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Abstract
Despite the well-recognised role of vitamin D in a wide 
range of physiological processes, hypovitaminosis is 
common worldwide (prevalence 30%-50%) presumably 
arising from inadequate exposure to ultraviolet radiation 
and insufficient consumption. While generally not at the 
very low levels associated with rickets, hypovitaminosis 
D has been implicated in various very different, patho
physiological processes. These include putative effects on 
the pathogenesis of neoplastic change, inflammatory and 
demyelinating conditions, cardiovascular disease (CVD) 
and diabetes. This review focuses on the association 
between hypovitaminosis D and the metabolic syndrome 
as well as its component characteristics which are 
central obesity, glucose homeostasis, insulin resistance, 
hypertension and atherogenic dyslipidaemia. We also 
consider the effects of hypovitaminosis D on outcomes 
associated with the metabolic syndrome such as CVD, 
diabetes and non-alcoholic fatty liver disease. We 
structure this review into 3 distinct sections; the metabolic 
syndrome, vitamin D biochemistry and the putative 
association between hypovitaminosis D, the metabolic 
syndrome and cardiovascular risk.
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Core tip: The metabolic syndrome is common, affecting 
about 40% of Americans. It is defined by combinations 
of risk factors for cardiovascular disease (CVD) including 
insulin resistance and abdominal obesity. Research 
implicates hypovitaminosis D in the causation and 
phenotype of the syndrome and we present relevant 
data. While hypovitaminosis appears a risk factor for 
components of the syndrome and its outcome, the 
mechanism is unclear. The risks associated with varying 
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levels of hypovitaminosis and the benefits of vitamin 
replacement are unknown. However, unravelling the 
association between hypovitaminosis and the syndrome 
is warranted as even a modest decrease in CVD risk 
would confer substantial benefits.
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INTRODUCTION
Much research over the last 30 years has shown that 
the pleiotrophic actions of 1, 25 dihydroxy-vitamin D 
[1,25(OH)2D] are central to cell, organ and organism 
homeostasis. Thus, along with its historic functions as a 
mediator of calcium and bone metabolism, 1,25(OH)2D 
has effects on a wide range of physiological processes. It 
is perhaps surprising, given its perceived importance to 
public health, to find that hypovitaminosis D is common 
worldwide (prevalence 30%-50%). This deficiency 
presumably arises from failure to firstly, ensure adequate 
exposure to ultraviolet radiation (UVR) because of skin 
cancer fears and secondly, consume food with sufficient 
levels of the vitamin. Vitamin D status is identified by 
low serum levels of biologically inactive 25-hydroxylated 
vitamin D [25(OH)D]. While generally not at the very 
low levels associated with rickets, hypovitaminosis D 
has been implicated in various very different, patho
physiological processes. These include a putative 
effect on the development of neoplastic, inflammatory, 
demyelinating, cardiovascular and diabetic conditions. 
While the impact of hypovitaminosis D on health remains 
unclear, accumulating data indicates it confers increased 
disease risk and in some cases worse outcome.

In the context of this review, the finding that hypo­
vitaminosis D is associated with impaired glucose 
homeostasis is of particular interest. A meta-analysis of 
28 studies demonstrated that higher serum 25(OH)D 
levels were associated with a 55% reduction in diabetes, 
a 51% decreased risk of the metabolic syndrome and 
a 33% lower risk of cardiovascular disease (CVD)[1]. 
Further, treatment with vitamin D supplements over 2 
mo improved fasting glucose levels and insulin resistance 
homeostasis model assessment for insulin resistance 
(HOMA-IR) in 100 patients with type 2 diabetes[2]. It 
is suggested that the mechanism for this latter finding 
involves improved sensitivity of target tissues such as 
the liver, muscle and bone to insulin as well as enhanced 
beta cell function. Given that many risk factors for 
CVD are clustered in the highly prevalent metabolic 
syndrome, which is characterised by insulin resistance 
and abdominal obesity, it is reasonable to speculate a 
significant role for the vitamin in the development of the 
syndrome and its sequelae of diabetes and CVD.

In this review we focus on the association between 
hypovitaminosis D and the metabolic syndrome and 
how this may contribute to increased CVD risk. We 
present 3 sections describing firstly, the metabolic 
syndrome, secondly, vitamin D biochemistry and thirdly, 
the putative association between hypovitaminosis D, 
the syndrome and CVD risk.

METABOLIC SYNDROME; HOW IT WAS 
IDENTIFIED 
The relationship between sensitivity to insulin, obesity 
and glucose homeostasis was first observed by 
the Swedish physician Eskil Kylin[3]. He described a 
syndrome comprising hyperglycaemia, hypertension 
and hyperuricaemia and suggested insulin resistance as 
a possible causative factor[3]. Subsequently Himsworth 
et al[4] laid the foundations for the classification of type 
1 and 2 diabetes by showing that while some patients 
were insulin sensitive (younger, normal weight and 
blood pressure) others are insulin insensitive (older, 
more obese, hypertensive and atherosclerotic). Vague, 
in studies on gender-related obesity patterns described 
android obesity (now termed central obesity and linked 
with diabetes and atherosclerosis) and suggested a 
hormonal aetiology with over-activity of the pituitary-
adrenal axis playing a key role[5]. 

Such observations were brought together by 
Reaven[6] in his Banting Lecture to the American Diabetes 
Association in 1988. He termed the combination of 
hypertension, dyslipidaemia and glucose intolerance as 
syndrome X and proposed that this mix of phenotypes 
provided a pathophysiological basis for atherosclerosis. 
Obesity, was also seen as a further essential component 
and following a number of iterations (dyslipidaemic 
hypertension, deadly quartet, insulin resistance, hazar­
dous waist), the combination of phenotypes is now 
termed the metabolic syndrome[7] with the International 
Classification of Disease code of 277[7,8].

Classification of the metabolic syndrome
Various groups including the World Health Organisation[9], 
European Group for the Study of Insulin Resistance[7], 
American Association of Clinical Endocrinologists[10], 
National Cholesterol Education Program - Adult Treatment 
Panel Ⅲ[11] and, more recently, the International Diabetes 
Federation (IDF)[12,13] have provided definitions of the 
metabolic syndrome (Table 1). While all are based on 
the characteristics presented by Reaven[6], there are 
various inclusion thresholds. A form of consensus was 
arrived at in 2009[14] with the IDF, National Heart, Lung 
and Blood Institute, American Heart Association, World 
Heart Federation, International Atherosclerosis and 
the International Association for the Study of Obesity 
agreeing on threshold levels that were similar to those 
originally proposed by the IDF. Guidelines for classifying 
metabolic syndrome in children over 10 years of age 
were also issued[15] and population and gender specific 
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waist circumference thresholds were published to define 
central obesity[13]. The prevalence for the metabolic 
syndrome varies between countries. Based on the IDF 
classification a 40% prevalence in the United States has 
been reported[16].

