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Alzheimer’s disease (AD), the major cause of dementia worldwide, is characterized by progressive loss of memory and cognition.
The sporadic form of AD accounts for nearly 90% of the patients developing this disease.The last century has witnessed significant
research to identify various mechanisms and risk factors contributing to the complex etiopathogenesis of AD by analyzing
postmortemAD brains and experimenting with animal and cell culture basedmodels. However, the treatment strategies, as of now,
are only symptomatic. Accumulating evidences suggested a significant association between vitaminDdeficiency, dementia, andAD.
This review encompasses the beneficial role of vitamin D in neurocognition and optimal brain health along with epidemiological
evidence of the high prevalence of hypovitaminosis D among aged and AD population. Moreover, disrupted signaling, altered
utilization of vitamin D, and polymorphisms of several related genes including vitamin D receptor (VDR) also predispose to AD
or AD-like neurodegeneration. This review explores the relationship between this gene-environmental influence and long term
vitamin D deficiency as a risk factor for development of sporadic AD along with the role and rationale of therapeutic trials with
vitamin D. It is, therefore, urgently warranted to further establish the role of this potentially neuroprotective vitamin in preventing
and halting progressive neurodegeneration in AD patients.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia in the aging population. Currently 37 million
people around the globe have dementia and the number is
expected to double every 20 years [1, 2]. AD and AD related
dementia (ADRD) are a global health problem [3]. AD is
clinically characterized by progressive deficits of memory
and other cognitive functions leading to complete incapacity
and death within 3–9 years of diagnosis [4]. Pathological
hallmarks of AD include histopathological changes induced
by the extracellular deposition of amyloid 𝛽 peptides forming
senile plaques (SP) and intracellular neurofibrillary tangle
(NFT) of hyperphosphorylated tau proteins in the brain [5].
Recent studies have identified that low serum concentrations
of vitamin D can substantially increase the risk of AD [6].
In addition to modulating neurite growth, proliferation, dif-
ferentiation, and calcium signaling, vitamin D has also been

implicated in neuroprotection and may alter neurotrans-
mission and synaptic plasticity [7]. Brain imaging studies
have linked hypovitaminosis D to dysfunction of the frontal-
subcortical neuronal circuits [8]. Vitamin D deficiency has
also been linked with increasing hypertension, hyperlipi-
demia, myocardial infarction, and stroke which are also risk
factors for AD [9]. This review will focus primarily on the
complex underlying mechanisms that promote vitamin D
deficiency as a major contributory factor in the progression
of sporadic AD and analyze its potential as a possible
therapeutic target.

2. Pathogenesis of AD

AD is a multifactorial disease and the mechanisms under-
lying its pathogenesis are complex. Several postmortem

Hindawi Publishing Corporation
International Journal of Alzheimer’s Disease
Volume 2015, Article ID 192747, 11 pages
http://dx.doi.org/10.1155/2015/192747

http://dx.doi.org/10.1155/2015/192747


2 International Journal of Alzheimer’s Disease

evidences, studies in transgenic animal models, and cell-
based models (cell lines and primary cortical neurons) have
improved our understanding of the pathogenesis of AD [10–
14]. These studies have implicated amyloid 𝛽 (A𝛽) accu-
mulation, hyperphosphorylated tau, oxidative stress, metal
dysregulation, mitochondrial dysfunction, and inflamma-
tory response as major interconnecting networks leading
to neuronal and synaptic degeneration [15–18]. Alterations
in the amyloid metabolic cascade constitute an important
hypothesis in AD, though none of the theories alone is
sufficient to decipher the biochemical and pathological com-
plexities that result in disease progression [19]. Cortical
plaques in AD brain primarily contain A𝛽 protein which is
produced from its parent amyloid precursor protein (APP)
through sequential hydrolysis by 𝛽 and 𝛾-secretases [20].
The major species of A𝛽 are A𝛽-40 and A𝛽-42 peptides
and the latter is predominant in neuritic plaques and has a
higher propensity to aggregate and form the characteristic
toxic amyloid fibrils in AD [21, 22]. In spite of evidences in
support of “amyloid cascade hypothesis” and “tauopathy,” it
is still unclear how these events are triggered in the aging
brain and how they contribute to the complexity and the het-
erogeneity of AD. Moreover, it has been established that the
etiology of sporadic AD involves multiple gene-environment
interactions as well as epigenetic mechanisms (as shown
in Figure 1) working in the backdrop of aging brain [23].
An interesting hypothesis in this regard is the Latent Early-
life Associated Regulation (LEARn) model which proposes
that exposure to various environmental risk factors (heavy
metals or nutritional deficiency) in the early developmental
life can bring about epigenetic modifications of AD related
genes (first hit) which remain latent for many years until a
second hit (aging, elevated proinflammatory cytokines, and
diet) results in sustained alterations in these genes promoting
disease progression [24].

