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Introduction
Vitamin D: more than just a vitamin

Although Adolf  Windaus discovered vitamin D in 
the 1930s (1), it is by far the oldest “hormone” on the 
planet, from an evolutionary point of  view. It is now 
clear that organisms known to have lived millions of  
years ago synthesized vitamin D when exposed to the 
sun’s ultraviolet-B radiation (290–315 nm) (2). In view 
of  this, one comes face-to-face with the question: Why 
the sudden interest in vitamin D research?

Discoveries in the second half  of  the twentieth cen-
tury revealed that vitamin D receptors (VDRs), the 
means by which the vitamin exerts its actions, are pres-
ent in an array of  cells ranging from osteoblasts and 
chondrocytes of  the musculoskeletal system, to T and 
B cells of  the immune system, thus explaining its pro-
posed skeletal and extra-skeletal activities (3). In terms 
of  the cardiovascular system, VDRs have been identified 
in endothelial cells (4) and cardiomyocytes (5), as well 
as the presence of  the enzymatic machinery needed to 
produce the appropriate ligand for the receptor (6, 7), 
warranting the role of  vitamin D in regulating cardio-
vascular health.
Vitamin D: D-fining the basics

Vitamin D exists in two forms, vitamin D3 (cholecal-
ciferol) and vitamin D2 (ergocalciferol) (8). The human 
body acquires the former mainly through photosyn-
thesis in the skin through exposure to the ultraviolet-B 
radiation of  the sun as well as through the diet, notably 
from fatty fish (8). Ergocalciferol, on the other hand, is 
only obtained by humans through exogenous sources, 
whether from the diet through foods like mushrooms, 
or simply through supplementation (8). Both forms 
undergo the same metabolism in-vivo and are both 

equally prescribed to treat vitamin D deficiency. Herein, 
vitamin D represents both forms.

The first metabolizing step vitamin D undergoes 
occurs in the liver, which is catalyzed by the enzyme vita-
min D-25-hydroxylase, encoded by the gene CYP2R1 
(9). The resulting metabolite, 25-hydroxyvitamin D 
[25(OH)D], is the agreed upon biomarker for vitamin 
D status although it is not the biologically active form 
(8). Bound to vitamin D binding protein, the metabo-
lite is then transported to the kidneys, which are con-
sidered the main, but not exclusive, site of  the second 
metabolizing step, which yields the hormonally-active 
form, 1,25-dihydroxyvitamin D [1,25(OH)2D], through 
actions of  the enzyme 25-hydroxyvitamin D-1a-hydrox-
ylase, encoded by the gene CYP27B1 (8) (Fig. 1).
Vitamin D’s primary signaling pathway

The biological response elicited by vitamin D is the 
result of  1,25(OH)2D binding to the nuclear VDR. This 
process may be endocrine or autocrine in nature. In 
other words, 1,25(OH)2D may first be produced by the 
kidneys, prior to its transport to the target cell, or may 
be produced by the target cell expressing mitochondrial 
CYP27B1, which finally leads to the binding of  the 
ligand to the receptor (10). The autocrine mechanism 
of  action is illustrated in Fig. 2.
Guidelines and risk factors for vitamin D deficiency

Vitamin D deficiency is a term not easily defined. 
Guidelines obtained from both the US Endocrine Society 
and the US Institute of  Medicine are significantly dif-
ferent (11). The former defines vitamin D deficiency as 
having a 25(OH)D concentration of  less than 20 ng/mL 
whereas insufficiency lies between 21 and 29 ng/mL and 
finally sufficiency involves concentrations over 30 ng/
mL while maintaining the safety margin set at 100 ng/
mL to avoid the risk of  hypercalcemia (11) (Table 1). On 
the other hand, the latter views concentrations equal to 
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16 and 20 ng/mL as sufficient for approximately 50 and 
97.5% of  the population, respectively, while concen-
trations over 50 ng/mL are viewed as alarming (11).