Is there a clinical value in identifying the metabolic 
syndrome: It is not surprising, given the presence of 
known risk factors, to find that the metabolic syndrome 
confers an approximately two-fold increased relative 
risk of CVD[17]. However, it is important to determine 
whether this impact is the effect of the metabolic 
syndrome (added risk due to a clustering of risk factors) 
or just the sum of its defining phenotypes. Studies using 
different CVD endpoints indicate the latter is the case. 
For example, Eddy et al[18] used data from NHANES Ⅲ 
(third national health and nutrition survey) to simulate a 
population matching that of the United States, estimated 
its metabolic syndrome prevalence (using the various 
definitions) and associated this with CVD. While the 
number of individuals identified by the various metabolic 
syndrome classifications differed, they reported that 
fasting glucose levels > 110 mg/dL (6.1 mmol/L) 
were a better predictor of CVD than the presence of 
the metabolic syndrome classified by any of the defini­
tions[18]. Further, using change in atheroma volume as 
an endpoint, Bayturan et al[19] reviewed 3459 patients 
enrolled in 7 trials that used intravascular ultrasonography 
to measure plaque progression. While the metabolic 
syndrome was significantly associated [odds ratio (OR) 

= 1.29, 95%CI: 1.09-1.53] with increased atheroma 
volume, the relationship was not significant (OR = 1.04, 
95%CI: 0.79-1.37) when adjusted for its individual 
components; serum triglycerides ≥ 150 mg/dL (1.7 
mmol/L), body mass index (BMI) ≥ 30 kg/m2, high 
density lipoprotein cholesterol (HDL-C) < 40 mg/dL (1.0 
mmol/L) in men or < 50 mg/dL (1.3 mmol/L) in women, 
blood pressure ≥ 135/85 mmHg or treatment of 
hypertension[19]. In this multifactorial model, only serum 
triglyceride concentrations (≥ 150 mg/dL) remained 
significantly associated with plaque progression[19].

These findings (and others) question the clinical 
value of identifying the metabolic syndrome in patients. 
Indeed, the identification is dependent on the thresholds 
of each of the contributing factors. Thus, for example, 
if age-related thresholds were used there would be a 
marked change in the numbers of affected individuals. 
While in theory its identification does not appear to 
add anything to prognosis in an individual patient, we 
and others[20] argue that it has clinical value. As the 
metabolic syndrome is based on related and modifiable 
CVD risk factors, its identification encourages a holistic 
approach rather than a focus on the individual aspects 
(glycaemia, dyslipidaemia, weight reduction and blood 
pressure management) of the patients’ condition. 
It therefore, has value in encouraging the clinician 
to address CVD risk using a multifactorial approach. 
It is also arguably useful in a research setting when 
considering the role of possible risk factors.

We also believe it is important to consider the 
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Table 1  Thresholds defining the metabolic syndrome issued by individual organisations

WHO 1998 
(Alberti 1998)

EGIR (Balkau 
1999)

NCEP/ATP Ⅲ 2001 
(NCEP 2002)

AACE (2003) 
(Einhorn 2003)

IDF consensus 2005 
(Zimmet 2005)

IDF consensus (10 to < 
16 yr) (Zimmet 2007)

Definition IGT, IFG, T2DM 
or lowered insulin 

sensitivity 

Plasma 
insulin > 75th 

percentile

3 of the following IGT or IFG plus any 
of the following based 
on clinical judgement

See below

Plus 2 of the 
following

Plus 2 of the 
following

Europoid waist W:H > 0.90 M ≥ 94 M ≥ 102 M BMI ≥ 25 kg/m2
≥ 94 M > 90th percentile

circumference (cm) W:H > 0.85 F or 
BMI > 30 kg/m2

≥ 80 F ≥ 88 F ≥ 80 F or BMI > 30 
kg/m2

Plus 2 of the following

Plus 2 of the 
following

Triglyceride [mg/dL 
(mmol/L)]

> 150 (1.7) > 150 (1.7) ≥ 150 (1.7) > 150 (1.7) > 150 (1.7) ≥ 150 (1.7)

HDL [mg/dL (mmol/L)] < 35 (0.91) M < 39 (0.91) < 40 (1.03) M < 40 (1.03) M < 40 (1.03) M < 40 (1.03)
< 39 (1.01) F < 50 (1.29) F < 50 (1.29) F < 50 (1.29) F

BP (mmHg) ≥ 140/90 ≥ 140/90 or 
on treatment

≥ 130/85 ≥ 130/85 SBP ≥ 130 or DBP 
≥ 85 or on treatment

SBP ≥ 130 and/or DBP 
≥ 85

Glucose [mg/dL (mmol/
L)]

IGT, IFG or T2DM IGT or IFG 
(but not 
diabetes)

≥ 100 (5.6) (Grundy) 
or diabetes

IGT or IFG (but not 
diabetes)

≥ 100 (5.6) ≥ 100 (5.6) or known 
T2DM

Others Microalbuminuria 
ACR > 30 mg/g

Other features of IR1

1Includes polycystic ovary syndrome, family history or ethnic group susceptible to type 2 diabetes, sedentary lifestyle and advancing age. ACR: Albumin 
creatinine ration; BMI: Body mass index; DBP: Diastolic blood pressure; F: Female; IFG: Impaired fasting glucose; IGT: Impaired glucose tolerance; IR: 
Insulin resistance; SBP: Systolic blood pressure; M: Male; T2DM: Type 2 diabetes mellitus; W:H: Waist to hip ratio; WHO: World Health Organization; HDL: 
High density lipoprotein; IDF: International Diabetes Federation; EGIR: European Group for the Study of Insulin Resistance; NCEP: National Cholesterol 
Education Program; AACE: American Association of Clinical Endocrinologists; BP: Blood pressure; IR: Insulin resistance.
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in mortality compared to those with BMI 18.5-25 
kg/m2[27,29]. These findings suggest the presence of a 
subgroup of obese individuals who are not at high risk 
of metabolic disturbances or increased mortality. Their 
presence may be a reason for the relatively modest 
increase in overall mortality in obese subjects. It has 
been speculated that the link between obesity and CVD 
may be via insulin resistance[27]. Individuals with high 
insulin sensitivity and not fulfilling the ATP Ⅲ metabolic 
syndrome criteria are considered to be a “metabolically 
healthy obese” group[29].

The concept that not all obesity is bad in the context 
of developing CVD is interesting. Abdominal obesity, 
visceral as opposed to subcutaneous fat, appears to 
be critical in the development of insulin resistance[30]. 
Abdominal adipose tissue was initially considered an inert 
storage depot for triglycerides (glycerol and fatty acids). 
The current view however, is that it is also an active 
endocrine organ. Intra-abdominal obesity, a classifying 
characteristic of the metabolic syndrome promotes 
insulin resistance (the reverse of insulin sensitivity), 
perhaps by secreting metabolically active substances 
(adipokines) and making available an increased quantity 
of free fatty acids[30,31].

