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Birth Month Affects Lifetime Disease Risk:
A Phenome-Wide Method
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ABSTRACT
....................................................................................................................................................

Objective An individual’s birth month has a significant impact on the diseases they develop during their lifetime.
Previous studies reveal relationships between birth month and several diseases including atherothrombosis, asthma,
attention deficit hyperactivity disorder, and myopia, leaving most diseases completely unexplored. This retrospective
population study systematically explores the relationship between seasonal affects at birth and lifetime disease risk for
1688 conditions.
Methods We developed a hypothesis-free method that minimizes publication and disease selection biases by systemati-
cally investigating disease-birth month patterns across all conditions. Our dataset includes 1 749 400 individuals with
records at New York-Presbyterian/Columbia University Medical Center born between 1900 and 2000 inclusive. We mod-
eled associations between birth month and 1688 diseases using logistic regression. Significance was tested using a
chi-squared test with multiplicity correction.
Results We found 55 diseases that were significantly dependent on birth month. Of these 19 were previously reported
in the literature (P< .001), 20 were for conditions with close relationships to those reported, and 16 were previously
unreported. We found distinct incidence patterns across disease categories.
Conclusions Lifetime disease risk is affected by birth month. Seasonally dependent early developmental mechanisms
may play a role in increasing lifetime risk of disease.
....................................................................................................................................................

Key words: Electronic health records; personalized medicine; seasons; cardiovascular diseases; embryonic and fetal
development; prenatal nutritional physiological phenomena; pregnancy; maternal exposure.

INTRODUCTION
Hippocrates described a connection between seasonality and
disease nearly 2500 years ago, “for knowing the changes of
the seasons . . . how each of them takes place, he [the clini-
cian] will be able to know beforehand what sort of a year is go-
ing to ensue . . . for with the seasons the digestive organs of
men undergo a change.”1 Following in footsteps laid more than
2 millennia ago, recent studies have linked birth month with
neurological,2–4 reproductive,5–9 endocrine10 and immune/
inflammatory disorders,11 and overall lifespan.12

Many disease-dependent mechanisms exist relating
disease-risk to birth month. For example, evidence linking a
subtype of asthma to birth month was presented in 1983.13

They found that individuals born in seasons with more abun-
dant home dust mites had a 40% increased risk of developing
asthma complicated by dust mite allergies. Their finding was
corroborated later when it was found that sensitization to aller-
gens during infancy increases lifetime risk of developing aller-
gies.14 In addition, some neurological conditions may be
associated with birth month because of seasonal variations in
vitamin D and thymic output.15 Understanding disease birth
month dependencies is challenging because of the diversity of
seasonal affects and connections to disease-risk.

The recent adoption of electronic health records (EHRs)
allows meaningful use16 of data recorded during the clinical
encounter for high-throughput exploratory analyses.17,18 Using
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EHR data requires overcoming problems with definition dis-
crepancies,19 data sparseness, data quality,20 bias,21 health-
care process effects,22 and privacy issues.23 Informatics
methods overcome these challenges, e.g., standardized ontolo-
gies minimize definition discrepancies,24 concordance mea-
sured across integrated datasets allows for data sparseness
and quality assessment,20 and statistical methods can mini-
mize bias and healthcare process effects.25–27 Using informat-
ics approaches, EHR discovery methods28 were developed with
successful applications in diverse areas including: dentistry,29

genetics,30–32 and pharmacovigilance.33,34 Novel disease asso-
ciation patterns35,36 and seasonal dependencies37–39 have also
been established using EHRs.

Advances in health informatics coupled with the availability
of large clinical databases enable systematic investigation of
birth month-disease dependencies. All previous disease-birth
month association studies were hypothesis-driven and focused
on popular diseases leaving rare diseases unstudied (selection
bias). Also, in the literature there is a propensity to publish
studies that find an association over those that fail to find a re-
lationship, illustrating publication bias.26,27,40,41 In contrast, we
developed a high-throughput, hypothesis-free algorithm that
mines for disease-birth month associations across millions of
records. We call our approach: Season-Wide Association Study
(SeaWAS) as it finds all conditions associated with birth month.
We show that SeaWAS detects diseases with seasonal compo-
nents related to early development.