3. Vitamin D Metabolism

Although vitamin D (calciferol) was discovered in the early
20th century as a vitamin, it is now recognized as a prohor-
mone [25, 26]. Calciferols are a group of fat soluble secosterols
broadly divided into twomajor forms: ergocalciferol (vitamin
D
2
) and cholecalciferol (vitamin D

3
) [27]. While vitamin

D
2
is largely found in food, vitamin D

3
is synthesized in

the human skin by a photochemical reaction (ultraviolet
B 297–315 nm) from 7-dehydrocholesterol [28] and is also
consumed in the diet. Vitamin D, in either D

2
or D
3

form, is considered biologically inert until it undergoes two
enzymatic hydroxylation reactions. First, vitamin D binds
carrier proteins in the skin (particularly the vitamin D
binding protein or DBPs) and is transported to the liver
[29] where it is enzymatically hydroxylated by vitamin D-25-
hydroxylase (CYP2R) on C-25 thereby generating 25(OH)D
or calcidiol. A second hydroxylation reaction in the kidney
by 25(OH) D-1-OHase (CYP27B1) hydroxylates 25(OH)D
at C-1𝛼 position and converts it to the biologically active
form 1,25-dihydroxyvitamin D (1,25(OH)

2
D) or calcitriol

[30]. 1,25(OH)
2
D concentration in the blood is regulated by

a feedback mechanism and by the induction of parathyroid
hormone, Ca2+, and various cytokines. Recent studies have
shown that in addition to renal cells, various other cells (ker-
atinocytes, monocytes, macrophages, osteoblasts, prostate,
and colon cells) are capable of carrying out the second
hydroxylation reaction [31–33]. Circulating 25(OH) vitamin
D crosses the blood-brain barrier and enters neuronal and
glial cells to be converted to 1,25(OH)

2
D [34, 35]. CYP27B1

has also been detected in developing human fetal brain
[36]. Recent data has shown that the central nervous system
can locally perform bioactivation of vitamin D prohormone
and the presence of 1 𝛼-hydroxylase in human brain. In
this regard, it is worth mentioning that microglial cells in
culture produce 1,25(OH)

2
D from its precursor [37]. The

pattern of distribution of CYP27B1 in human and rat brains
is more or less consistent. Previous studies have identified the
presence of another key enzyme, CYP24A1, which is involved
in vitamin D catabolism in the human brain and also shown
that CYP24A1 mRNA has been induced by the treatment of
glial cells with 1,25 OH vitamin D [38]. Thus, 1,25(OH)

2
D

is produced in various organs and cells, functions in an
autocrine pathway, and leads to its own destruction by
activation of CYP24A1 which hydroxylates and oxidizes it to
form the inactive calcitroic acid [30].

Recent evidences link serum vitamin D deficiency to
cognitive impairment and dementia [39, 40]. Vitamin D
receptors are widely expressed in the brain [41]. Expression
of the active form of vitamin D regulates neurotrophin
levels and the survival of neural cells [42]. In vitro studies
show that vitamin D can stimulate the clearance of amyloid
plaques by inducing phagocytosis by macrophages and also
reduces the amyloid-induced cytotoxicity, apoptosis, and
inflammatory responses in primary cortical neurons [43].
Thus, supplementation with vitamin D may ameliorate the
cognitive deficits in the elderly people and control neuronal
health and homeostasis.