Insulin resistance, the other key factor in the 
metabolic syndrome, is defined as a condition where 
greater than normal levels of the peptide are needed 
to clear a glucose load (and effect its other metabolic 
actions). Thus, for a given blood glucose level the 
amount of insulin secreted is high. Impairment of sen
sitivity appears to be a contributing factor to all of the 
features of the metabolic syndrome in addition to having 
a direct causative role in the pathogenesis of type 2 
diabetes. It can be considered a pre-diabetic state in 
non-diabetic patients, conferring a 5 fold increased risk 
of developing diabetes[32]. Insulin resistance has also 
been demonstrated to be associated with hypertension, 
atherogenic dyslipidaemia and higher amounts of 
the atherogenic small dense low density lipoprotein 
cholesterol (LDL-C), features associated with the 
metabolic syndrome[20,33].

Thus, in addition to weight reduction measures, 
reducing insulin resistance, a feature that may be an
intermediate factor linking obesity with morbidity and 
mortality, must be addressed in patients with the 
metabolic syndrome. Apart from abdominal obesity there 
are other factors that may modify insulin resistance. 
Physical fitness (as measured by aerobic capacity) has 
been seen to increase insulin sensitivity[34].

VITAMIN D BIOCHEMISTRY 
Vitamin D, in addition to its role in calcium and bone 
metabolism, has pleiotrophic effects in many cell types 
in many life forms. These include a potential role in the 
actions of insulin and development of obesity (Figure 
1). Thus, not surprisingly hypovitaminosis D has been 
linked with hypertension, atherogenic dyslipidaemia 
and increased CVD risk (Figure 1). An association has 

metabolic syndrome as a heterogeneous entity. Indeed, 
in patients with the syndrome, we have shown that 
following treatment with statins and fibrates, outcomes 
can vary considerably indicating the presence of 
subgroups both known (gender, baseline lipids, and 
concurrent therapy) and unknown[21-24].

Metabolic syndrome - putative pathway to CVD: 
While it is accepted that central obesity and insulin 
resistance are core drivers of the metabolic syndrome, 
the timescale and inter-relationships between these and 
other factors that lead to an individual being classified 
with the syndrome and the consequent increased risk 
of CVD remain unclear[25-27]. Clearly, while obesity and 
insulin resistance are common in adults worldwide they 
are rare in childhood indicating that environmental 
factors interacting with a genetic predisposition drive 
the development of the syndrome from birth through 
childhood to its identification in adulthood. Once an 
individual develops the metabolic syndrome, the 
combination of risk factors leads to an increased risk of 
CVD (Figure 1). 

Obesity is a recognised risk factor associated 
with mortality, this probably due to the link between 
obesity and risk of developing diabetes, hypertension, 
atherogenic dyslipidaemia and CVD[28]. However, the 
National Health and Nutrition Examination Survey 
(NHANES) indicated that individuals with a BMI between 
30 and 35 kg/m2 demonstrated only a modest increase 
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Figure 1  Simplified illustrations of the component risk factors of the 
metabolic syndrome, the complex relationships between them and the 
outcomes leading to increased morbidity and mortality. We also identify 
the areas that may be affected by hypovitaminosis D which are covered in this 
review. CVD: Cardiovascular disease.
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also been noted with non-alcoholic fatty liver disease 
independent of the features classifying the metabolic 
syndrome. Hypovitaminosis D can be addressed by both 
lifestyle measures and supplementation; hence, it is 
important to understand the relationship between vitamin 
D and the metabolic syndrome at both mechanistic and 
epidemiological levels.

Vitamin D synthesis
Bioactive vitamin D, 1,25(OH)2D is synthesised in a 
pathway involving different organs and intermediates 
(Figure 2). Some inactive chemicals are produced that 
may have a regulatory role but will not be considered 
further. The first step in the pathway is the photo
chemical production of cholecalciferol in the skin from 
7-dehydrocholesterol. Thus, production of bioactive 
1,25(OH)D can only be initiated in skin via a photo
chemical process. Accordingly, animals have to eat foods 
containing the vitamin or be exposed to sunlight to allow 
its photosynthesis in skin.

Cholecalciferol is produced in the stratum basale 
and stratum spinosum layers of skin following reaction 
of 7-dehydrocholesterol with ultraviolet B (UVB) (270-
300 nm). It is noteworthy that the concentration of 
7-dehydrocholesterol falls with increasing age resulting 
in reduced capacity to synthesise vitamin D3. This effect 
is marked; for example, the skin of a 70-year-old subject 
has approximately 25% of the 7-dehydrocholesterol 
compared with that of a young adult[35]. Cholecalciferol 

(and ergocalciferol) is carried in blood to the liver and 
hydroxylated at position 25 to form 25(OH)D. The 
final step in the pathway is hydroxylation of circulating 
25(OH)D at the 1 position to form biologically active 
1,25(OH)2D. This occurs in the kidney, and other tissues, 
and is followed by its release into blood bound to vitamin 
D binding protein and transported to target organs.

How vitamin D works
Systemic or locally produced 1,25(OH)2D binds to 
the vitamin D receptor (VDR), a nuclear receptor that 
dimerises with the retinoid X receptor and, in turn, 
becomes a regulator of transcription[36]. Dimerisation 
allows interaction with the vitamin D response element 
on target genes initiating transcription[37]. The VDR is 
a member of the steroid receptor superfamily and is 
responsible for regulating transcription in many responsive 
genes. Indeed, more than 200 genes, including those 
that regulate cell differentiation and proliferation as well 
as multiple metabolic systems, are targets for vitamin D.

Skin pigmentation, UVR and vitamin D
Vitamin D photosynthesis is long-established among 
animals implying a key role in metabolism. Phytoplankton 
in the sea have synthesised vitamin D for more than 
500 million years and land vertebrates for more than 
350 million years. Further, the sophisticated biochemical 
systems used by humans to balance the harmful and 
beneficial effects of sunlight demonstrate the evolutionary 
pressures on these processes. Protection from UVR 
has been provided by the development of a sunscreen; 
eumelanin. Eumelanin absorbs UVR, reducing its 
penetration and, thereby, formation of potentially harmful 
free radicals (reactive oxygen species) in the skin. The 
migration of humans from Africa to environments of 
often low and highly seasonal UVR placed pressure on 
the original constitutive, dark-skinned phenotype[38]. Thus 
vitamin D3 synthetic ability, following movement into 
higher latitudes, was enabled by polymorphic change 
in genes that determine skin pigmentation, such as 
melanocortin 1 receptor, with the resulting development 
of partially depigmented phenotypes capable of tanning. 
Thus, the present range of skin pigmentation results 
from a requirement to promote cutaneous UVR-induced 
vitamin D3 synthesis (depigmented phenotype) and 
simultaneously prevent UVR-induced damage (pigmented 
phenotype)[38]. 