METHODS
Population
We used the Columbia University Medical Center (CUMC)’s
health record data, previously converted to the standardized
Common Data Model (CDM) developed by the Observational
Medical Outcomes Partnership (now the Observational Health
Data Sciences and Informatics).42 CUMC data was initially re-
corded using International Classification of Diseases, version 9
(ICD-9) codes. These ICD-9 codes were mapped to Systemized
Nomenclature for Medicine-Clinical Terms (SNOMED-CT) codes
according to the CDM v.4.42 We selected SNOMED-CT because
it captures more clinical content then ICD-9 codes,43 making
SNOMED-CT ideal for phenotype classification. Additionally, us-
ing this standardized CDM increases the portability of our
method across institutions enhancing data sharing.44

We extracted all individuals born between 1900 and 2000
inclusive (N¼ 1749400 individuals) who were treated at CUMC
(between 1985 and 2013), demographics given in Table 1. The
median age of our population was 38 years (interquartile range,
IQR: 22–58). We performed a Fisher-exact test between the
birth month distributions for each sex vs the average birth
month distribution. Likewise the birth month distributions by
birth decade (e.g., 1900–1909, 1990–1999) were compared to
the overall average birth month distribution. No statistically sig-
nificant differences were found (P¼ 1 for all comparisons).
Therefore, yearly and sex-based variation in the birth month
distribution is minimal and should not affect our analyses (SI
Appendix Figure S1 and S2).

We verified that our monthly birth rate data was consistent
with known New York City (NYC) births using data from the
Centers of Disease and Control (CDC) for 1990–2000 inclu-
sive.45 CUMC data were highly correlated with CDC birth rates
from the Bronx (r¼ 0.833, P¼ .001), New York (r¼ 0.796,
P¼ .002), and Queens (r¼ 0.791, P¼ .002) counties
(SI Appendix Figure S3). We performed this verification check
because confirming the place of birth for individuals can be
complex,46 and was not possible for our CUMC dataset.
Subsequently, for the 1990–2000 period we were able to ob-
tain data regarding the number of babies admitted to CUMC on
the day of their birth for the 1990–2000 period and found that
the proportion (no. of patients admitted to CUMC on their day of
birth/no. of patients included in SeaWAS) ranged from 17.97%
to 31.28% by birth year with the average proportion being
22.98%. CUMC’s Institutional Review Board approved this
study.

Methods
We investigated associations with birth month across all re-
corded conditions. A condition is defined as any SNOMED-CT
code mapped using the CDM.42 For controls, we randomly
sampled individuals from the same EHR population without the
disease ensuring that our control sample size was ten times
the size of the case population. We then modeled the associa-
tion between birth month (as an integer) and each condition as
a logistic regression model with significance assessed using
chi-square (R v.3.1.0). Therefore, the monthly birth rate was
compared between the case and control populations for each
condition adjusting for monthly birth month variation effects.
For multiplicity correction, we only selected conditions passing
the Benjamini-Hochberg adjustment that controls for the false
discovery rate (FDR).47 To ensure sufficient sample size across
all 12 months, we only investigated conditions having at least
1000 individuals born between 1900 and 2000 inclusive (this
amounted to 1688 conditions).

