"INTERELATIONSHIP" BETWEEN IDA AND VITAMIN D DEFICIENCY IS NOW ESTABLISHED

Rationale for Combining Iron & Vit-D

Vit – D deficiency and Iron deficiency Anaemia the two most menacing disorders - are inter-related (interlinked)

Deficiency of one leads to deficiency of other

Mechanism – Vit-D deficiency causes Anaemia

Mechanism – Iron deficiency Anaemia causes Vit-D deficiency

Continuous Viscous cycle

 Supplementation of both Iron and Vit-D would provide optimum benefit.

Deficiency in the oxygen-carrying capacity of the blood due to a diminished erythrocyte mass.

- May be due to:
 - Erythrocyte loss (blood loss)
 - Decreased Erythrocyte production
 - Low erythropoietin
 - Decreased marrow response to erythropoietin
 - Increased Erythrocyte destruction (hemolysis)

Classification Based on Severity in Pregnancy

	ICMR	WHO
Mild	10 – 11 gm/dl	9 – 11 gm/dl
Moderate	7 – 10	7 - 9
Severe	4 – 7	<7
Very severe	<4	

Causes of Anemia in Pregnancy

- Physiological anemia
- Nutritional anemia IDA, megaloblastic
- Anemia of chronic illness
- Blood loss
- Hemolysis and hemolytic anemias
- Hemoglobinopathies
- Other hereditary anemias
- Aplastic anemia

Measurements of Anemia

- Hemoglobin = grams of hemoglobin per 100 mL of whole blood (g/dL)
- Hematocrit = percent of a sample of whole blood occupied by
 intact red blood cells
- □ **RBC** = millions of red blood cells per microL of whole blood
- □ **MCV** = Mean corpuscular volume

Morphological Classification

- By the size of the RBCs
- Macrocytic anemia (MCV > 100)
- Normocytic anemia (80 < MCV < 100)
- Microcytic anemia (MCV < 80)

Morphological Classification

- Size of erythrocytes is larger than normal
- Megaloblastic anemia Vitamin B12, Folate deficiency.

Hb levels decreased MCV normal

- Acute blood loss
- Anemia of chronic disease
- Aplastic anemia
- Hemolytic anemia

Size of erythrocytes is smaller than normal

- Heme synthesis defect
 - Iron deficiency anemia
 - Anemia of chronic disease
- Thalassemia

Normocytic Anemia

Is a condition in which the size & Hb content of RBCs is normal but the number of RBCs is decreased.

It includes

- Aplastic anemia due to BN failure
- Blood loss anemia
- Hemolytic anemia

Microcytic Anemia

•

any RBCs smaller than nucleus of normal lymphocytes

•

ncreased central pallor.

•

ncludes

- Iron deficiency anemia
- Thalassemia
- -Anemia of chronic disease
- Sideroblastic anemia
- -Lead poisoning

Macrocytic Anemias

A. MEGALOBLASTIC ANEMIA

- Vitamin B12 deficiency
- Folate deficiency
- Abnormal metabolism of folate and vit B12

Non megaloblastic anemia

- Liver disease
- Alcoholism
- Post splenoctomy
- Neonatal macrocytosis
- Stress erythropoiesis

Clinical Features -Symptoms

- Moderate anemia weakness, fatigue, exhaustion, loss of appetite, indigestion, giddiness, breathlessness
- Severe anemia palpitations, tachycardia, breathlessness, increased cardiac output, cardiac failure, pulmonary edema

Clinical Features - Signs

- Pallor
- Nail changes
- Cheilosis, Glossitis, Stomatitis
- Edema
- Hyperdynamic circulation (short & soft systolic murmur)
- Fine crepitations

Iron Requirement in Pregnancy

- 2.5mg /day in early pregnancy
- 5.5mg /day from 20 -32 weeks
- 6 8 mg/ day after 32 weeks
- Average 4 mg/ day

Iron Absorption

Step 1	Reduction: Fe ³⁺ (Du Cyt B/ Ascorbic acid) Fe ²⁺	Intestinal Lumen
04010 0		
Step 2	Absorption : Fe ² ' (DWT 1) Fe ² '	
Step 3	Transportation: Fe ²⁺ (Ferroportin + Hephaestin)	Enterocyte
		•
Step 4	Transferrin:	Blood
		•
Step 5		Bone Marrow

Iron Absorption

New Therapeutic Alternatives

- The side effects of older Iron preparations & their poor compliance even on providing free tablets are the most important reasons of failure of anaemia control programmes
- Newer preparations are better tolerated, have less side effects with better compliance
- Carbonyl Iron
- Ferrous ascorbate

Merits of New Preparations (Ferrous Ascorbate)

- Outstanding GI Tolerance in contrast to 20% severe side effects with conventional therapy
- Very safe with no poisoning even in high doses
- No interaction with food stuffs
- The newer preparations are delicious with non-metallic taste and don't stain the patients' teeth
- Hence the compliance is very high

Indications

In

- Pregnancy
- Lactation
- -IDA
- Blood loss during Menstruation

Ferrous Ascorbate:

- High Bioavailability
- Faster Hb rise
- High Absorption : Ascorbate component of Ferrous ascorbate inc. the iron absorption by 6 times.
- Better safety and tolerability compared to conventional salts.
- Lesser GI irritation, hence better compliance.

Vitamin D3

- Activates erythroid precursors, helps in the initial phase of Erythropoiesis.
- Essential for the prevention of hypovitaminosis D in the fetus and deficiency at birth and in early infancy.
- Increases hemoglobin levels and reticulocyte count in hematological disorders

Vitamin B12 + Folic Acid

Helps in the production of RBC's