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Abstract
The debate on the causal association between vitamin D status, measured as serum con-

centration of 25-hydroxyvitamin D (25[OH]D), and various health outcomes warrants inves-

tigation in large-scale health surveys. Measuring the 25(OH)D concentration for each

participant is not always feasible, because of the logistics of blood collection and the costs

of vitamin D testing. To address this problem, past research has used predicted 25(OH)D

concentration, based on multivariable linear regression, as a proxy for unmeasured vitamin

D status. We restate this approach in a mathematical framework, to deduce its possible pit-

falls. Monte Carlo simulation and real data from the National Health and Nutrition Examina-

tion Survey 2005–06 are used to confirm the deductions. The results indicate that variables

that are used in the prediction model (for 25[OH]D concentration) but not in the model for

the health outcome (called instrumental variables), play an essential role in the identification

of an effect. Such variables should be unrelated to the health outcome other than through vi-

tamin D; otherwise the estimate of interest will be biased. The approach of predicted 25

(OH)D concentration derived from multivariable linear regression may be valid. However,

careful verification that the instrumental variables are unrelated to the health outcome

is required.

Introduction
Evidence suggests that higher vitamin D status is associated with a decreased risk of various
cancers and chronic diseases, beyond its essential role in bone health [1]. In epidemiologic
studies examining vitamin D deficiency as a risk factor for disease, vitamin D status is mea-
sured as the serum concentration of 25-hydroxyvitamin D (25[OH]D) [2]. However, for
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large-scale health surveys, measuring 25(OH)D concentration for each participant is not al-
ways feasible because of the logistics of blood collection and the costs of vitamin D testing.

To overcome this problem, it has been common to use an indicator of vitamin D status,
such as latitude or level of solar ultraviolet radiation, as a proxy for 25(OH)D [3–5]. Recent
studies have however shifted toward using multivariable linear regression models to predict 25
(OH)D concentration [6]. Briefly, the relationship between measured 25(OH)D concentration
and determinants is identified by multivariable linear regression within a subset of participants.
Based on the estimates derived, the unobserved 25(OH)D concentration is predicted and then
the predicted value is used to analyze the association with the health outcome of interest. This
methodology has been used to demonstrate a protective association between vitamin D suffi-
ciency and risk of various cancers [6–9].

Here we firstly restate this approach in a simple but general mathematical framework. We
deduce that the variables, called instrumental variables, which appear only in the multivariable
linear regression for the prediction, but not in the health outcome equation, are vital for the
correct identification of the association between 25(OH)D concentration and the health out-
come. If the instrumental variables are in fact associated with the health outcome, and therefore
are invalid as instruments, the estimated effect may be significantly biased. We then use Monte
Carlo simulation and real data from the National Health and Nutrition Examination Survey
(NHANES) to demonstrate this potential bias. Overall, we highlight problems that may occur
when using this methodology to gain a better understanding of the potential for misleading re-
sults due to the use of invalid instrumental variables.

Predictors of 25(OH)D Concentration Based on Linear Regression
Recent studies using predicted 25(OH)D concentrations based on multivariable linear regres-
sion to investigate associations between vitamin D status and health outcomes, such as inci-
dence of cancers, diabetes, or Crohn’s disease are summarized in Table 1.

This is a two-stage, two-dataset method.
Stage I (using a subset of the main dataset). The determinants of 25(OH)D concentra-

tion are identified based on the analysis of a subset of the full dataset which is assumed to be
representative of the whole sample. Measured 25(OH)D concentration is available in this sub-
set. The following model is estimated:

D ¼ ax þ dz þ e; ð1Þ

where x and z are the possible determinants of 25(OH)D concentration, D, and e is the error
term. For the sake of simplicity, x and z are assumed to be single variables, however, the deriva-
tion can be generalized to the case of multiple regression by allowing x and z to be vectors. Fur-
thermore, either x or z is assumed to be uncorrelated with e, and so the parameter estimates, â

and d̂ are unbiased.
Stage II (Using the Main Dataset). In the Full Dataset, the Missing 25(OH)D Concentra-

tion (“Score”) Is Predicted as

D̂ ¼ âx þ d̂z: ð2Þ

The predicted 25(OH)D score, D̂, is used as a proxy for the real 25(OH)D concentration,
even for those with measured values.