To evaluate SeaWAS, we extracted all articles from PubMed
with the term “birth month” and an additional article refer-
enced by a located article (n¼ 156). We manually reviewed all
abstracts and removed articles related to nonhumans (n¼ 8),
breeding (n¼ 7), sports (n¼ 10), or where birth month was
used for another purpose, e.g., for matching controls (n¼ 34),
perspective/meta-analysis papers (n¼ 2), papers not available
in English (n¼ 2), and one paper with a statistical error noted
in PubMed. This process identified 92 relevant articles. We
then manually classified each paper by the disease studied,
and whether they found or failed to find an association. Some
conditions associated with birth month in the literature, e.g.,
height, were not extractable from our EHR (36 diseases were
not extractable). In total, 19 diseases reported in the literature
could be mapped to EHR conditions. Of those diseases, 16
were positively associated (>50% of literature supported an
association) and 3 were not associated (�50% of literature
failed to find an association). We extracted all relevant EHR
codes for each of the 16 positive associations (n¼ 172 codes).
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These literature associations were used for quality assessment
of SeaWAS results.

We used an internal evaluation technique to evaluate novel
associations discovered by SeaWAS. We ran the SeaWAS algo-
rithm on a restricted sample comprising 80% of the original
sample, randomly chosen. We then corrected for multiplicity
using the Benjamini-Hochberg adjustment that controls the
FDR. We took all novel associations (i.e., not reported in the lit-
erature) revealed in the restricted sample, and then validated
them using the validation set (containing 20% of the original
population). Twelve of the 16 discovered associations were val-
idated in this manner.

Permutation analysis was also used for empirical evaluation
of SeaWAS. We randomly selected 55 diagnosis codes from
the set of 1688 codes included in our study. We then set all

codes in this randomly derived set as “positive” associations.
Next, the number of positive literature results in each random
sample was measured. This was done for 1000 random sam-
ples. The overall distribution of these random samples was
compared to our SeaWAS results. This allowed us to assess
the true positive rate, false positive rate, positive predictive
value, and the total number of confirmed literature associations
obtained from SeaWAS.

For all significant associations, we calculated the proportion
of individuals having the condition using their birth month and
day out of all individuals with the same birth month and day.
This generated a set of proportions for every day in the year
(366 days). We then used a 2-month window10 to smooth the
daily proportion rate (1 month before the date and 1 month af-
ter the date). The weekly and monthly averages were then
computed. An overview of the algorithm is shown in Figure 1.

All SeaWAS results were compared to the literature in a bi-
nary manner to ascertain if the association was previously re-
ported. Afterwards, we analyzed the disease-birth month risk
plots from the literature. We used three criteria to select stud-
ies, namely: 1) published raw data; 2) raw data includes some
adjustment for natural variation in birth month depending on
study region; and 3) disease-birth month data were at a similar
granularity level to allow for effective comparisons (e.g., this
criterion would exclude studies that grouped multiple diseases
together or removed certain disease subtypes). We sought to
include pattern data for at least one study per disease category
to compare with SeaWAS.

RESULTS
EHR Mining of 1688 Conditions Reveals 55 Conditions
Dependent on Birth Month
We used SeaWAS to mine birth month associations for 1688
SNOMED-CT conditions with at least 1000 individuals recorded
at CUMC. After multiplicity correction using FDR (a¼ 0.05,
n¼ 1688 conditions), 55 conditions were found associated
with birth month. All reported P-values are FDR adjusted
(q-values).

Literature Validation of SeaWAS Results
Using our curated reference set of 16 conditions (that mapped
to 172 SNOMED-CT codes), we found 19 SeaWAS results
(7 distinct diseases) were supported by the literature (SI
Appendix Table S1), representing a significant enrichment with
OR¼ 3.4 (95% CI: 1.9–6.0, P< .0001, Figure 2a). SeaWAS
successfully ruled-out associations between birth month and
disease risk for all “true negatives” in our reference set
(Figure 2a). We compared SeaWAS results for known and
closely related diseases (Figure 2b) to help elucidate gaps in
the literature. We found that some diseases, e.g., reproductive
performance, featured prominently in both the literature and
SeaWAS results, whereas, other diseases featured heavily in
the literature but not as strongly in our results, e.g., asthma/al-
lergy and rhinitis. A potential literature gap exists for respiratory
syncytial virus (2 publications Figure 2a), which had many
SeaWAS known or highly related associations (8 total