4. Vitamin D and Neuroprotection

The effects of vitamin D are exerted through its nuclear
hormone receptor, vitamin D receptor (VDR), or its mem-
brane receptor, membrane-associated, rapid-response, ster-
oid-binding protein (1,25 MARRS) [44]. Genomic and
nongenomic actions of vitamin D are mediated by nuclear
and membrane receptors, respectively, having identical
receptor VDR in both locations. Classical 1,25(OH)

2
D

genomic signaling, which is conducted through the VDR,
has structural similarities with the nuclear steroid receptor
family. VDR gene is present on chromosome 12q13.11. In 1992,
with the help of in situ hybridization studies, it was proved for
the first time that VDR is expressed in the human brain [45].
Expression of VDR mRNA in postmortem brains of patients
with Alzheimer’s or Huntington’s disease was identified using
radiolabeled cDNA probes. Human neuroblastoma cell line
was also shown to express VDR [41, 46]. The presence of
VDR in the astrocytes is indicated by its presence in glial
fibrillary acidic protein (GFAP) stained cells in primary rat
hippocampal cultures [41, 47]. Secondary oligodendrocyte
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Figure 1: Risk factors and pathogenic mechanisms in the aetiopathogenesis of sporadic Alzheimer’s disease (AD).

cultures and glial cell-line studies verified this statement [48].
The potential role of vitamin D in cellular development and
differentiation is suggested by its expression in developing
brain [41, 49]. Bartoccini and colleagues have shown the
rapidly partitioning of VDR into the lipid richmicrodomains
within the nuclear membrane in developing hippocampal
neurons. These microdomains have similar characteristics of
those found in the plasma membrane [50]. Almeras et al.
have shown that adult brain functioning can be affected by
vitamin D deficiency during development, in a rat model
[51]. Vitamin D regulates transcription of various genes, by
binding to nucleus, forming a heterodimer with RXR and
subsequently translocating to vitamin D response element
in the DNA [52–55]. Recent report suggests that VDR is
widely expressed throughout the CNS with the highest
expression in the hippocampus, hypothalamus, thalamus,
cortex, and subcortex and substantia nigra, the areas essential
for cognition.

4.1. Vitamin D and Regulation of NGF and Neurotransmitters.
1,25-Dihydroxyvitamin D [1,25(OH)

2
D] plays a pivotal role

in neuronal differentiation and maturation via control of
the synthesis of neurotrophic agents such as nerve growth
factor (NGF) and glial cell-line-derived neurotrophic factor
(GDNF), neurotrophin 3, and the synthesis of low-affinity
p75 NTR receptors [56]. Nerve growth factor is important
for the growth, maintenance, and survival of certain target
neurons and also has been implicated in maintaining and
regulating the normal functioning of the septohippocampal

pathway, which is involved in learning and memory. It
has been noted that mature NGF levels are substantially
decreased in the forebrain of aged animals and patients
with AD. In vitro studies using neuronal PC12 cells have
successfully shown that APP gene expression is modulated
by NGF, and an increase in APP expression is noted upon
its withdrawal [57]. Calcitriol and vitamin D analogs were
reported to enhance NGF induction by increasing AP-1
binding activity in the NGF promoter, in mouse fibroblasts
[58]. The genetic expression of numerous neurotransmitters
in the brain, including acetylcholine, dopamine, serotonin,
and 𝛾-aminobutyric acid is regulated by 1,25(OH)D and that
is notably in the hippocampus [59–61].