Studying the relationship between UVR exposure, 
vitamin D status, skin type and disease risk is compli
cated by historical and recent population movements 
resulting in many people living under solar regimes very 
different to those in which their ancestors developed 
mechanisms to balance sunlight’s harmful and beneficial 
effects. The health penalties of these movements are 
still under assessment though the potentially serious 
consequences of chronically low exposure are now being 
recognised. This of course, does not mitigate the need 
to ensure that the risks associated with inappropriate 
and excessive UVR exposure in terms of skin and other 

Dietary source
Vitamin D2
Vitamin D3

UVB

7 dehydrocholesterol
Vitamin D

Vitamin D - vitamin D binding protein

25-hydroxylase

25(OH)D

24-hydroxylase           1-hydroxylase

1,25(OH)2D
(active)

24,25(OH)2D
(inactive)

Skin

Circulation

Liver

Kidney

Figure 2  Simplified synthetic pathway leading to the formation of the 
active metabolite 1,25(OH)2D. UVB: Ultraviolet B.
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cancers continues to be emphasised.

Environmental factors affecting exposure to UVR
The amount of UVR reaching earth varies with the angle 
at which radiation passes through the atmosphere (solar 
zenith angle), its path length through air, the presence 
of clouds and pollution in the lower atmosphere[39,40]. 
Consequently, place and time of day and season are 
important. Outside of tropical latitudes, ensuring a 
year-round, adequate level of vitamin D synthesis is 
problematic because large solar zenith angles and 
long path lengths result in increased absorption and 
scattering of UVR. During the year the availability 
of vitamin D3-inducing UVB wavelengths varies with 
latitude and outside the tropics there is little or no 
UVB in sunlight except at high altitudes for much of 
the year. For example, the equator sees only about 
a 20% variation while 50° N (circle of latitude that 
crosses the English Channel, Belgium, Czech Republic, 
Russia, Mongolia and Canada) sees around 250% 
variation. Indeed, between November-February, people 
living at latitude 50° N and higher receive no effective 
vitamin D3-inducing UVB and can effect no vitamin 
synthesis[39,40]. This latitude effect is compounded by 
dark skin pigmentation; the higher the eumelanin 
content the lower the vitamin D3 production. Thus, for 
many individuals there is insufficient UVB over the year 
to allow adequate vitamin D synthesis and therefore a 
need to consume vitamin D3-rich foods such as oily fish. 
An additional problem in ensuring adequate vitamin D 
status, particularly away from the equator, is presented 
by modern urban lifestyles. Exposure to UVR is limited 
by clothing, shade-seeking behaviour, often because 
of skin cancer fears, and occupations that result in 
80%-90% of work time being spent indoors.

Assessing vitamin D status and defining 
hypovitaminosis
Exposure to sunlight or dietary intake of vitamin 
D increases the serum concentration of 25(OH)D 
making this a ready indicator of body vitamin D status. 
Establishing a link between chronic hypovitaminosis 
and disease risk clearly requires definition of a normal 
serum concentration of 25(OH)D. The serum 25(OH)D 
concentrations that identify hypovitaminosis D are 
not fully defined though the following ranges have 
been suggested; deficiency: ≤ 12 ng/mL (30 nmol/L), 
insufficiency: 12-20 ng/mL and satisfactory status: 
≥ 20 ng/mL (50 nmol/L). However, given the well-
recognised seasonal variation in vitamin synthesis, 
particularly in northerly latitudes, any reference range 
needs to be considered in the context of season. 
Recently Tandeter described an Individual Mean Annual 
vitamin D level termed the “IMAD level” and a recovery 
formula “RF” that may be used to calculate a mean that 
encompasses values from four seasons[41]. 

Relationship between season and vitamin D status
Understanding the temporal relationship between 

seasons, solar radiation and vitamin D photosynthesis 
is important if epidemiological approaches are used 
to establish associations between these variables, 
disease risk and outcome. Furthermore, the impact 
of relative acute or chronic hypovitaminosis on the 
relationship between seasons and disease pathogenesis 
is unclear. For example, if chronic hypovitaminosis D was 
pathological, a visible consequence might take some 
time to be clinically evident and therefore not easily 
associated with the seasons[42]. 

Surprisingly given the potential impact of vitamin D 
on public health, there is little data on the relationship 
between seasons, serum vitamin concentrations and 
lag time between firstly, solar radiation and building 
up of adequate levels of the vitamin and secondly, 
which chronic patterns of hypovitaminosis have most 
impact on the pathogenesis of particular diseases[42]. 
Thus, while the causal link between skin exposure to 
solar UVR and serum vitamin D cyclicity is recognised, 
neither the mathematical relationship between the 
peaks and troughs of serum 25(OH)D concentrations 
during the year nor how (or if) particular patterns 
affect disease risk have been well defined. Kasahara 
et al[42] also provide a model describing the seasonality 
of serum 25(OH)D concentrations in the United States 
that could be extrapolated to other studies[41]. They 
argued that in the temperate northern hemisphere, 
serum 25(OH)D concentrations vary during the year 
because production is determined by the area of skin 
exposed to UVR and the intensity of the radiation. Thus, 
serum vitamin concentrations demonstrate maximum 
levels in late summer and lowest in late winter. This 
presumably reflects significant photosynthesis and 
gradual accumulation of vitamin D during the early 
spring months and a gradual use of reserves in months 
immediately after photosynthesis ceases when there 
is little sunlight. Thus, serum vitamin D concentrations 
demonstrate a seasonal lag pattern that is influenced 
by how much atmosphere sunlight must pass through 
before reaching the human body.

ASSOCIATION BETWEEN 
HYPOVITAMINOSIS D, THE METABOLIC 
SYNDROME AND CVD RISK 
Importance of vitamin D: Population studies using 
mortality/morbidity as outcome
Many studies suggest that low serum vitamin D 
concentrations, even when above those associated with 
rickets, are deleterious. A variety of criteria have been 
used as clinical endpoints. For example, Schöttker et 
al[43] studied the association between serum 25(OH)D 
concentrations and mortality in a meta-analysis of data 
from eight prospective cohort studies involving 26018 
men and women aged 50-79 years from Europe and the 
United States. The outcome measures were all-cause, 
cardiovascular, and cancer mortality. As expected, 
25(OH)D concentrations were higher in summer and in 
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men. During follow-up a total of 6695 study participants 
died; 2624 of these subjects died of CVDs and 2227 of 
cancer. Despite levels of 25(OH)D strongly varying with 
country, gender and season, the association between 
25(OH)D concentration and all-cause and cause-specific 
mortality was consistent[43]. The lowest 25(OH)D quintile 
was associated with increased all-cause mortality, 
cardiovascular mortality and cancer mortality (in those 
with a history of cancer)[43]. The inverse association 
across quintiles was consistent across countries, genders, 
season and age groups despite 25(OH)D cut-off values 
varying according to these characteristics[43].

Associations between UVR exposure and disease 
risk and outcome have been reported for a wide range 
of pathologies, although in most cases conflicting data 
have also presented. Corresponding studies using serum 
25(OH)D also show conflicting data. For example, we 
have presented data indicating that UVR may influence 
disease risk by a vitamin D mediated mechanism in 
the pathogenesis of prostate cancer[44,45] and multiple 
sclerosis[46] though we emphasise that these asso
ciations remain unproven and any mechanistic basis is 
uncertain[47].