Predictors of 25(OH)D Concentration Based on Linear Regression
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Here we use the Cox proportional hazard model in Stage II as an example, as it has been
widely used in the research-to-date that has employed this approach. The form of the model is:

HðtÞ ¼ h0ðtÞexpðax þ by þ yD̂Þ; ð3Þ

whereH(t) and h0(t) are the hazard rate and the baseline hazard respectively.
In this example, x is a common covariate in Stage I and II and in practice includes, for exam-

ple, age and sex; y appears only in Stage II and is a factor associated with the health outcome
but not with 25(OH)D concentration, for example, vegetable and fruit intake and family histo-
ry of the disease. The variable z is excluded from Stage II. The exclusion of z (hereafter, referred
to as an “instrumental variable”) from Eq (3) is necessary to avoid a problem with multicolli-

nearity that arises because D̂ is a linear combination of x and z (using the predictive model de-

rived in Stage 1) [10]. If x, z and D̂ are all introduced, most computer software packages will
drop one of them and the estimation will be equivalent to that of Eq (3). Among papers utiliz-
ing this approach, variables such as geographic residence, vitamin D intake, race, alcohol intake
and variants of genes, are used as instrumental variables Table 1.

There are two important requirements of a valid instrumental variable. First, it must be sig-
nificantly associated with the 25(OH)D concentration, D, conditioning on x; and, second it
should not be a risk factor for the disease of interest except through its effect on D. If the first
requirement is not satisfied, the estimated standard error of the association between the 25
(OH)D score and the health outcome may be very large and/or the effect estimate will be in-
consistent. However, this problem is easily detected and avoided in practice, since whether z is
statistically significant in Stage I can be easily checked. We will not discuss this
problem further.

Table 1. Summary of papers employing predicted 25(OH)D score to examine associations between vitamin D status and health outcomes.

Reference Health outcome Statistical model
in Stage II

Instrumental variables(s)

Giovannucci et al,
2006 [6]

Cancer incidence and mortality Cox Geographical residence, Dietary vitamin D intake, vitamin D
supplements, Race

Ng et al, 2009 [9] Colorectal cancer Cox Geographical region

Liu et al, 2010 [15] Type 2 diabetes Cox Month of blood sampling, total vitamin D intake, physical
activity score, smoking status, total energy intake, BMIa

Jimenez et al, 2012
[19]

Tooth loss and periodontitis Cox UVB radiation flux at residence, dietary and supplemental
intake of vitamin D

Gilbert et al, 2012 [29] Risk factors for prostate cancer (PSA
level, BMI, Family history of prostate
cancer)

Linear and
Logistic

Sun exposure, dietary intake, Anthropometric, clinical and
demographic factorsb

Liu et al, 2013[16] Endometrial cancer Cox Vitamin D intake from food, vitamin D intake from supplements,
UVB flux based on state of residence, physical activity, alcohol
intake

Ananthakrishnan et al,
2012 [18]

Crohn's disease Cox Dietary and supplemental vitamin D intake, exposure to
sunlight, race, regional ultraviolet-B radiation intensity

Harris et al, 2013 [17] Endometriosis Cox Race, geographical region, season of blood draw, dietary
vitamin D intake

Joh et al, 2013 [8] Renal cancer Cox UVB radiation flux at residence, dietary and supplement intake
of vitamin D, postmenopausal hormone use

a Adjusted for waist circumference in Stage II;
b Since backwards stepwise regression was employed, the instrumental variables used varied across regressions.

doi:10.1371/journal.pone.0125551.t001

Predictors of 25(OH)D Concentration Based on Linear Regression
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We examine the effect of violation of the second requirement, that an instrumental variable
should not be a risk factor for the disease except through its effect on D. This cannot be de-
tected statistically and may result in bias in the estimate of interest.