Table 1: Demographics of Patients Included
in SeaWAS Study (N¼ 1749400)

Demographic N (%)

Sexa

Female 956 465 (54.67)

Male 791 534 (45.25)

Other/unidentified 1401 (0.08)

Race

White 665 366 (38.03)

Othera 456 185 (26.08)

Unidentified 386 533 (22.10)

Black 189 123 (10.81)

Declined 29 747 (1.70)

Asian 20 746 (1.19)

Native American/Indian 1511 (0.09)

Pacific Islander 189 (0.01)

Ethnicity

Non-Hispanic 590 386 (33.75)

Unidentified 458 071 (26.18)

Hispanic 361 123 (20.64)

Declined 339 820 (19.42)

Other attributes Median (first–third
quartile)

Total SNOMED-CT codes per patient 6 (1–32)

Distinct SNOMED-CT codes per patient 3 (1–8)

Age (year of service–year of birth) 38 (22–58)

Years of Follow-up 1 (1–3)
aOther (includes Hispanics not otherwise identified)
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associations, Figure 2b). A Manhattan plot visualizes our results
by disease category (Figure 2c) showing that some categories
including, circulatory, and respiratory diseases appear promi-
nently in our results.

We found 20 conditions associated with birth month that
were similar to those in our reference set (SI Appendix Table
S2) and 16 that were completely novel (Table 2). Nine of these
16 associations were cardiovascular conditions including: atrial
fibrillation (P< .001), essential hypertension (P< .001), con-
gestive cardiac failure (P< .001), angina (P¼ .001), cardiac
complications of care (P¼ .027), mitral valve disorder
(P¼ .024), pre-infarction syndrome (P¼ .036), cardiomyopa-
thy (P¼ .009), and chronic myocardial ischemia (P¼ .022).
Seven discovered associations were non-cardiovascular: pri-
mary malignant neoplasm of prostate, malignant neoplasm of
overlapping lesion of bronchus and lung, acute upper respira-
tory infection, nonvenomous insect bite, venereal disease
screening, bruising, and vomiting.

Internal Evaluation of Discovered Associations
We internally evaluated all novel associations found using
SeaWAS. We ran SeaWAS on an 80% restricted sample and then
validated the novel associations in the validation set (20% original
sample size). 12 of the 16 novel associations were validated
including 6 out of 9 novel cardiovascular conditions. Table 2 de-
notes the discovered conditions that passed the internal valida-
tion. Four conditions were not significant after correction in the
restricted sample including: mitral valve disorder, pre-infarction
syndrome, chronic myocardial ischemia, and vomiting.

Evaluation Using Permutation Analysis
We used permutation analysis to assess the concordance we
found between our SeaWAS results and what was reported in
the literature. We randomly selected 55 codes from the set of
1688 codes included in our study and set them as “positives.”
We then measured the number of positive literature results in
our random samples and compared to SeaWAS. We did this for

Figure 1: Overview of the SeaWAS algorithm. The algorithm takes all 1688 conditions as initial input, finds significant asso-
ciations over all months, then it models each birth month’s association with the condition by smoothing the birth month
proportions using a 2-month window. We then extracted all relevant birth month articles from PubMed (n ¼ 92) and
mapped the results to extractable codes from electronic health records. SeaWAS found 7 of the 16 diseases reported as
associated with birth month in the literature corresponding to 19/55 associated codes.
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1000 random samples. Results are shown in Figure 3.
SeaWAS consistently and significantly (P< .001) outperformed
random for TPR, FPR, and PPV at finding more literature vali-
dated associations.