4.2. Vitamin D and Calcium Homeostasis. It has been well
known by the virtue of previous studies that aging brain
and also Alzheimer’s disease show calcium dysregulation,
thus coining the term “Ca2+ hypothesis of brain aging and
dementia” [62]. The L-type voltage sensitive Ca2+ channel,
one of the most important proteins in calcium metabolism,
aging, and neurodegeneration is worth mentioning in this
context as it is reported that vitamin D regulates intra-
neuronal calcium homoeostasis via the regulation of these
channels, including those targeted by A𝛽 [63, 64]. Moreover,
rapid increase in LVSCC-A1C expression in response to VDR
silencing was found in a study by Gezen-Ak et al. which
indicates that chronic inefficiency in vitamin D utilization in
brain renders the neurons vulnerable to neurodegeneration
[62, 65]. Vitamin D treatment leads to downregulation of
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LVSCC expression, L-type currents, and channel density in
the plasma membranes of the hippocampal neurons which
is the possible explanation for the protection of the neurons
from calcium excitotoxicity [63].

4.3. Anti-Inflammatory Role of Vitamin D. The potent
immune-modulatory and anti-inflammatory action of vita-
min D has long been elicited. Age-related inflammatory
changes in the hippocampusmay be reversed by vitaminD as
shown in mice models [46]. Suppression of proinflammatory
cytokines in the brain may be the probable mechanism of
action for this neuroprotection [66, 67]. Lipopolysaccharide-
induced levels of mRNA encoding macrophage colony-
stimulating factor (M-CSF) and tumor necrosis factor 𝛼
(TNF-𝛼) in cultured astrocytes are partially reduced by
vitamin D treatment, as shown in few studies [61]. Alteration
of neurotransmitter synthesis by proinflammatory cytokines,
such as IL-1𝛽 and IL-6, can have detrimental effect on
behaviour and conditioned learning [67]. Calcitriol and
its analogs have also been shown to be associated with
the regulation of prostaglandin metabolism and selective
inhibition of COX-2 activity [68, 69].

4.4. Vitamin D and Amyloid Beta Metabolism. Nevertheless,
it is worth mentioning that vitamin D also regulates the
APP and amyloid beta metabolic aspects. The promising role
of 1,25(OH)

2
D in recovering the ability of the macrophages

to phagocytose soluble amyloid 𝛽 protein came to surface
in a very recent work in macrophages from patients with
Alzheimer’s disease [43]. Another study has shown its ability
to attenuate amyloid 𝛽 (A𝛽)42 accumulation by stimulating
phagocytosis of the A𝛽 peptide [70] and enhancing brain-
to-blood A𝛽 efflux across BBB [71], resulting in decreased
number of amyloid plaques [72]. VDR interacts with SMAD
3, which is involved in APP processing through TGF-beta
signaling, as a transcription factor [73, 74].

4.5. Vitamin D and Brain Oxidative Stress. Finally, vita-
min D was shown to exhibit neuroprotective properties
against glutamate toxicity. Cultured rat cortical neurons
were protected from acute glutamate exposure by vitamin D
treatment, through the upregulation of VDR expression and
antioxidant effects [75, 76]. Various reports show that vitamin
D exerts its protecting effects against free radicals generated
by reactive species of oxygen and nitric oxide, inhibits the
synthesis of inducible nitric oxide synthase, and regulates the
activity of the gamma glutamyl transpeptidase, which is a
key enzyme involved in the metabolism of glutathione [76–
78]. Vitamin D is found in increasing glutathione levels in
mesencephalic dopaminergic neurons even after treatment
with various neurotoxins or inhibitors of glutathione synthe-
sis [79]. 1,25(OH)

2
D also protects from cerebral endothelial

dysfunction by its inhibitory effects on ROS production and
NF-𝜅B activation. Similarly, the bEnd 3 cells (mouse brain
endothelial cell line) when treated with 1,25(OH)

2
D were

found to be protected from hypoxic/oxidative insults. The
inhibitory action of vitamin D on I𝜅B phosphorylation and

P65 translocation to the nucleus accounts for this protective
effect [80].