Various risk factors may account for the fact that 
approximately 1 billion people worldwide are vitamin D 
deficient (8). While some of  such factors may be modi-
fiable such as obesity, use of  certain medications and 
lack of  exposure to sunlight, which may be due to physi-
cal inactivity, use of  sunscreens or wearing customary 
body-covering attire mandated in various parts of  the 
globe, others are not (6). Non-modifiable risk factors 
for vitamin D deficiency include, but are not limited to, 
genetic factors (described later on), aging (associated 
with a decrease in the skin’s photosynthesizing power), 
race and latitude (6).
Vitamin D deficiency and cardiovascular disease: over two 
decades of  research

The possibility of  a relationship between vitamin D 
deficiency and cardiovascular disease was first struck 
by a case-control study, originating from New Zealand, 
that was published in 1990 (12). The finding was that 
individuals below the median 25(OH)D level had twice 
the risk of  having a myocardial infarction compared to 
those above (12).

Since then, plentiful observational studies have linked 

insufficient 25(OH)D levels with various cardiovascular 
diseases including coronary heart disease (13), heart 
failure (14) and stroke (15), as well as with associated 
risk factors such as diabetes mellitus (16), hypertension 
(17, 18), dyslipidemia (19) and endothelial dysfunction 
(20, 21).

Surprisingly, with accumulating evidence support-
ing the association, vitamin D supplementation is still 
not indicated in the treatment or even as a prophylac-
tic against cardiovascular disease, but the question 
remains: Do we have enough data to strongly support vita-
min D in the battle against cardiovascular disease, or is it 
simply a bystander?

Discussion
Epidemiology: what we know from observational and inter-
ventional studies

I.  Cardiovascular risk factors.  A good point to start 
investigating the association at would be to highlight 
the results of  studies linking vitamin D levels with the 
early marker of  cardiovascular disease, endothelial dys-
function. Tarcin et al. (20) not only demonstrated that 
25(OH)D deficiency is associated with a lower flow medi-
ated dilatation compared to their controls, they also pre-
sented an improvement in the mentioned endothelial 

Fig.  1.  Schematic representation of  vitamin D photosynthesis, and metabolizing steps. * denotes the fact that although the 
kidneys are the main site of  vitamin D activation, they are not exclusive in this role.
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function parameter after supplementation with vitamin 
D3. Complementing their results were those presented by 
Sugden et al. (22) who illustrated that supplementation 
with a single high dose of  vitamin D2 was capable of  sig-
nificantly improving type 2 diabetes patient’s endothe-
lial function, also assessed by flow mediated dilatation, 
compared to a placebo. Similarly, results from different 
laboratories supported the stated notion by demonstrat-
ing an association between optimal vitamin D levels and 
reactive hyperaemia index (23), as well as with circulat-
ing endothelial progenitor cells (24). In contrast, a study 
utilizing a relatively small cohort size, involving patients 
with peripheral artery disease, demonstrated that while 
a single large dose of  vitamin D was capable of  signifi-
cantly raising 25(OH)D levels in the supplementation 
group, it was incapable of  influencing endothelial func-
tion (25).

A highly investigated association is that of  vitamin D 
deficiency with hypertension; however, it yields conflict-
ing conclusions. Results of  meta-analyses have reason-

ably contributed to the controversy where one illustrated 
that supplementation with vitamin D led to a minor, 
insignificant reduction (2 mmHg) in systolic blood pres-
sure but not in the diastolic (26), whereas a different 
meta-analysis demonstrated a minor, yet significant 
reduction (4/3 mmHg) in blood pressure in subjects 
with elevated basal systolic blood pressure (27). These 
results bring forth a strongly conceivable notion that 
there is a possible protective effect of  vitamin D against 
hypertension in certain groups. Further clarification 
would involve mentioning the result of  a randomized-
controlled trial involving a small number of  diabetic 
patients, where the authors described administering 2 
different large doses of  vitamin D3, as well as a placebo, 
to their subjects and monitoring changes in blood pres-
sure at 8 and 16 wk. They concluded that a single, large 
dose of  vitamin D was capable of  significantly reducing 
systolic blood pressure compared to the placebo (28).