SeaWAS Replicates Established Birth Month Trends:
Asthma, Reproductive Performance, and ADHD
We calculated smoothed birth month proportions for all 55
SeaWAS birth month associations. We then compared condi-
tions with known associations to birth month and their pub-
lished trends. The smoothed weekly and monthly proportions
are shown in Figure 4 for 3 established associations: asthma,
Attention Deficit Hyperactivity Disorder (ADHD) and reproductive
performance and three discovered associations: atrial fibrilla-
tion, mitral valve disorder, and chronic myocardial ischemia.
Relative risk plots for the associations are given in SI Appendix
Figure S4. To compare our results with the published

proportions from other studies, we used an asthma study from
Denmark,13 a reproductive performance study from Austria,8

and an ADHD study from Sweden.3

Comparing our results with Denmark’s asthma study13

showed highly similar seasonal patterns. They found two large
peaks in May and August, with 2 smaller peaks in June and
July.13 Our results were shifted by 2 months with large peaks
in July and October and smaller peaks in August and
September. We extracted data on the average monthly sun-
shine exposure for NYC and Denmark48,49 for comparison
(Figure 4). For reproductive performance, we compared our re-
sults to an Austrian study8 (Figure 4). We validated a dip in
births among females born in May through September as this
was also found in the Austrian study. We compared our ADHD
smoothed proportions to odds ratios reported by a Swedish
study and found a similar upward trend towards the later part
of the year peaking in November3 (Figure 4).

Figure 2: SeaWAS Results Show Enrichments for Literature Associations. (A) shows the breakdown of SeaWAS results by
number of publications demonstrating a relationship. (B) shows the number of SeaWAS associations known to be related
to disease from the literature (solid black), and those that are closely related to known diseases (curvy lines). (C) Depicts all
birth month–disease associations in a Manhattan plot organized by their respective ICD-9 disease categories (x axis). A sig-
nificant SeaWAS association is a disease–birth month association remaining significant after FDR adjustment.
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We sought to include at least one seasonality comparison for
each disease category (n¼ 7) of known associations to those
found by SeaWAS (SI Appendix Table S1). This includes: allergy/
asthma/rhinitis, reproductive performance, ADHD, eye condi-
tions/problems, respiratory syncytial virus, otitis media, and coli-
tis. Literature studies on eye conditions/problems failed our 3
criteria for inclusion as data was presented at different disease
granularity levels (e.g., mild myopia was excluded) preventing ef-
fective comparisons. We found data for conditions in the three
remaining categories, otitis media, colitis, and respiratory syncy-
tial virus (SI Appendix Figures S5–S7). We found many similari-
ties among these data, but the exact mechanistic relationship
between these conditions and birth seasonality remains obscure.

Discovered Associations: Cardiovascular Conditions and
Birth Month
We found 16 associations with no prior literature, we highlight
3 of these in Figure 4, including: atrial fibrillation, mitral valve
disorder, and chronic myocardial ischemia. For illustration pur-
poses, we selected cardiovascular conditions whose pattern of
association between birth month and disease risk differs.
Mitral valve disorder demonstrates a clear bimodal seasonal
pattern with a major disease risk peak among those born in
March and a second smaller disease risk peak for those born
in August. Whereas, risk for atrial fibrillation is unimodal and
peaks among those born in March with a trough between
September and November.

Patterns of Birth-month Dependencies Cluster by
Disease Type
Of nine discovered cardiovascular associations, six had high-
risk birth months in March or April suggesting that high-risk

birth months may cluster by disease category. We examined
the disease category–birth month relationship and found that
individuals born in March were at increased risk for cardiovas-
cular diseases (Figure 5), but they had greater protection
against respiratory illnesses and neurological conditions.
Contrastingly, individuals born in October were at increased
risk for respiratory conditions with increased protection
against developing cardiovascular conditions. Overall, we found
that some months, namely May and July, had zero at risk
diseases (Figure 5, top). The complete list of protective and at
risk diseases by birth month is given in SI Appendix Table S3
with all 55 conditions and their patterns given in SI Appendix
Table S4.

