between patients with T1DM and T2DM 
126

. 396 

However, atypical femoral fracture occurred twice more often in postmenopausal women 397 

with diabetes (type 1 and 2) compared to those without diabetes (11.6% vs 5.6%) 
127

, so 398 

bisphosphonates should be used with caution and at least for limited durations in T1DM 399 

patients with established bone fragility, especially in children and young adults with T1DM. 400 

Strontium ranelate is contraindicated in patients at risk of cardiovascular disease. Both 401 

bisphosphonates and strontium ranelate are contraindicated in patients with significant 402 

renal impairment and a creatinine clearance <30ml/min. Denosumab has been shown to 403 

increase cortical density and thickness but it has not yet been tested in the context of 404 

diabetes neither in animal models nor in humans.  405 

As the onset of T1DM happens often during childhood, specific attention should be directed 406 

towards these growing children, who have not yet reached their peak bone mass. 407 

 408 
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VII Conclusions 409 

T1DM confers significant increased fracture risk throughout life. Therefore fragility fractures 410 

should be considered as a (new) major complication of this disease and fracture risk should be 411 

properly evaluated and regularly re-evaluated in these patients. Since aBMD is usually 412 

decreased in T1D, the common fracture prediction algorithms such as FRAX can be used to 413 

evaluate fracture probability in T1D without further adjustments (contrarily to T2D). However 414 

the development of non-invasive or minimally invasive methods to evaluate “bone quality” 415 

parameters, such as high-resolution pQCT and micro-point indentation might be useful to 416 

further identify T1DM subjects at increased fracture risk. Clinical trials evaluating the 417 

benefits/risk of osteoporosis drugs on skeletal health in subjects with this common disease are 418 

also urgently needed.  419 
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Figure 1: Pathological mechanisms which may be involved in the development of diabetic 797 

osteopenia 798 

 799 

 800 

Page 27 of 30



Table I: DXA Measurement of BMD in Type 1 Diabetes 

 n F/M Age Duration Site MVC GC 

Decreased BMD 

Munoz-Torres (1996) 
38 

 

94 

 

49/45 

 

30 

 

12 

 

H and S 

 

Yes 

 

NR 

Clausen (1997) 
26 36 0/36 48 27 Hip Yes NR 

Gunczler (1998) 
28 26 11/15 12 4 H and S NR No 

Hampson (1998) 
30 31 31/0 42 20 Hip NR NR 

Tuominen (1999) 
43 56 27/29 62 18 Hip

* 
NR NR 

Rozadilla (2000) 
40 88 43/45 29 11 Spine Yes NR 

Kemink (2000) 
33 35 14/21 38 9 H and S NR No 

Campos Pastor (2000) 
25 57 30/27 35 17 H and S Yes NR 

Lopez-Ibarra (2001) 
35 32 10/22 30 0 H and S NR No 

Valerio (2002) 
44 27 12/15 13 7 Hip

* 
NR Yes 

Léger (2006) 
34 127 73/54 14 6 S and TB NR No 

Rakic (2006) 
39 34 11/23 48 14 H and S NR NR 

Strotmeyer (2006) 
42 67 67/0 32 5 Hip Yes NR 

Miazgowski (2007) 36 36/0 44 22 Spine No No 

Mastrandrea (2008) 
36 63 63/0 21 NR Hip NR No 

Heilman (2009) 
31 30 11/19 13 5 Spine* NR Yes 

Hamilton (2009) 
29 102 52/50 38 14 H and S NR NR 

Eller-Vainicher (2011) 
27 175 104/71 33 9 H and S Yes Yes 

Soto (2011) 
41 45 45/0 23 13 H and TB NR No 

Joshi (2013) 
32 86 22/53 27 15 S and TB NR Yes 

No change in BMD        

Pascual (1998) 
87 55 29/26 11 3    

Lunt (1998) 
86 99 99/0 42 27    

Liu (2003) 
85 72 72/0 16 7    

Ingberg (2004) 
84 38 20/18 43 33    

Bridges (2005) 
83 35 0/35 49 20    

 

F/M  Female/Male 

Duration     Duration of diabetes in years 

Site             Skeletal site demonstrating a decreased bone mineral density (BMD) 

MVC           Correlation between BMD and diabetic microvascular complication(s) 

GC             Correlation between BMD and glycaemic control (usually the  mean HbA1c) 

NR            Not reported 

H  Hip 

S  Spine 

TB             Total Body 

Hip
* 

 
 
 

Spine
* 

 

Only site measured 

Only site measured 
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Table 2 : Ten-year probability of major osteoporotic fracture in T1DM patients (UK) 

 FRAX  FRAX + BMD FRAX + BMD + TBS 

 No diabetes Diabetes No diabetes Diabetes No diabetes Diabetes  

Woman, 52-y-old*  3.9 5.3 4.4 4.4 6.6 6.6 

Woman, 62-y-old with a 

vertebral fracture** 

14.0 20.0 17.0 17.0 20.0 20.0 

*Woman, 52 year-old, 60 kg, 163 cm, T-score -1.5, TBS 1.16, no other FRAX clinical risk factor 

** Woman, 62 year-old, 60 kg, 163 cm, T-score -2.5, TBS 1.16, with a vertebral fracture 
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