In terms of  diabetes, a potential protective effect of  
vitamin D against both type 1 and 2 has been demon-
strated by several studies (21). Since juvenile diabetes 
borders on the association of  vitamin D with autoim-
mune diseases, reviewed elaborately elsewhere (29), 
only investigations involving type 2 diabetes are dis-
cussed in this review. A hallmark of  both vitamin D defi-
ciency and type 2 diabetes is obesity (21), which acts as 
an explanation for the compelling link between them, 
among other mechanistic explanations highlighted 
later on. The randomized-controlled trial conducted by 
von Hurst et al. (30) concluded that vitamin D supple-
mentation improved insulin resistance and sensitivity in 
a small number of  subjects who were insulin resistant. 
Similarly, a study involving a large number of  subjects 
demonstrated that a larger dose of  calcium and vitamin 
D may lead to a significant reduction in the risk of  type 
2 diabetes, compared to a lower dose, thus proposing a 
protective effect (31). Interestingly, Pittas et al. reviewed 
a large number of  studies involving several cohorts and 
concluded that while the incidence of  type 2 diabetes 
was lower in the highest vitamin D status group com-
pared to the lowest; supplementation of  vitamin D does 
not impact the incidence of  type 2 diabetes (26).

Perhaps the least investigated association between 
vitamin D and a cardiovascular risk factor is that with 
dyslipidemia. While observational studies generally tend 
to highlight a beneficial correlation between vitamin 
D levels and various lipid profile parameters (32–34), 
for example, an inverse association between 25(OH)D 

Table  1.  Vitamin D status and corresponding 25(OH)D 
concentrations.

Vitamin D status 25(OH)D concentration (ng/mL)

Deficient ,20
Insufficient 20x,30
Normal 30
Potentially toxic .100

Fig.  2.  Overview of  vitamin D’s molecular mechanism 
of  action. The sequence of  events leading to a bio-
logical effect starts with entry of  the circulating form 
of  the vitamin, 25(OH)D, into the cell via the plasma 
membrane-bound receptors megalin/cubilin (1). Upon 
entering the cell, 25(OH)D dissociates from the vitamin 
D binding protein (DBP) and is converted to the hor-
monally-active form via the mitochondrial CYP27B1 
(2). 1,25(OH)2D then binds to its nuclear VDR (3), 
which proceeds by hetero-dimerizing with retinoid X 
receptor (RXR) (4). This complex then binds to vita-
min D response elements (VDRE) on target genes (5) 
and elicits a biological response by either increasing or 
decreasing transcription (6).
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levels and triglycerides, numerous interventional stud-
ies propose the inability of  vitamin D to influence lipid 
profile (35–38). Bearing in mind that most intervention 
studies were not specifically designed to investigate the 
association of  vitamin D with lipid profile parameters, 
a recently published meta-analysis of  the interventional 
studies conducted in this area, concluded that according 
to the data in hand, vitamin D supplementation leads to 
a significant increase in low density lipoprotein-choles-
terol and total cholesterol but an insignificant decrease 
in high density lipoprotein-cholesterol and triglycerides 
(19). Large-scale interventional studies, specifically 
designed to test the association, are apparently needed, 
preferably with hyperlipidemia as their main inclusion 
criterion.

Chronic kidney disease patients tend to be at a higher 
risk for cardiovascular disease (6, 39). Simultaneously, 
studies have shown that they also present with sig-
nificant reductions in both 25(OH)D and 1,25(OH)2D 
concentrations (6). Furthermore, vitamin D levels were 
shown to be associated with mortality in hemodialysis 
patients (40) and oral or injectable doses of  vitamin D 
were also associated with improved survival in chronic 
kidney disease patients (41, 42), rationalizing vitamin 
D’s use in the disease.