Cardiovascular Disease Risk-Birth Month and Lifespan-Birth
Month
We compared our cardiovascular disease findings (n¼ 10) from
SeaWAS to published data relating overall lifespan and birth
month,12 see Figure 6. Months with lower cardiovascular dis-
ease risk corresponded with months having longer life expectan-
cies from Doblhammer et al.’s previous study.12 Six of the 10
cardiovascular conditions were significantly anti-correlated with
life-expectancy data. The strongest anti-correlation was cardiac
complications of care (Denmark: r¼�0.815, P¼ .001; Austria:
r¼�0.863, P< .001); followed by chronic myocardial ischemia
(Denmark: r¼�0.810, P¼ .001; Austria: r¼�0.826,
P< .001); pre-infarction syndrome (Denmark: r¼�0.712,
P¼ .009; Austria: r¼�0.918, P< .001); coronary arterioscle-
rosis (Denmark: r¼�0.617, P¼ .030; Austria: r¼�0.773,
P¼ .003); atrial fibrillation (Denmark: r¼�0.615, P¼ .033;
Austria: r¼�0.763, P¼ .004); and angina (Denmark:
r¼�0.611, P ¼ .035; Austria: r¼�0.771, P¼ .003).

Figure 3: SeaWAS vs random reveals higher true positive rate, lower false positive rate, higher positive predictive value,
and more confirmed literature associations. We used 1000 randomly generated samples. For each sample, 55 random
codes were pulled (from the set of 1688), and then the number of confirmed literature associations was measured.
SeaWAS consistently performed better than random across all measures.
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Figure 4: Birth month distribution plots for 3 literature validated SeaWAS results and 3 discovered SeaWAS associations. We
selected 3 well-known literature associations: asthma, ADHD, and reproductive performance to compare with SeaWAS birth
month trends. We compared our results to findings published in articles for each of these diseases: 1) for asthma we used a
Denmark study by Korsgaard et al.13; 2) for reproductive performance we used an Austrian study by Huber et al.,8 which we
compared to full-term normal delivery (i.e., general birth code); and 3) for ADHD we used a Swedish study by Halldner et al.3

To facilitate comparison between asthma studies from different locales, we used data on the average monthly sunshine expo-
sure for New York, USA and Skagen, Denmark obtained from World Weather and Climate Information.48,49 We also found 3 in-
teresting new associations: atrial fibrillation, mitral valve disorder, and chronic myocardial ischemia.
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Figure 5: Disease risk status breakdown by birth month illustrates disease category dependency. Some months, e.g., May,
June, August, January, and December, provide no overall advantage or disadvantage to those born in that particular month
(Figure 5, top). Other months, e.g., November, are more likely to be associated with increased disease risk while others,
e.g., February, tend to be associated with decreased disease risk. The relationship between birth month and disease risk
depends on disease category, and this is shown in the 4 lower subplots. Light gray lines represent risk curves for diseases
belonging to a particular category. For example, individuals born in October are at increased risk for respiratory conditions
and at the same time are at decreased risk for cardiovascular conditions.
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DISCUSSION
Many diseases demonstrate birth month dependencies with
known mechanistic etiologies, including: asthma,13 ADHD,3 re-
productive performance,8 and myopia.50 In these studies birth
month was used as a proxy for seasonal variations in physio-
logical state or changes in environmental exposures.
Understanding dependencies between diseases and these vari-
ations is an important and challenging research task. Large
clinical databases, such as EHRs, represent a novel resource
for systematically investigating diseases.17,18 We present a
novel method, SeaWAS, for investigating birth-month depen-
dencies across all diseases in a large EHR. Prior studies
analyzed a single disease, or a disease spectrum (e.g.,
Immune-mediated Diseases) at a time. These hypothesis-
driven methods suffer from publication bias, whereby papers
demonstrating an association between a disease of interest
and birth month are more likely to be published than papers
that fail to find an association.26,27,40 Prior methods also suffer
from disease selection bias whereby diseases of popular inter-
est are studied more frequently potentially overlooking other
important disease-birth month associations. SeaWAS over-
comes these challenges using a hypothesis-free method that
does not relying on a priori hypotheses.