Consider theoretically,

HðtÞ ¼ h0ðtÞexpðax þ by þ dz þ yD̂Þ; ð4Þ

Here, z is employed as an instrumental variable although it is not valid, and Eq (3) is estimated.
As demonstrated in S1 Appendix, the bias in the estimated effect of 25(OH)D concentration

on the health outcome is d=d̂ where d̂ is the estimate of the association between measured 25
(OH)D concentration and z. The intuitive explanation is illustrated in Fig 1. That is, the bias
occurs because the direct association between z and the health outcome, H(t), forms part of the
association between 25(OH)D concentration, D, and the health outcome,H(t). Thus, on the
one hand, the bias is positively associated with δ (i.e. the larger the effect estimate of the associ-
ation between z and the health outcome, the greater is the contribution of that association to
the association of z with 25(OH)D, D). On the other hand, the stronger the association between
z and D, the greater is the ‘proportion’ of the association between z and the health outcome
that is working via the 25(OH)D concentration, and the smaller the ‘proportion’ that is the di-
rect association between z and the health outcome. As a result, the bias is inversely associated
with d.

These deductions can be generalized to generalized linear models (GLMs), such as linear, lo-

gistic, or Poisson regression [11,12]. In these cases, ax þ by þ yD̂ is the linear predictor in the
GLM framework.

In order to assess the empirical importance of correctly choosing the instrumental variables,
we implemented Monte Carlo simulations to generate a series of virtual datasets as well as ex-
amining real data from NHANES 2005–2006 to examine the association between 25(OH)D
concentration and systolic blood pressure.

Methods and Materials

Monte Carlo Simulation
Data Generating. The Monte Carlo design assumes the 25(OH)D concentration is gener-

ated according to the following linear equation

D ¼ a0 þ a1x þ d1z1 þ d2z2 þ e: ð5Þ

We set a0 = 0.1, a1 = 0.4, d1 = 0.2 and d2 = 0.3. The covariates, x, z1 and z2 are all drawn inde-
pendently from the standard normal distribution, and the error term e from a uniform distri-
bution between -0.5 and 0.5.

The hazard of the health outcome is defined as a function of x, y, z1 and D.

HðtÞ ¼ h0ðtÞexpða1x þ by þ d1z1 þ yDÞ; ð6Þ

We set α1 = 0.1, β = 0.3, δ1 = 0.4, θ = 0.5 and h0(t) = 1. The covariate y was drawn from the
standard normal distribution independently.

The method for the generation of the survival time for the proportional hazard models is in-
troduced in S2 Appendix. Furthermore, in order to show how the bias changes with either of d1
or δ1, d1 was set to change from -1 to 1 with a step size of 0.1 with δ1 fixed at 0.4; and δ1 was set
to change from -1 to 1 with a step size of 0.1 with d1 fixed at 0.2. For each level of d1 and δ1
1,000 datasets with 5,000 observations were generated. Note, z2 is always a valid instrumental

Predictors of 25(OH)D Concentration Based on Linear Regression
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variable; however only when δ1 = 0, is z1 valid because only in this case is z1 not an explanatory
factor for the health outcome.

Fig 1. The effect of omitting z from the health outcome equation. In theory, the total effect of z on health outcome, H, is δ + θd. In practice, using z as an
instrumental variable causes bias in the estimated effect of the 25(OH)D score, D, on the health outcome, because the direct effect of z on the health outcome
is incorrectly captured as being mediated by D.

doi:10.1371/journal.pone.0125551.g001

Predictors of 25(OH)D Concentration Based on Linear Regression
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Estimating. When estimating, three specifications were employed. In Specification I, only
z1 is used as an instrumental variable. In other words, z1 is included in the equation to predict
25(OH)D score, but not in the equation testing the association with the health outcome. In
Specification II, both z1 and z2 are used as instrumental variables, and in Specification III, only
z2 is used as an instrumental variable. Hence, only Specification III is correct and the estimates
arising should be unbiased.

The means of the estimated association with the health outcome over the 1,000 datasets for
each level of d1 and δ1 were compared with each actual value.