II.  Cardiovascular diseases.  Similar to the scenario 
with cardiovascular risk factors, observational studies 
lean towards an association between suboptimal vita-
min D levels and various cardiovascular diseases includ-

ing coronary heart disease (13), heart failure (14), 
stroke (43), myocardial infarction (44) and total mortal-
ity (45, 46). The meta-analysis conducted by Autier and 
Gandini (47) involving 18 randomized controlled trials 
concluded that vitamin D therapy led to a 7% reduction 
in all-cause mortality. Noteworthy is that the studies 
involved in the analysis used largely variable doses of  
vitamin D. Similarly, Wang et al. (48) reviewed 8 inde-
pendent randomized controlled trials and concluded 
that an insignificant reduction in cardiovascular disease 
risk was observed upon supplementation of  moderate to 
high doses of  vitamin D.
Molecular mechanisms: raising the curtains

While several mechanisms have been suggested for 
the proposed cardio-protective properties of  vitamin D, a 
definitive mechanism of  action remains loosely defined. 
Possible explanations for the compelling role include 
influencing the Renin-Angiotensin-Aldosterone-System 
(RAAS) (49), endothelial function (50) and parathyroid 
hormone (PTH) levels (51) (Fig. 3).

I.  Vitamin D as an effector in the RAAS.  A brief  
description of  the RAAS would be as follows: angioten-
sinogen is converted via renin to angiotensin-I which 
in turn is converted by angiotensin-converting enzyme 
(ACE) to angiotensin-II, which has widely known physi-
ological and pathological effects (49). The notion that 
1,25(OH)2D is inversely associated with plasma renin 
activity was first presented by studies published over 
two decades ago involving hypertensive subjects (52, 

Fig.  3.  Overall molecular mechanisms by which vitamin D modulates cardiovascular health. So far, potential mechanisms 
are classified as affecting the RAAS, endothelial function, or influencing PTH levels.
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53). The vital role of  vitamin D as a negative regula-
tor of  renin activity was only significantly highlighted 
via valuable lessons learned from transgenic mice. Two 
vitamin D deficiency models were adopted, one utilizing 
VDR-null mice while the other utilized CYP27B1-null 
mice. Both models developed hyperreninemia medi-
ated via the up-regulation of  renin expression (54–56). 
Moreover, transgenic mice overexpressing human VDRs 
in the juxtaglomerular cells demonstrated a decrease in 
both renal renin mRNA and plasma renin activity (57).

The implications of  these findings extend way beyond 
the importance of  a scientific discovery. Current antihy-
pertensive medications are associated with significant 
drawbacks. For instance, renin inhibitors, ACE inhibi-
tors and angiotensin-II type 1 receptor blockers all act by 
decreasing angiotensin-II synthesis or block its biologi-
cal effects. While this has been clinically proven to be an 
effective hypotensive mechanism, a major disadvantage 
remains. Homeostasis of  the RAAS involves a negative 
feedback mechanism mediated via the angiotensin-II 
type 1 receptor (49). This mechanism is interrupted by 
the aforementioned classes of  drugs and thus results in 
a compensatory increase in renin concentration, result-
ing in an increased production of  angiotensin-II, hence 
counteracting their initial purpose (49). Vitamin D acts 
as a potential, potent alternative to these drugs as it has 
been shown to be able to down-regulate the expression 
of  renin, or in other words, influence renin on a tran-
scriptional level (49).

II.  Vitamin D’s effect on endothelial function.  As 
described earlier, vitamin D status has been observa-
tionally linked to endothelial function. However, the 
complexity of  the molecular basis of  this association is 
currently being unraveled bit by bit. Whether via modu-
lation of  biochemical markers of  endothelial function, 
influence on signaling pathways involved or even modu-
lations of  the expression of  proteins implicated, vitamin 
D has been consistently portrayed as having a positive 
influence on endothelial function.

A considerable role for vitamin D in regulating the 
vascular endothelium is manifested in its ability to mod-
ulate the nitric oxide (NO) system. With the now appre-
ciated roles of  NO in various mammalian systems, its 
existence in the cardiovascular system is imperative for 

optimum cardiovascular health (58). NO is now recog-
nized as a key player in regulating endothelial function 
and any disruption in its homeostasis will ultimately 
lead to endothelial dysfunction and hence, cardiovas-
cular disease (59). A brief  description of  the NO system 
would be as follows: endothelial nitric oxide synthase 
(eNOS), the enzyme responsible for NO synthesis in 
endothelial cells, converts its substrate, l-arginine, into 
NO and citrulline (58). Other effectors in this system 
include the highly controversial asymmetric dimethyl-
arginine (ADMA), which happens to be an endogenous 
inhibitor of  eNOS (60). Noteworthy is that elevated lev-
els of  ADMA have been associated with various cardio-
vascular diseases (60, 61).