Vitamin D supplementation also enhances brain energy
homeostasis and protein phosphatase 2A (PP2A) activity
and modulates the redox state and thus reduces age-related
tau hyperphosphorylation and cognitive impairment [81].
Gene expression in the whole brain and protein expression
in the prefrontal cortex and hippocampus of adult vitamin
D-deficient rats has been explored with the help of gene
array and proteomics analysis. Expression of 74 genes and
36 proteins involved in diverse functions such as cytoskele-
ton maintenance, calcium homeostasis, synaptic plasticity
and neurotransmission, oxidative phosphorylation, redox
balance, protein transport, chaperoning, cell cycle control,
and posttranslational modifications were significantly altered
in vitamin D deficiency [51, 82, 83]. Moreover, vitamin D

2

enriched button mushroom (Agaricus bisporus) is found to
improve memory in both wild type and APPswe/PSIdE9
transgenicmice. It is worthmentioning that some very recent
studies have identified the vitamin D binding protein (DBP),
a prealbumin, interacting with A𝛽. DBP has been shown to
inhibit oligomerization of A𝛽 in vitro as well as preventing
A𝛽 induced hippocampal synaptic loss and resultingmemory
impairment [84].

Multiple pathogenic mechanisms implicated in the
pathogenesis of sporadic AD and multifaceted neuropro-
tective role of 1,25-dihydroxyvitamin D are summed up
above (Figure 2). In addition to the above mentioned mecha-
nisms, the protective role of vitamin D in the cardiovascular
system is exerted through cardiac remodeling, endothelial
response regulation to injury, and blood coagulation, ulti-
mately improving the CNS vascular homeostasis. Thus, in
this manner vitamin D indirectly protects the brain form
cerebrovascular risk factors of AD [85].

5. Evidences Linking Vitamin D Deficiency,
Neurocognition and AD

First, Llewellyn et al. showed an increased risk of losing
points onMini-Mental State Examination (MMSE) in 6 years
among 175 older adults with baseline 25(OH)D 10 ng/mL
compared to 157 subjects with 25(OH)D 30 ng/mL [86, 87].
Second, Slinin et al. followed up the association between
lower 25(OH)D levels and cognitive decline among aged
population (>65 years) for more than 4 years [87, 88].
A meta-analysis by Etgen et al. highlighted an increased
risk of cognitive impairment in patients with vitamin D
deficiency [89]. Balion et al. compared mean MMSE scores
with levels of 25(OH)D, where he showed a higher average
MMSE score in those participants with higher 25(OH)D
concentrations [90]. Further, in the In CHIANTI study
consisting of 858 adults, cognitive decline were associated
with low concentrations of vitamin D, when observed over
a period of 6 years [86]. Nevertheless, the intriguing query
remains the same: does hypovitaminosis D contribute to
cognitive decline or is it the other way round? Deficient
sun exposure and feeding difficulties with subsequent fewer
intakes of vitamin D-rich foods are predisposed by AD
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Figure 2: Mechanisms of 1,25 OH vitamin D mediated multitargeted neuroprotection in AD. VDR: vitamin D receptor, RXR: retinoid X
receptor, MARRS: membrane associated rapid response receptors, and LVSCC: L voltage sensitive calcium channel.

disease process itself. But this is contradictory to the fact that
in cases with mild AD, where major functional disabilities
have not yet started, the association between low 25(OH)D
concentrations and AD still persists [91]. Importantly, lon-
gitudinal prospective studies have established the temporal
relation between hypovitaminosis D and cognitive disorders,
where older individuals with lower vitamin D levels had
a significantly higher risk of global cognitive decline and
executive dysfunction compared to thosewith normal/higher
vitamin D levels [86, 92, 93]. Moreover, to add to the above
mentioned fact, studies have reported that low vitamin Dwas
associated with an increased risk of AD [94]. More than 50%
of the prospective studies showed an elevated risk of cognitive
impairment after 4–7 years of follow up, in participants with
lower 25(OH)D levels, when comparedwith participantswith
higher 25(OH)D levels [95]. Other cross-sectional studies
have showed increased incidence of vitamin D deficiency in
AD patients [87, 90].