SeaWAS Confirms Known Disease-Birth Month Associations
SeaWAS confirmed a literature-validated association between
asthma (hyper-reactive airway disease) and birth month re-
ported by studies from Denmark13 and Sweden.51 When we
compared our findings to the Denmark study,13 we found a 2-
month shift in the birth month-asthma pattern that corresponds
with a shift in the peak sunshine (a factor in asthma compli-
cated by dust mite allergies) between Denmark and NYC48,49

(Figure 4).
Likewise, comparing our reproductive performance results

to an Austrian study8 revealed that the dip in births among fe-
males born in May through September was observed in both
studies.8 Importantly, the female reproductive system, unlike
males, is established early with females being born with their
lifetime maximum number of oocytes.52,53 Oocyte count is
thought to be linked to fertility.54 Many studies show a link be-
tween maternal birth month and number of offspring support-
ing the belief that prenatal and early developmental effects can
alter a female’s lifetime fertility.5–9 SeaWAS findings bolster
this body of literature.

We compared our ADHD smoothed proportions to odds ra-
tios reported by a Swedish study and found a similar upward
trend towards the later part of the year peaking in November.3

Figure 6: SeaWAS cardiovascular condition-birth month proportions correlate with published lifespan-birth month results
from Doblhammer et al. 2001. All 10 (9 novel) cardiovascular disease–birth month associations found by SeaWAS were
compared to Doblhammer et al.’s lifespan-birth month dependencies for Denmark and Austria12 The lifespan-birth month
associations are shown in Figure 6a. Six of the 10 were anti-correlated (i.e., months with low cardiovascular disease risk
were also months with longer life expectancies from Doblhammer et al.’s study.12 The top 3 anti-correlated cardiovascular
diseases are shown in Figure 6b, cardiac complications of care (Denmark: r¼�0.815, P¼ .001; Austria: r¼�0.863,
P< .001); chronic myocardial ischemia (Denmark: r¼�0.810, P¼ .001; Austria: r¼�0.826, P< .001); and pre-
infarction syndrome (Denmark: r¼�0.712, P¼ .009; Austria: r¼�0.918, P< .001). In Figure 6b, **denotes P� 0.001
and *denotes P< .01 for both comparisons (Austria and Denmark).
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A rationale for their findings (and ours) is that relative immatu-
rity (born later in the year) may result in increased ADHD detec-
tion.3 This occurs because more immature children (i.e.,
younger in age) face higher demands early on in their school
years making them more susceptible to ADHD diagnosis. The
age cutoff for schools in Sweden is 31 December, which is the
same for NYC public schools. Alternatively, the relationship
between Vitamin D and ADHD and learning patterns has been
established in rats55,56 and Vitamin D deficiency in early devel-
opment (in utero or shortly after birth) could be related to
ADHD.

Discovered Cardiac Condition-Birth Month Relationship
SeaWAS revealed nine cardiovascular conditions associated
with birth month. Importantly, children born to survivors of the
H1N1 1918 subtype were associated with a >20% excess risk
of cardiovascular disease,57 suggesting a relationship between
maternal infection and cardiovascular disease risk that is
independent of maternal malnutrition.57 Therefore, maternal in-
fection during the winter months (January–March) could con-
tribute to the increased cardiovascular disease risk among
children born in those months.

Looking at all 10 (9 novel) cardiovascular conditions re-
vealed that individuals born in the autumn (September–
December) were protected against cardiovascular conditions
while those born in the winter (January–March) and spring
(April–June) were associated with increased cardiovascular
disease risk (Figure 5). Interestingly, one study found that peo-
ple born in the autumn (October–December) lived longer than
those born in the spring (April–June).12 Furthermore the rela-
tionship between cardiovascular disease risk and lifespan is
established.58 We compared our results to the Doblhammer
et al. study investigating lifespan’s dependency on birth month
and found 6 cardiovascular diseases were significantly anti-
correlated. This indicates that birth months with low risk for 6
cardiovascular diseases in our study were also associated with
longer lifespan in Doblhammer’s study12 (Figure 6). Our find-
ings suggest that the relationship between lifespan and birth
month12 could be explained by increased cardiovascular dis-
ease risk.