Metabolic syndrome and seasons
Clearly, any suggestion that risk of the metabolic 
syndrome is partly determined by vitamin D status 
would be helped by evidence that the incidence of the 
syndrome, and/or its component phenotypes, is linked 
with availability of the vitamin and/or the seasons. Some 
evidence supporting this view is available. Kamezaki et 
al[48] reported such links in 1202 Japanese males (44 
± 10 years) who were assessed in summer and winter 
in 2008 for the metabolic syndrome defined using the 
criteria proposed by the NCEP, the IDF and the Japanese 
Society of Internal Medicine (JSIM). The prevalence rates 
of NCEP, IDF, and JSIM defined metabolic syndrome in 
winter were 3.8%, 15.1% and 12.4% and in summer, 
3.2%, 10.7% and 8.4% respectively[48]. Blood pressure 
changes were most significantly correlated with this 
seasonal variation in metabolic syndrome prevalence[48].

However, inconsistent results regarding the putative 
association of key components of the metabolic syndrome 
with season have been reported including more insulin 
resistance and higher triglyceride concentrations during 
the summer in some, winter in others and some showing 
no significant seasonal variation. Taiwanese subjects 
described by Chen et al[49] were studied in winter (January 
and February) and summer (July and August) in 2002. 
They found higher levels of fasting insulin, HOMA-insulin 
resistance and triglycerides, but lower levels of HDL-C 
in summer compared with winter. The prevalence of 
metabolic syndrome in summer was higher than in 
winter; difference of 7.7% in both genders (P = 0.0092 
in men, P = 0.0037 in women). After controlling for 
BMI and other risk profiles, summer was independently 
and positively associated with fasting insulin and insulin 
resistance regardless of metabolic syndrome[49].

A further interesting association between the meta

bolic syndrome and season is the report by Rintamäki et 
al[50] showing a significant association between seasonal 
changes in mood and behaviour and the metabolic 
syndrome. Individuals with the syndrome had greater 
seasonal changes in mood and behaviour.

Metabolic syndrome and vitamin D status: Observational 
studies
Considerable research has focussed on associations 
between vitamin D levels and the prevalence of the 
metabolic syndrome and its component features. Many 
studies demonstrate an inverse relationship between 
serum 25(OH)D and diabetes, metabolic syndrome, 
insulin resistance and beta cell function[51,52]. The 
NHANES data confirmed the inverse relationship between 
25(OH)D levels and diabetes and insulin resistance in the 
non-Hispanic white and Mexican American, but not in the 
non-Hispanic black populations[53,54].

A meta-analysis of 28 studies (between 1990 and 
2009) including 99745 participants (age range: 40.5-
74.5 years) by Parker et al[1] investigated the effects 
of vitamin D on the risk of CVD, diabetes and the 
metabolic syndrome[1]. Higher levels of vitamin D were 
seen to be associated with reduction of all the outcomes 
studied among middle aged and elderly individuals. 
The 28 studies reported 33 ORs when considering the 
association between 25(OH)D and cardiometabolic 
outcomes; 29 of these ORs suggested an inverse 
relationship with 3 indicating an opposite effect with 1 
analysis remaining non-significant[1]. The pooled OR was 
0.57 (95%CI: 0.48-0.57). Prevalence of the metabolic 
syndrome was the outcome in 8 of the studies; all these 
showing a significant association between high 25(OH)D 
levels and reduced metabolic syndrome prevalence (OR 
= 0.49, 95%CI: 0.38-0.64). 

Ju et al[55] studied the relationship between serum 
25(OH)D levels and metabolic syndrome in the 
general adult population using a dose-response meta-
analysis based on studies reporting risk ratios for 
metabolic syndrome in categories of serum 25(OH)D 
concentrations. The pooled OR for the metabolic 
syndrome per 25 nmol/L (10 ng/mL) increment in the 
25(OH)D concentration was 0.87 (95%CI: 0.83-0.92), 
based on 16 cross-sectional studies and 1.00 (95%CI: 
0.98-1.02) for 2 cohort and nested case-control 
studies[55]. The dose-response meta-analysis showed a 
generally linear, inverse relationship between 25(OH)D 
levels and the metabolic syndrome in the cross-sectional 
studies [probability (P) value for linear trend < 0.001]. 
They concluded that vitamin D status was associated 
with metabolic syndrome risk in cross-sectional but not 
longitudinal studies[55].

Song et al[56] reported a cross-sectional study 
comprising 778 Korean adults. Metabolic syndrome was 
defined according to the American Heart Association/
National Heart, Lung, and Blood Institute criteria and 
the Korean Society for the Study of Obesity. The overall 
prevalence of the metabolic syndrome was 18.9%[56]. 
After multiple adjustments, compared with the highest 
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quartile serum 25(OH)D level group (19.9-55.9 ng/mL), 
the OR for metabolic syndrome in the lowest level group 
(4.2-9.7 ng/mL) was 2.44 (95%CI:1.32-4.48). The 
intermediate quartiles (9.8-14.1 ng/mL) and (14.3-19.8 
ng/mL) had ORs of 2.20 (95%CI: 1.24-3.90) and 1.81 
(95%CI: 1.02-3.20) respectively when compared to the 
highest quartile. Among the components of metabolic 
syndrome, the adjusted ORs for elevated blood pressure 
and high triglycerides in the lowest 25(OH)D level were 
1.81 (95%CI: 1.15-2.85) and 2.74 (95%CI: 1.64-4.57) 
respectively[56]. 

Thus, it is clear from these observational surveys 
that a relationship may exist between 25(OH)D levels 
and glucose homeostasis, metabolic syndrome and 
type 2 diabetes. These population studies do not hint 
as causation as 25(OH)D status and other established 
risk factors were not measured at or prior to diagnosis. 
Thus, prospective studies are required that take into 
account other confounding factors such as serial weight 
measurements, physical activity and family history.

Metabolic syndrome and vitamin D status: Prospective 
studies
A number of prospective studies have also presented 
data that support the proposal that low serum 25(OH)D 
concentrations are associated with increased risk of 
the development of the metabolic syndrome. For 
example, Gagnon et al[57] studied 4164 adults (mean 
age 50 years; 58% women; 92% Europids). Over 
the following 5 years, 528 incident cases (12.7%) of 
the metabolic syndrome were identified[57]. Compared 
with the reference category [highest quintile 25(OH)D 
≥ 34 ng/mL], the metabolic syndrome risk was 
significantly higher in people with 25(OH)D in the first 
(< 18 ng/mL) and second (18-23 ng/mL) quintiles 
[OR = 1.41 (95%CI: 1.02-1.95) and 1.74 (95%CI: 
1.28-2.37) respectively][57]. Serum 25(OH)D was 
inversely associated with waist circumference (P < 0.001), 
triglycerides (P < 0.01), fasting glucose (P < 0.01), and 
HOMA-IR (P < 0.001) but not with 2-h plasma glucose 
(P = 0.29), HDL-C (P = 0.70), or blood pressure (P = 
0.46)[57].