5.1. VDR and AD. Genome-wide analyses, transcriptomics,
and proteomics approaches have pointed the role of various
genes in increasing AD liability, for example, inflamma-
tory genes (IL1, IL6), oxidative stress (NOS), VDR, cathep-
sin, ubiquilin, COMT, and AChE [96]. With VDR being

themajormediator of vitaminDactions, recent genome-wide
association studies have focused on finding the role of VDR
polymorphism in late onset Alzheimer’s disease (LOAD)
susceptibility [97]. A decreased level of VDRmRNAhas been
reported in hippocampal region by analyzing postmortem
AD brain [45].

Alteration in receptors VDR and 1,25-MARRS (mem-
brane associated, rapid response steroid-binding), genes
related to the action, and metabolism of vitamin D result
in inefficient utilization of vitamin D, making neurons
vulnerable to neurodegenerative changes [64, 65, 97–100].
Association between AD and polymorphisms of VDR and
megalin strongly supports this notion and, therefore, explains
the neurotoxic effects of VDR and 1,25-MARRS suppression
[62, 65, 97, 99–101].

5.2. VDR Silencing. To studyVDR silencing, theVDRknock-
out (VDR−/−) mouse model of deranged vitamin D-VDR
signaling and poor utilization of vitamin D in the CNS is
widely accepted. Several phenotypes of the VDR−/− mouse
have been identified. University of Tokyo (Japan) initially
generated VDR KO mice which show the signs of shortened
lifespan and premature aging. Thus, it is counted as an
impressive model of VD and VDR deficiency as seen in
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accelerated brain aging. Cognitive and behavioral deficits and
calcium dysregulation in brain are also found to affect VDR
KOmice [102–104].

VDR and NGF level are found to be suppressed as
a result of amyloid beta toxicity [62]. This reinforces the
idea that vitamin D suppression is the reason behind the
decreased NGF levels in A𝛽 induced neurotoxicity. It can
be presumed that A𝛽 induces VDR protein degradation
triggering some unknown mechanisms. Inadequate vitamin
D levels in AD patients, along with VDR protein depletion,
can precipitate a cascade of critical phenomenon. All these
information point to the fact that even sufficient levels of
vitamin D are not enough for normal functioning, as A𝛽
can create hindrance by downregulating VDR [64]. VDR
silencing can also upregulate LVSCC Ca channels. In a study
by Gezen-Ak et al., VDR siRNA-treated cortical neurons
showed upregulated LVSCC-A1C mRNA levels after both 12
and 24 hours of treatment, compared to the control. Protein
levels followed the same trend [62].

5.3. VDR Polymorphism and AD. The critical steps in the
control of gene expression by VDR include ligand binding,
with retinoidX receptor (RXR) heterodimerization and bind-
ing of the heterodimer to VDR response elements (VDREs).
Thus genetic polymorphisms of VDR gene can lead to defects
in important gene activations. Polymorphisms can take place
in the noncoding parts of the genes or introns whereby they
are not translated into the protein. However, polymorphisms
within the regulatory regions can affect the gene expression.
Polymorphisms within the 5󸀠 promoter region of VDR gene
affectsmRNAexpression patterns and levelswhile thatwithin
the 3󸀠 untranslated region (UTR) affects mRNA stability
[105]. The existence of several single nucleotide polymor-
phisms (SNPs)within theVDRgene has been described using
restriction enzymes which include Tru9I, TaqI, BsmI, EcoRV,
ApaI, and FokI [106–109]. Using sequencing approaches,
Cdx2 polymorphismwas found [110]. Some of these common
VDR polymorphisms have been linked to AD. Gezen-Ak et
al. reported the association of ApaI polymorphism and not
TaqI polymorphism in late onset AD in the studied Turkish
population thereby indicating that polymorphism within the
ligand binding site of VDR gene increases the risk of AD
progression [100]. However, Lehmann et al. and Lee et al.
demonstrated the existence of possible links between ApaI
andTaqIwith the risk ofAD [111, 112].Wang et al. reported the
association between Cdx2 and lower VDR promoter activity
thereby increasing susceptibility to AD [113]. Thus, VDR
polymorphismmay decrease the affinity of vitaminD toVDR
and affect the expression of neurotrophins. This can lead to
neuronal aging and neurodegeneration in association with
other genetic and environmental factors.