Source of Real Data
The methodology for NHANES 2005–06 is well-described elsewhere [13]. Briefly, the survey is
designed to assess the health and nutritional status of adults and children in the United States.
NHANES 2005–06 was the seventh NHANES and included more than 10,000 participants
from 30 sites across the United States. The data from this survey are used here as 25(OH)D
concentration is available on a large sample size.

We chose to examine the association between 25(OH)D concentration and systolic blood
pressure (as the health outcome of interest) as an example. It is unclear that there is any causal
relationship between 25(OH)D level and blood pressure. Nevertheless the association is used
here to demonstrate the potential bias caused by the use of an invalid instrumental variable. Ex-
clusion of data from participants with missing values for 25(OH)D concentration or with fewer
than three readings of systolic blood pressure and children (aged<18 years), resulted in a final
sample of 4,002 participants. The missing data for 25(OH)D concentration and systolic blood
pressure were missing at random [14]; specifically, missingness was associated with gender and
overweight or obesity status

Statistical Methods
The dependent variable, systolic blood pressure, is continuous; thus ordinary least squares re-
gression (OLS) is used for Stage II. This also provides an opportunity to test the generalizability
of our theoretical analysis.

First, we estimated the association between 25(OH)D concentration and systolic blood pres-
sure. The results were used as the benchmark against which to check whether there was bias
caused by use of invalid instrumental variables. Covariates included age, sex (reference catego-
ry = ‘Female’), and overweight or obesity status (reference category = ‘BMI�25’).

Next, we developed a predictive model for 25(OH)D concentration using a multivariable
OLS linear regression model (Stage I). The determinants of 25(OH)D concentration included
sex, and overweight or obesity.

In Stage II, we used the same dataset but set all of the values of 25(OH)D concentration to
be missing, and replaced these with a predicted 25(OH)D score derived from Stage I. We used
OLS regression again, using sex and the predicted 25(OH)D score to assess the association be-
tween 25(OH)D score and systolic blood pressure (Stage II). Thus, the instrumental variable of
interest was overweight or obesity status (included in Stage I, but not Stage II). There are many
potential explanatory variables in both stages; however, use of only overweight/obesity is suffi-
cient to illustrate the outcome of using an invalid instrumental variable.

All analyses were performed using Stata 11.

Predictors of 25(OH)D Concentration Based on Linear Regression
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Results

Monte Carlo Simulation
The effect estimates for the different variables, based on virtual samples for all three specifica-
tions, are in Table 2. The results confirmed that valid instrumental variables are essential for
the estimates to be unbiased. If the instrumental variable is invalid, the bias in the estimated ef-
fect of 25(OH)D on the health outcome (θ) can be large, even if all of the coefficients in these
models are reasonably small. For example, when d1 and δ1 were 0.2 and 0.4 respectively, the
bias was 2 (δ1/d1 = 0.4/0.2), with the estimated coefficient nearly five-fold higher than the
“real” (pre-set) value of θ (see Specification I Table 2). For Specification II (using z1 and z2 as
instrumental variables), the bias in the estimate of the association between 25(OH)D and the
health outcome, (θ) remained significant (p<0.001) but was smaller. Only when the instru-
mental variable is valid are the estimates statistically identical to the pre-set values (Specifica-
tion III).

Fig 2(A) shows that the bias in the estimate of θ is inversely correlated with the magnitude
of the association between z1 and 25(OH)D concentration. The results, when d1 is very close to
0, are not shown because the bias is theoretically infinite. The bias caused by the invalid instru-
mental variable decreases with increasing δ1. When δ1 is zero, z is a valid instrumental variable
and the estimate is unbiased. Further, the comparison between Specification I and II suggests
that, although the introduction of a valid instrumental variable improves the performance of
the model, bias is still present.

Fig 2(B) shows that the estimate of θ increases almost linearly with the association between
z and the health outcome. Again, bias is absent only if δ1 is equal to zero. A valid instrumental
variable is helpful to identify the presence of an association between the 25(OH)D score and
the health outcome, but the effect estimate is biased.