More recently Kayaniyil et al[58] examined the 
prospective association of 25(OH)D with the metabolic 
syndrome in a multi-ethnic cohort of non-diabetic 
adults with pre-existing risk factors in Ontario, Canada. 
Of 654 participants enrolled at baseline, 489 attended 
a 3 year follow-up visit. Multivariate logistic regression 
analyses indicated a decreased risk of the metabolic 
syndrome at follow-up per standard deviation increase 
in baseline 25(OH)D after adjustment for sociodemo
graphics, season, baseline and change in supplement 
use, physical activity and insulin resistance (OR = 0.63, 
95%CI: 0.44-0.90)[58].

Associations between the defining components 
of the metabolic syndrome and vitamin D status: 
Observational, prospective and interventional studies
The observational and prospective studies previously 

described demonstrate associations between 25(OH)D 
concentrations and the metabolic syndrome, but were 
not designed to explore mechanistic aspects. We now 
review the effect that 25(OH)D levels may have on the 
defining characteristics of the metabolic syndrome; 
abdominal adiposity, insulin resistance (and beta cell 
function), hypertension and atherogenic dyslipidaemia.

Karatas et al[59] investigated the association between 
25(OH)D levels and all components of the metabolic 
syndrome in 287 Turkish subjects. Of these, 214 
participants were either obese (BMI ≥ 30 kg/m2) or 
overweight (BMI: 25-29.9 kg/m2). Metabolic syndrome 
was classified using IDF criteria. Multiple logistic regression 
analyses were carried out with metabolic syndrome, 
abdominal obesity, low HDL-C, hypertriglyceridaemia 
and hypertension as the dependent variable and with 
25(OH)D as a continuous independent variable in one set 
of analyses and 25(OH)D levels stratified as deficiency (< 
20 ng/mL), insufficiency (20-29.9 ng/mL) and sufficient 
(reference level) groups as a factorised independent 
variable in further analyses. The analyses were corrected 
for age, gender and season. Hypovitaminosis was 
significantly more common in the overweight/obese 
individuals with and without the metabolic syndrome[59]. 
There was a significant inverse relationship between 
triglyceride levels and serum 25(OH)D concentration. No 
significant associations between 25(OH)D and HDL-C, 
hypertension and insulin resistance were observed.

Obesity has been associated with hypovitaminosis D, 
perhaps via multiple mechanisms[60,61]. The nature of this 
association was investigated by a bi-directional genetic 
study that suggested higher BMI resulted in lower 
25(OH)D levels but with the reverse effect being small[62]. 
They concluded that weight reducing interventions would 
be expected to reduce the prevalence of hypovitaminosis 
D[62]. In contrast Salehpour et al[63] carried out a 12 wk 
study following cholecalciferol supplementation and 
showed a significant decrease in body fat mass in both 
healthy and obese women compared to the placebo 
arm[63]. These conflicting findings make it essential that 
both interventions (weight reduction and vitamin D 
replacement) are studied in detail with suitably designed 
trials. Other studies investigating mechanisms, unlike 
Vimaleswaran et al[62], have indicated a bi-directional 
association between obesity and hypovitaminosis D. It 
has been seen from animal studies that vitamin D may 
play a part in adipogenesis and energy metabolism. The 
VDR is expressed in adipose tissue pre-maturation[64] 
and in early adipogenesis[65]. The presence of a role in 
adipogenesis is also suggested by adipocyte atrophy 
seen in VDR knockout mice[66].

The relationship between volume of adipose tissue 
and vitamin D status, at least as reflected in serum 
25(OH)D concentrations, is unclear. Vitamin D is se
questered in adipose tissue and it has been speculated 
that obesity, by increasing the volume of distribution of 
available adiposity, will lead to lower serum vitamin D 
levels[67,68]. This view is contradicted by Pramyothin et 
al[69] who measured vitamin D levels in the subcutaneous 
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abdominal fat of 17 patients undergoing gastric bypass. 
Vitamin measurements were made at surgery and over 
a 12 mo follow-up period[69]. It was found that vitamin 
D levels in adipose tissue varied considerably and no 
significant change in serum 25(OH)D was noted during 
follow-up despite intake of supplements (> 2500 U/d).

There has been speculation that behaviour traits 
associated with obesity, such as reduced outdoor 
exercise levels, could be associated with decreased 
exposure and reduced vitamin D synthesis. Results 
from studies investigating this possible association 
have varied[70,71]. Thus, although a clear association 
is evident between adiposity and vitamin D levels the 
nature of this association has yet to be determined. 
It is important to establish this relationship as central 
adiposity is a key driver in the development of the meta
bolic syndrome.

Dysfunction of insulin secretion by pancreatic 
beta cells and insulin resistance are considered to be 
causative drivers in the aetiology of type 2 diabetes[26]. 
Insulin secretion may be affected by lipotoxicity, due 
to increased free fatty acids, and glucotoxicity, due to 
elevated serum glucose and lipid accumulation within 
the beta cells[72]. We have seen that insulin resistance 
is a core component of the metabolic syndrome. Con
trasting findings are evident in observational studies 
investigating the relationship between 25(OH)D levels 
and insulin sensitivity. Chiu et al[52], in Californian 
students of mixed ethnicity, and Kamycheva et al[73], in 
a study of patients with hyperparathyroidism, [patients 
grouped by the median 25(OH)D concentration] noted 
a positive correlation between insulin sensitivity and 
25(OH)D levels. However, there have been other studies 
which have not shown the above association, these 
having been carried out in patient groups characterised 
by obesity[74], non-diabetic status[75] and the metabolic 
syndrome[76]. A prospective study of 524 non-diabetic 
individuals by Forouhi et al[77] showed an inverse asso
ciation between 25(OH)D levels and the risk of insulin 
resistance and elevated blood sugars[77]. However, 
the Mini-Finland Health Survey did not demonstrate a 
significant correlation between 25(OH)D quartiles and 
the onset of diabetes when the analysis was corrected 
for BMI and activity[78].

Vitamin D supplementation has been seen to alter 
insulin sensitivity in non-diabetic patients, but not in 
patients diagnosed with type 2 diabetes[79,80]. Pittas et 
al[81] demonstrated that, when compared to placebo, 
vitamin D had a positive effect on insulin resistance 
and glycaemic control (non-primary outcome) in a 
randomised controlled study of patients with impaired 
fasting glucose[81]. A complex mechanism is suggested 
by the SURAYA trial of obese south Asian women as 
insulin resistance was seen to improve only when 
supplementation elevated the 25(OH)D concentration 
above 80 nmol/L this perhaps indicates either a dose 
response or threshold effect[82]. 