6. Is Vitamin D Essential in AD Therapeutics?

Despite several experimental in vivo or in vitro models
of AD explaining its molecular pathogenesis which have
led to different types of drug treatment strategies and tests
in animal and cell-based models and in clinical trials, the

treatment of AD in general is terribly inadequate at present.
The disease progresses relentlessly with devastating failure of
memory and cognition till the patient succumbs to the illness
usually by 5–9 years after the diagnosis. A major focus of
the drug treatment for AD is to improve cognitive abilities,
such as memory and thinking, and slow the progression
of these symptoms. Four drugs are currently approved by
the US Food and Drug Administration (FDA) for treating
cognitive symptoms of AD. Three of them (galantamine,
rivastigmine, and donepezil) act as anticholinesterase agents
while memantine acts by preventing excitatory neuronal
damage [114].

In general, several strategies have been evolved to halt the
progression of the disease such as increasing the clearance
of amyloid beta peptide from the brain by active or passive
immunization against the peptide or promoting enzymatic
degradation of the peptide, diminishing the synthesis of A𝛽-
42 by inhibition of 𝛽-secretases or 𝛾-secretases, activation of
nonamyloidogenic processing of APP through modulation
of 𝛽-secretase action, preventing the aggregation and fibril-
lization of A𝛽-42, inhibiting tau phosphorylation, antibodies
against A𝛽, and reducing inflammation or oxidative stress or
excitotoxicity [114–116]. Apparently, either they are still in the
trial period or some trials have shown nonpromising results.

The complexity of the mechanisms involved in AD has
prompted the researchers to develop compounds that could
simultaneously interact with several potential targets (mul-
titarget directed ligand design) [117]. Variety of compounds
with dual or multiple target specificities are in development.
As vitamin D interacts with different mechanisms, therefore,
it is a multitargeted therapeutic option for prevention and
protection from cognitive decline andAD.Theprotective role
of vitamin D in AD has been clearly established as discussed
above. Now this is an important point when considering
randomized controlled trials since it seems almost impossible
to get a trial approved to examine the effectiveness of vitamin
D alone in AD and/or ADRD patients after having removed
standard therapies. A 7-year follow-up study by Annweiler
et al. confirms that higher vitamin D dietary intake was
associated with lower risk of developing AD among older
women [94]. The AD-IDEA trial, a randomized placebo-
controlled trial, was the first of such trials, on the effectiveness
of vitamin D in ADRD patients [118].

The trial of vitamin D alone or in combination with other
agents/anti-AD drugs have shown positive results in some
recent works. Fiala and Mizwicki have shown that combined
use of vitamin D

3
and DHA (Docosahexaenoic acid) is

an emerging novel strategy to enhance direct and immune
protection of neurons against brain amyloidosis and other
brain insults [119]. As vitamin D targets various pathological
processes of ADRDs, it may increase the effectiveness of
standard antidementia treatments or account at least partially
for the resistance to these treatments. In support of this
fact, a recent 6-month trial study by Annweiler et al. has
shown that the combination of memantine and vitamin D
was superior to either memantine or vitamin D alone in
halting the cognitive decline amongst participants with AD
as evidenced by improved MMSE score [120].