Table 2. Stage-II estimates of the coefficient for each of the variables (x, y, D) included in the Cox proportional hazardmodels for different specifi-
cations, Monte Carlo simulations, sample size 5000, d1 = 0.2 and δ1 = 0.4.

Variable Pre-set value Estimated value 95% CI P-value

Specification Ia

x 0.10 -0.68 (-0.74, -0.61) <0.001

y 0.30 0.29 (0.26, 0.32) <0.001

D 0.50 2.42 (2.27, 2.57) <0.001

Specification IIb

X 0.10 -0.13 (-0.18, -0.09) <0.001

y 0.30 0.27 (0.25, 0.30) <0.001

D 0.50 1.02 (0.93, 1.10) <0.001

Specification IIIc

x 0.10 0.10 (0.05, 0.15) 0.003

y 0.30 0.30 (0.27, 0.32) <0.001

z1 0.40 0.39 (0.36, 0.43) <0.001

D 0.50 0.49 (0.40, 0.59) <0.001

a z1 is the only instrumental variable, but it is invalid;
b z1 and z2 are the invalid and valid instrumental variables respectively;
c z2 is the only instrumental variable, and it is valid. Specification III is correct.

doi:10.1371/journal.pone.0125551.t002

Predictors of 25(OH)D Concentration Based on Linear Regression
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Fig 2. Estimates of the association between the 25(OH)D concentration and the health outcome (Θ) according to the change in (a) d1, with δ1 = 0.4
and (b) δ1, with d1 = 0.2; sample size 5000, Specification I and II.

doi:10.1371/journal.pone.0125551.g002

Predictors of 25(OH)D Concentration Based on Linear Regression
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Real Data
Table 3 presents summary data on the 4,002 adults in NHANES 2005–06 who had complete in-
formation on blood pressure and 25(OH)D concentration. Severe vitamin D deficiency was
more common in participants who were overweight or obese compared to those of normal
weight (p<0.001). Mean systolic blood pressure increased across categories of lower vitamin D
status (p<0.001).

The results in the first column of Table 4 show that the measured 25(OH)D concentration
was inversely associated with systolic blood pressure after controlling for age, sex, and over-
weight or obesity status (β = -0.16 (95% CI: -0.21, -0.11; p<0.001)). In addition, systolic blood
pressure was positively and significantly associated with overweight status: when BMI was
greater than 25, the systolic blood pressure was higher by 3.13 (95% CI: 2.08, 4.18; p<0.001)
mmHg.

The results of the OLS linear regression in Stage I based on the measured 25(OH)D concen-
tration, shown in Column (2) of Table 4, suggested that overweight or obesity status was a

Table 3. Summary of characteristics according to vitamin D status (based onmeasured serum 25(OH)D concentration) among 4,002 adults of the
National Health and Nutrition Examination Survey (2005–06), American adults who had three readings of systolic blood pressure.

Severe deficiency<10 ng/mL Mild deficiency10~20 ng/mL Adequacy> = 20 ng/mL P-value

Overall n(%) 365 (9.1) 1427 (35.6) 2210 (55.3)

Gendera 0.14

Male, n (%) 141(7.3) 711(36.6) 1089(56.1)

Female, n(%) 224(10.9) 716(34.7) 1121(54.4)

Age (years), mean(SD)b 41.3 (18.3) 44.1 (19.0) 45.4 (18.8) <0.001

Overweight or obesity statusa <0.001

BMI>25, n (%) 277(10.2) 1050(38.6) 1390(51.2)

BMI�25, n(%) 88(6.9) 377(29.3) 820(63.8)

Systolic blood pressure (mmHg) mean(SD)b 124.1 (19.5) 123.4 (18.0) 120.7 (17.3) <0.001

a P values were derived from Kolmogorov-Smirnov tests;
b P values for trend (two-sided) were derived from trend tests.

doi:10.1371/journal.pone.0125551.t003

Table 4. Multivariable association betweenmeasured 25(OH)D concentration and systolic blood pressure; determinants of 25(OH)D concentration
(Stage I); andmultivariable association between predicted 25(OH)D score and systolic blood pressure (Stage II) among 4,002 adults of the Nation-
al Health and Nutrition Examination Survey (2005–06), US, OLS.