Given the association between 25(OH)D levels and 
obesity it is expected that there would be a similar 

relationship with the lipid concentrations; however, 
study results have varied. A large study in Norway, 
both longitudinal (n = 2159) and cross sectional (n = 
10105) demonstrated that higher levels of cholesterol, 
HDL-C and LDL-C and lower levels of triglyceride were 
associated with reduced 25(OH)D concentrations[83]. A 
survey of 108711 patients who had multiple 25(OH)D 
and lipid profiles measured revealed a similar relationship 
between 25(OH)D and cholesterol and LDL-C levels[84]. 
Further, optimal levels of 25(OH)D were associated with 
higher HDL-C[84]. More confusion has arisen as vitamin 
D supplementation following their cross sectional survey 
in patients with hypovitaminosis did not led to consistent 
changes in the lipid profile[84]. Jorde et al[85] reviewed the 
findings of 22 cross sectional and 10 placebo controlled 
double blind randomised controlled trials and concluded 
that, while the cross sectional studies demonstrated 
a uniform inverse relationship between 25(OH)D and 
triglyceride levels, the intervention studies with vitamin 
D supplementation have led to varied results. They 
concluded that these intervention studies were not 
adequately designed to specifically investigate the 
relationship between 25(OH)D and lipids and speculated 
that the relationship between 25(OH)D and lipids could 
be either direct or via changes in parathyroid hormone 
and/or calcium concentrations[85].

Many studies using mouse and human hepatoma cell 
lines[86,87] and VDR knockout mice[88] have been carried 
out to understand the observed associations between 
25(OH)D and lipid concentrations. Some have examined 
the effect of VDR on bile acid synthesis, and cholesterol 
levels, once again with inconsistent results[89].

Hypertension, one of the defining components of 
the metabolic syndrome, has been reported to display 
a seasonal and geographical variability raising the 
possibility of sun exposure having a role[90]. Even before 
this observation Resnick et al[91] in 1986 suggested that 
vitamin D metabolites were associated with hypertension
potentially via the renin-angiotensin system[91]. Both 
animal and cross-sectional human studies have suggested
vitamin D to be an inhibitor of the renin-angiotensin 
system in VDR knockout[92] and 1α-hydroxylase knoc
kout[93] mice with significantly raised renin activity 
and plasma angiotensin 2 concentrations. The effects 
were reversed in the 1α-hydroxylase knockout mice 
by administration of 1,25(OH)2D[93]. Vascular smooth 
muscle and endothelial cells express VDR and the 
1α-hydroxylase enzyme indicating that vitamin D 
may influence endothelial function which could lead to 
arterial stiffness and hypertension, in addition to plaque 
formation[94]. The change in endothelial function could 
be due to either a direct effect or via improved blood 
pressure. 

Most of the surveys such as NHANES Ⅲ[95], the 
German National Health Interview and Examination 
Survey[96] and the 1958 British Birth Cohort[97] inves
tigating the relationship between vitamin D and hyper
tension have pointed to an inverse association. However, 
there have been studies that have not shown this 
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association[98,99]. Once again the mixed findings could 
have been due to confounding variables common in 
multifactorial pathology. Similarly prospective studies too 
have not been consistent with regards to outcome[100,101]. 
Further, interventional trials have also resulted in varied 
results[102,103]. A meta-analysis of 11 interventional trials 
showed a modest reduction in diastolic blood pressure 
(3.1 mmHg), but this was not accompanied by any 
significant change in systolic blood pressure[104]. It was 
evident that most of the studies were not designed 
to investigate the association in question. Although 
observational studies have suggested endothelial 
dysfunction in individuals with hypovitaminosis D[105,106] 
results following vitamin D supplements have been 
missed. While some intervention trials have shown a 
beneficial effect on endothelial function[107,108] others 
have not[109,110]. Thus, it is clear that although most 
studies indicate an association between vitamin D status 
and blood pressure the findings from observational, 
prospective and interventional studies have not been 
unanimous.

We have seen that much of the work presented 
above, with the exemption of Karatas et al[59], has 
focussed on individual associations between hypovi
taminosis D, vitamin D supplementation and components 
of the metabolic syndrome. As evident from Figure 1 
these factors are inter-related and it is essential that 
future studies take this into account.

Benefits in mortality, CVD and onset of type 2 diabetes 
observed following vitamin D supplements
As we have seen previously there is considerable 
evidence that hypovitaminosis D is associated with 
increased CVD risk although the mechanisms still 
remain largely unclear. It is essential to determine if this 
increase in risk can be reversed by supplements. Many 
questions remain that can only be answered by long 
term intervention studies. It is important to estimate 
benefit in the overall study group as well as subgroups 
based on age, gender, ethnicity, CVD risk, vitamin D 
levels and other baseline characteristics. Further, benefit 
associated with different replacement dosage must 
be evaluated. To this date no large intervention trial 
fulfilling the above criteria has reported findings. 

Vacek et al[111] in 2012 carried out an observational 
retrospective study of 10889 patients seen in a 
secondary care cardiology setting. Hypovitaminosis 
(< 30 ng/mL) was diagnosed in 70.3% of this cohort. 
Vitamin D supplements were taken by 31.6% of the 
vitamin D deficient patients and 21.3% of patients with 
normal values and the association between treatment 
and all-cause mortality studied. Hypovitaminosis D 
was significantly associated with mortality in patients 
not on vitamin D replacement (OR = 3.72, 95%CI: 
2.563-5.396)[111]. In contrast hypovitaminosis was not 
significantly associated with mortality in patients on 
supplements (OR = 1.46, 95%CI: 0.760-2.799). This 
analysis was not carried out with CVD mortality and 
morbidity as an outcome measure. It must be noted 

that this study was in a selected population and was 
retrospective and observational. Gotsman studied the 
impact of vitamin D supplements on mortality in 3069 
patients with heart failure[112]. Supplementation was 
associated with significantly reduced mortality (HR 
= 0.68, 95%CI: 0.54-0.85). However, no convincing 
data exists regarding the benefits in mortality that 
may be related to vitamin D supplements in a healthy 
population.

There are very few studies examining CVD risk 
reduction following vitamin D supplementation. A 
systematic review of 17 prospective and randomised 
trials using vitamin D and/or calcium supplements 
showed vitamin D supplements, at approximately 1000 
IU/d, caused a 10% relative risk reduction that was not 
significant when compared to placebo[113]. When the 
analysis was restricted to the 5 prospective studies of 
patients receiving vitamin D a reduction in CVD related 
mortality was observed. It must be noted that 4 of these 
studies consisted of patients receiving dialysis, a high 
risk group. Interestingly calcium supplementation did 
not appear to influence any of the outcome measures.

No large randomised control trial has been carried 
out with onset of metabolic syndrome/diabetes as the 
primary outcome. The RECORD study where patients 
were randomised to receive 800 IU/d of vitamin D 
recorded onset of type 2 diabetes as a secondary 
outcome (primary outcome was fracture rate)[114]. A non-
significant 33% relative risk reduction was seen. 
Similarly, onset of diabetes was the monitored outcome 
in the Womens Health Initiative Calcium/Vitamin D 
Trial with 33951 women randomised to either 400 
IU/d of vitamin D or placebo for 7 years and no signi
ficant benefit was observed[115]. Most other studies 
have included smaller patient numbers and have not 
demonstrated reduced incidence of type 2 diabetes or 
the metabolic syndrome. Further, no convincing evidence 
exists that supplementation reduces the progression 
from the metabolic syndrome to type 2 diabetes.