International Journal of Alzheimer’s Disease 7

In contrast, one randomized control by Stein et al. showed
that neither cognition nor disability changed significantly
after high-dose vitamin D in mild to moderately severe AD
cases [121]. Another study also found no improvement of
cognition in an elderly nursing home residents after 4 weeks
of oral vitamin D

2
supplementation [122]. These studies, by

Stein etal. or by Przybelski et al. have shown no benefits
of high-dose vitamin D

2
supplementation on cognition

[121, 122]. However, there have been some methodological
limitations that affected their conclusions. For instance, both
studies monitored the role of vitamin D

2
supplements which

are generally less efficient than vitamin D
3
for repletion,

and duration of the follow-up that did not exceed 16 weeks,
while the effects of vitamin D can be observed after a
longer period [123]. Additionally, none of these studies
assessed executive functions or episodic memory as outcome
measures, although serum 25OH vitamin D concentrations
are associated with these domain-specific cognitive functions
[124]. The arguments against vitamin D supplementation
are based on the small number of clinical trials. Further
well-conducted randomized clinical trials (RCTs) to test the
effectiveness of vitamin D supplements against placebo in
patients with AD are essentially needed at this time.

7. Conclusion and Future Directions

The pathophysiology of AD involves the accelerated aging
of neurons leading to alteration in neuronal metabolism
and stability. A link between premature aging, diet, and
nutrition is proposedwith nutrigenomic research uncovering
possible mechanisms such as epigenetic modifications that
demonstrate the interaction between genes and environment
disturbances and imbalances occurring in a variety of mech-
anisms. It surprises that, in spite of the wealth of knowledge
that exists regarding AD, only a handful of options are
available currently for its management. The disease process
is also complex in its own ways. Symptomatic treatment
is the best part of the management currently. However,
exciting and incredible leaps have taken place in developing
disease modifying approaches. The failed antiamyloid and
antioxidant drug trials confirms that the understanding of the
AD pathology still needs to be dissected out in every aspect.
Detailed exploration of the link between several metabolic
and endocrine etiological factors, gene-environment inter-
actions and their influence on MCI and subsequent AD
progression are of prime focus now and treatment strategies
should be looked up very carefully. Inappropriate timing and
the long latency period of AD adds another dimension in its
complexity wherein the principal mechanisms change with
the time course and progression of the disease. Antioxidant
therapy may be helpful in the early stages of the disease
but not when sufficient damage has already been done.
Opposite is the case with memantine which is useful in
moderate to severe stages, but not in early AD. Multitargeted
neuroprotective action of vitamin D makes it a lucrative
candidate for the prevention as well as treatment strategy
in AD and ADRDs. A recent task force on vitamin D and
neurocognition has analysed all major studies and enabled

international experts to reach to the agreement that hypovita-
minosis D and the inefficient utilization of vitaminD increase
the risk of cognitive decline/ADRDs in older adults and
may alter the clinical presentation of the disease, particularly
as a sequel of accompanying morbidities [90]. However, at
present, hypovitaminosisD should not be used as a diagnostic
or a prognostic biomarker of cognitive decline/ADRDs due
to lack of specificity and insufficient evidence. The experts
recommended measurement of serum 25(OH)D because of
the high prevalence of hypovitaminosis D in this population
and supplementation, if necessary. However, it is worth
noting that a very recent study has identified vitamin D
binding protein to be a potential blood biomarker for the
diagnosis of AD [125]. However, further verification with
larger epidemiological and molecular evidences is eagerly
awaited before targeting DBP as a possible therapeutic mod-
ulation in AD.

At this time, further laboratory experiments, prospective
studies and large trials are essential to clarify themechanisms
through which vitamin D benefits the brain. A stronger focus
on the role of vitamin D-related genetic variance (e.g., in the
genes encoding VDR, 𝛼-hydroxylase, or VDBP) in humans
is also necessary in order to understand the prevalence
and therapeutic response. In parallel, conditional and brain-
specific VDR mutations have to be identified to assess their
neurophenotypes. Acute and chronic vitamin D treatment or
depletion should also be carried out in order to best interpret
neurocognitive and behavioral abnormalities associated with
vitamin D deprivation. Further, animal-based studies and
drug trials need to be conducted to determine the threshold
concentration of vitamin D to prevent neurodegeneration,
so that the correct dose of supplementation could be deter-
mined.
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