Variable Systolic blood pressure Stage I: measured 25(OH)D
concentration

Stage II: Systolic blood pressure

Coefficient 95% CI P-
value

Coefficient 95% CI P-
value

Coefficient 95% CI P-
value

Measured 25(OH)D
concentration

-0.16 (-0.21, -0.11) <0.001

Predicted 25(OH)D score -1.15 (-1.48, -0.82) <0.001

Age 0.42 (0.40, 0.45) <0.001 0.02 (0.01, 0.04) <0.001 0.45 (0.42, 0.47) <0.001

Male (vs. female) 3.71 (2.74, 4.67) <0.001 -0.28 (-0.86, 0.30) 0.35 3.43 (2.45, 4.41) <0.001

Overweight or obesity (BMI>25
vs�25)

3.13 (2.08, 4.18) <0.001 -3.16 (-3.79,
-2.53)

<0.001

Constant 102.63 (100.80,
104.45)

<0.001 22.89 (21.05,
23.74)

<0.001 130.19 (124.55,
132.45)

<0.001

Adjusted R2 0.24 0.02 0.24

doi:10.1371/journal.pone.0125551.t004

Predictors of 25(OH)D Concentration Based on Linear Regression
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significant predictor of 25(OH)D concentration. Compared to a BMI of�25, a BMI of greater
than 25 was associated with a 3ng/ml lower measured 25(OH)D concentration (β = -3.16; 95%
CI: -3.79, -2.53 ng/mL; p<0.001). The Stage II estimate for the association between the pre-
dicted 25(OH)D score and systolic blood pressure, where overweight or obesity status was em-
ployed as the instrumental variable, was β = -1.15 (95% CI: -1.48, -0.82; p<0.001) (Column (3)
of Table 4). This is significantly different from the estimate based on the measured 25(OH)D
concentration (Column (1) of Table 4) (p<0.001).

In addition, because the coefficient of the association between overweight or obesity status
and systolic blood pressure was 3.13, and that between overweight or obesity status and 25
(OH)D concentration was -3.16 (See Column (1) and (2) of Table 4 respectively), the bias is
theoretically -0.99 (= 3.13/-3.16) when overweight or obesity status is used as the instrumental
variable. Thus, the estimated effect of the predicted 25(OH)D score on systolic blood pressure
is β = -1.15 (= [-0.16] +[-0.99]), that is, the sum of the estimated effect of the measured 25(OH)
D concentration in Column (1) of Table 4 and the bias. This is statistically identical with the es-
timate in column (3) of Table 4, -1.15 (95% CI: -1.48, -0.82).

Discussion
The results indicate that the prediction of 25(OH)D concentration based on multivariable line-
ar regression may be correct, but care needs to be taken when applying this methodology. Even
if only one of the instrumental variables used is invalid, the estimates of the association be-
tween 25(OH)D concentration and the health outcome will be unreliable. It should be noted
that the second requirement of a valid instrument variable, that it should not be a risk factor
for the disease, cannot be test mathematically or statistically and can only be judged according
to biological findings from past research. Thus, the reasons for the choice of instrumental vari-
ables should be discussed, and the lack of correlation with the health outcome confirmed. Pre-
vious studies using this methodology have not provided an adequate consideration of the
potential biases that could occur. For example, several papers used variables such as physical
activity, BMI, smoking status, alcohol intake and race as instrumental variables, despite sub-
stantial evidence these factors are strongly associated with many diseases, including the out-
comes of interest [6,15–18]. Vitamin D intake has also been used as an instrumental variable
[8,19], but may also be associated with disease risk as a marker of a healthier lifestyle and thus
lower disease risk [20].