The relationship between cardiovascular disease and birth
month could be mediated through a developmental Vitamin
D-related pathway. Serum 25-hydroxyvitamin D levels are
lower and parathyroid hormone levels are higher during the
winter when no supplementation is given.59 Even with maternal
supplementation, seasonally dependent Vitamin D deficiency
has been observed among breastfed infants60 and newborns.61

This is important because levels of parathyroid hormone and
Vitamin D are associated with cardiovascular disease.62,63

Specifically, elevated parathyroid hormone is correlated with
increased heart failure in elderly males.64 Studies focusing on
adolescents found that Vitamin D deficiency resulted in an
increased likelihood of hypertension (a SeaWAS discovered as-
sociation)65,66 and high-density lipoprotein cholesterol,66 both
risk factors for cardiovascular disease.

SeaWAS vs PheWAS: Looking Towards the Future
We present SeaWAS a Phenome-Wide approach that systemat-
ically investigates birth month-disease dependencies using
EHRs. Our method uses birth month as a proxy for prenatal or
perinatal exposure/effects of seasonality on development, and
the disease-risk conferred by these perturbations. Denny
et al.’s30 Phenome-Wide Association Study (PheWAS) investi-
gates the relationship between diseases recorded in EHRs and
genomic markers in a similar high-throughput manner.
Recently, an obesity risk factor gene was found to be associ-
ated with year of birth67 suggesting the importance of com-
bined genetic–environmental etiologies in complex phenotypes.
In the near future it may be possible to harness SeaWAS and
PheWAS methods for high-throughput identification of diseases
tied to prenatal environmental factors (SeaWAS) and then
reveal the genetic drivers (PheWAS) underlying the prenatal
seasonality effects from EHRs.

Limitations and Future Work
Study limitations include the lack of condition independence
(conditions rarely occur in isolation) potentially affecting multi-
plicity correction. Also, we cannot rule out indirect mechanisms
(e.g., depression affects fertility, and learning ability) behind
associations between disease risk and birth month. Some
conditions associated with birth month may be associated be-
cause the infant was born in a high-risk period, e.g., acute
bronchiolitis-autumn births. These associations differ from life-
time disease effects; however, we do not distinguish between
them in our analyses because both are presented in the litera-
ture as birth month–disease associations. Another limitation is
our exclusive use of EHR data, which is affected by the health-
care process22,68 and can introduce bias,21 e.g., sick patients
tend to be over-represented in EHR populations.69 Importantly,
we showed that our birth month by year data correlated with
CDC data (SI Appendix Figure S3) indicating that our EHR popu-
lation adequately represents the “true” NYC-born population
(which includes healthy people) with respect to birth month.
Hence, we do not expect this bias to affect our findings.

Additionally, our study uses one institution’s data only;
therefore, all birth month-disease risk findings are based on
the NYC climate. Because our data is from one locale and cli-
mate, the effects we observe are likely due to the climate ef-
fects of the NYC region, and is most comparable to Northern
European climates. Future work, involves applying our SeaWAS
methodology to other institutions and adjusting for climatic dif-
ferences, which is important when including data from diverse
locales and climates.70

CONCLUSION
We present a high-throughput algorithm called SeaWAS that
uncovers conditions associated with birth month without rely-
ing on a priori hypotheses. SeaWAS confirms many known
connections between birth month and disease including: repro-
ductive performance, ADHD, asthma, colitis, eye conditions,
otitis media (ear infection), and respiratory syncytial virus. We
discovered 16 associations with birth month that have never
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been explicitly studied previously. Nine of these associations
were related to cardiovascular conditions strengthening the link
between cardiac conditions, early development, and Vitamin D.
Seasonally-dependent early developmental mechanisms might
play a role in increasing lifetime disease risk.
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