Mixed results have been observed when insulin 
sensitivity has been determined following treatment 
with vitamin D. Mitri et al[116] demonstrated a significant 
improvement in insulin secretion in 92 individuals at 
high risk of developing diabetes following randomisation 
to either 2000 IU/d of vitamin D supplements or 
placebo. Nagpal et al[117] determined the effect vitamin D 
supplementation (3 doses of 120000 IU) had on insulin 
sensitivity compared to placebo in 71 healthy male 
volunteers with central obesity. Insulin sensitivity was 
seen to improve in the treatment arm[117]. However, there 
have been other trials demonstrating no improvement 
in insulin sensitivity. Luo et al[118] treated 21 Chinese 
patients with type 2 diabetes and hypovitaminosis D 
(≤ 50 nmol/L) with 2000 IU/d of vitamin D for a 3 
mo period. No changes were observed in any of the 
metabolic syndrome parameters, HbA1c or in insulin 
requirements[118]. George et al[119] published a systematic 
review of 15 trials assessing the effects of vitamin D 
supplementation compared to placebo on fasting glucose, 
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glycaemic control and insulin resistance. When all the 
studies were combined no significant improvement 
in outcomes was observed. When the analyses were 
restricted, to patients with diabetes or impaired glucose 
tolerance, significant but small improvements were 
observed in both fasting glucose and insulin sensitivity, 
but no changes seen in HbA1c[119]. 

All the studies described above leave an impression 
that vitamin D supplementation could potentially be 
beneficial. However, current evidence does not allow us 
to identify patient groups that would benefit maximally.

Vitamin D and type 2 diabetes
We have focussed this review on hypovitaminosis D in 
the metabolic syndrome and its defining components as 
well as CVD. We have described that hypovitaminosis 
D appears to be related to the metabolic syndrome, 
potentially a pre-diabetic state and its component 
characteristics such as obesity and insulin resistance. 
Thus, we would expect there to be a relationship 
between vitamin D levels and type 2 diabetes. We 
have also described current evidence as to the effects 
of vitamin D supplementation on diabetes control. In 
addition to actions that may be mediated via obesity 
and insulin resistance which we have described above, 
hypovitaminosis D appears to have a direct effect on 
glycaemic control. It has been suggested that vitamin 
D could have a role in ensuring calcium influx into cells 
which may be essential to the actions of insulin in skeletal 
muscle and adipocytes[120]. There have been hints that 
elevated parathyroid hormone levels may blunt the 
actions of insulin[121]. Although outside the boundaries 
of this review, an association between type 1 diabetes 
and hypovitaminosis D also suggests at a direct action of 
vitamin D on insulin action that may also be relevant to 
type 2 diabetes[122]. 

Vitamin D and non-alcoholic fatty liver disease
Individuals with the metabolic syndrome of long duration 
are considered to be at greater risk of developing 
hepatic steatosis[123]. A two or three hit hypothesis has 
been proposed[124]. The first hit is considered to be the 
damage caused by fatty infiltration associated with 
insulin resistance and obesity[124]. The second and third 
hits are thought to be due to hepatic injury resulting 
from mechanisms linked to oxidative stress and impaired 
cellular regeneration[124]. Hepatic fatty infiltration could 
progress through non-alcoholic steatohepatitis and liver 
fibrosis to liver cirrhosis. Management of this spectrum 
has focused on improving the metabolic syndrome 
phenotype with weight reduction and management of 
dyslipidaemia and hyperglycaemia[125].

As hypovitaminosis D is related to the metabolic 
syndrome we would expect an association with non-
alcoholic fatty liver disease. A review of 6800 patients 
on the NHANES Ⅲ database showed that those with an 
elevated serum alanine transaminase activity were seen 
to have lower vitamin D concentrations compared to 
matched controls with normal enzyme levels, the analysis 

being corrected for the metabolic syndrome[126]. This 
association (independent of age, gender, triglycerides 
and insulin resistance) was also observed by Barchetta  
et al[127] in a study of 262 patients. Further, vitamin D 
levels were lower in patients with non-alcoholic fatty liver 
disease diagnosed by liver biopsy[128]. Hypovitaminosis 
D has been associated with altered regulation of 
inflammatory and anti-oxidant pathways in addition 
to influencing the metabolic syndrome phenotype; all 
the hits postulated in the aetiology of steatosis[129]. At 
present there is no conclusive evidence that vitamin D 
supplementation could lead to clinical improvement of 
hepatic steatosis. Interestingly treatment with agents 
such as ursodeoxycholic acid, which increases vitamin D 
concentrations, has shown some improvement in non-
alcoholic steatohepatitis with alanine transaminase levels 
used as the outcome[130]. However, ursodeoxycholic 
acid may possess direct anti-inflammatory anti-oxidant 
properties which may be significant confounding factors.

CONCLUSION
It is clear that hypovitaminosis D has extra-skeletal 
effects that impact on the development of various 
pathologies including those that make up a large majority 
of morbidity and mortality; cancer, CVD and diabetes. In 
this review we have focussed on the association between 
hypovitaminosis D and the metabolic syndrome. Recently 
there has been a significant increase in the number of 
individuals with the metabolic syndrome. Indeed, as 
much as 40% of the United States population suffers 
from the condition comprising some or all of a cluster of 
CVD risk factors. Although the metabolic syndrome does 
not confer additional risk compared to the component 
risk factors we believe it helpful to the clinician and 
researcher to classify patients because it encourages a 
holistic approach to CVD risk reduction and study of the 
inter-relationships between the different relevant factors 
respectively. 

There is considerable confusion surrounding the 
association between vitamin D and the metabolic 
syndrome, its component factors, CVD and mortality. 
Although studies have not been unanimous in their 
findings we are left with the impression that hypovita
minosis D is probably associated with all the above 
outcomes. However, the nature of this relationship in 
subgroups (e.g., gender, age groups, ethnicity, etc.) 
is not clear. The risk associated with varying levels of 
vitamin D has not been estimated. Mechanisms that 
lead to increased prevalence of the components of the 
metabolic syndrome and its associated risk have not 
been worked out. Even more confusing is whether there 
is any benefit in vitamin D replacement therapy as trials 
have been contradictory.

However, there appears to be sufficient evidence 
to make the unravelling of the association between 
hypovitaminosis D and the metabolic syndrome a priority. 
Today both conditions are of high prevalence. This 
suggests that even if a modest decrease in CVD risk is 
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observed following vitamin D replacement it will translate 
to substantial overall benefits. Due to the modest price of 
supplements and relative safety, the cost benefits could 
be in favour of vitamin D replacement. 

What is required are well designed studies, both 
prospective and intervention. In addition to estimating 
overall benefit, they must be sufficiently powered to 
study subgroups as well as risk and benefits at varying 
serum vitamin D concentrations as well as replacement 
regimes. It is only following the availability of this data 
that clear recommendations can be made with regards 
vitamin D replacement in patients with the components 
of the metabolic syndrome.
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