In some studies, stratification by a potential confounder, or meta-analysis of findings have
been used to indicate a greater likelihood of a “real” finding. However, a stratified analysis can-
not demonstrate that the results are “correct” or robust. For example, where BMI is used in the
predictive model for 25(OH)D score, then the effect estimate of 25(OH)D score on the health
outcome, e.g. digestive cancer, may be compared across strata of BMI. Higher BMI is a known
risk factor for digestive cancer and is therefore an invalid instrumental variable. In this case, if
the effect estimates from the two strata are the same or similar, then the conclusion may be
that the association between 25(OH)D score and the health outcome is the same for both stra-
ta, or, alternatively, that the bias caused by the invalid instrumental variable plus the real asso-
ciation is the same for both strata. But it is not possible to distinguish between these two
possible conclusions. Similarly, meta-analysis does not help although it is useful to estimate the
summary effects over a number of previous studies particularly when the sample size in any
single study is insufficient. If all of the individual studies use invalid instrumental variables, all
of the effect estimates are biased, and the weighted average of these biased estimations will be
similarly biased.

Predictors of 25(OH)D Concentration Based on Linear Regression
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Most recently, variants of genes that affect 25(OH)D synthesis or substrate availability (e.g.
CYP2R1, GC and DHCR7) have been used as instrumental variables either individually or
through creation of a genetic score that acts as a proxy for long-term 25(OH)D levels [21]. This
method does not predict 25(OH)D levels per se, but may be more disease-relevant than a single
25(OH)D measurement for which intraclass correlation coefficients range from 0.42–0.72 be-
tween 2 direct measures taken 2–14 years apart [6,22–24]. The substrate from which vitamin D
is synthesised is 7-dehydrocholesterol (7-DHC) located in epidermal cells of the skin. The
DHCR7 gene encodes the enzyme 7-DHC reductase and both 7-DHC and 7-DHC reductase
are part of the cholesterol biosynthesis pathway. Using a genetic synthesis score, a recent meta-
analysis showed a modest association between higher genetically instrumented 25(OH)D con-
centration and lower systolic blood pressure A valid instrument has an effect on the outcome
only through the factor that it is a proxy for, in this case 25(OH)D concentration. In the recent
study, the synthesis score was highly correlated with measured 25(OH)D concentration, but
also had an overall association with higher serum total cholesterol (p = 0.04), suggesting a pos-
sible separate pathway of effect of this genetic score on higher systolic blood pressure. Thus ge-
netic 25(OH)D scores should also be used as instrumental variables with caution, given the
pleiotropic effects of some vitamin D pathway genes, e.g. GC and its association with lipid me-
tabolism, inflammation and metabolic feedback loops.

In practice, it is common to generate a dichotomous variable based on the predicted score
to categorize participants as suffering from vitamin D deficiency or not, and this further com-
plicates the situation. In this situation, the bias caused by use of an invalid instrumental vari-
able will be further distorted by the distribution of the predicted 25(OH)D score. The direction
of the bias cannot be determined theoretically.

The method discussed here is similar to the method of Two-Stage Least Squares (2SLS)
which is widely used to estimate causal relationships in economics [25,26]. Differences between
the two methods include that 25(OH)D concentration is available in the main data for Stage 1,
but not Stage II, while 2SLS usually uses the same dataset in both stages. The 2SLS method
aims to solve the bias caused by omitted confounders; an instrumental variable can be used
only if it: 1) has a strong association with the variable (exposure) of interest; and 2) is not an in-
dependent risk factor for the outcome. These two criteria also apply for the methodology using
a predicted 25(OH)D score.

Although applying the predicted 25(OH)D score method to identify the association between
25(OH)D concentration and health outcomes is not straightforward, there are clinical applica-
tions for predicted data. Recently there have been large increases in vitamin D testing in several
countries due to concern about possible widespread vitamin D deficiency and purported links
to a wide range of health risks [27], with considerable costs to healthcare systems [28]. One so-
lution to reduce unnecessary tests is to predict those who are at high risk of vitamin D deficien-
cy using available data, and test only these people. However, when predicted levels are used in
large-scale epidemiological studies seeking to clarify links between vitamin D status and disease
risks, there is considerable risk of bias in the estimates of effect arising from incorrect specifica-
tion of an instrumental variable. This must be fully considered and discussed in studies using
this methodology.
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