On the other hand, endothelial dysfunction may 
also be caused by oxidative stress and inflammation 
(59). The former may be substantially attributed to the 
enzyme NADPH oxidase, which has been recognized as 
a pro-atherogenic player via generating reactive oxy-
gen species (62), whereas the latter may be mediated 
via nuclear factor-kappaB (NF-kB) signaling (63). It 
comes as no surprise that results of  in-vitro studies have 
asserted vitamin D’s role in influencing the aforemen-
tioned mechanisms of  endothelial function.

In terms of  the NO system, it was shown that the addi-
tion of  1,25(OH)2D managed to normalize the activ-
ity and expression of  eNOS after induction of  chronic 
kidney disease-like conditions in human endothelial 
cells (64). Moreover, Molinari et al. (65) illustrated that 
1,25(OH)2D, produces a dose-dependent increase in 
NO production in cultured endothelial cells, with the 
involvement of  VDRs, by activation of  eNOS. Addition-
ally, Ngo et al. (66) highlighted an inverse correlation 
between 25(OH)D and ADMA levels in an ambulatory, 
healthy population. Worth mentioning is that our labo-
ratory investigated the same association, as well as the 
association between 25(OH)D and ADMA’s regioisomer 
symmetric dimethylarginine (SDMA), however in coro-
nary artery disease patients, and found no significant 
correlation between the parameters (Fig. 4) (67).

Recently, Finch et al. (68) elucidated an increase in the 
expression of  p22(phox) protein, a subunit of  NADPH 
oxidase, in uremic rats compared to controls, which was 
counteracted by the addition of  the VDR activator, pari-

Fig.  4.  Linear regression analyses investigating the correlation of  25(OH)D concentrations with ADMA (A) and SDMA (B) 
levels. An R-square of  0.002800 was obtained for (A) and 0.006479 for (B) demonstrating minimal correlation between 
the investigated parameters. F- and p-values were 0.049 and 0.783 respectively for (A), and 0.038 and 0.846 respectively 
for (B), thus illustrating a lack of  significance in both cases.
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calcitol. Similarly, Hirata et al. (69) observed a down-
regulation in p22(phox) protein expression in femoral 
arteries of  rats with type 2 diabetes upon administration 
of  22-oxacalcitriol as well as upon addition to cultured 
endothelial cells.

With regards to inflammation, several studies have 
demonstrated an inverse correlation between 25(OH)D 
and inflammation markers, including high-sensitivity 
C-reactive protein (66, 70). Molecular studies aiming 
to clarify the underlying mechanisms linking vitamin 
D with inflammation include those proposing vitamin D 
exerts its anti-inflammatory property by decreasing the 
activity of  NF-kB (63).

III.  Interplay of  vitamin D and PTH in cardiovascular 
disease.  It is now known that vitamin D and PTH are 
active players in calcium homeostasis. Vitamin D defi-
ciency leads to a decrease in calcium levels or hypo-
calcaemia, a condition which triggers the parathyroid 
gland to release PTH which stimulates the kidney’s 
production of  1,25(OH)2D, which in turn increases cal-
cium levels through increasing its intestinal absorption, 
mobilization from bones and tubular reabsorption in the 
kidney (71). Untreated vitamin D deficiency leads to a 
condition known as secondary hyperparathyroidism, 
which has been linked to adverse cardiovascular effects 
(71).

Studies have shown that elevated PTH levels are asso-
ciated with an increased risk of  mortality compared 
to subjects with normal PTH levels (72), as well as an 
increase in blood pressure (73) and myocardial con-
tractility (74). Additionally, it is now realized that an 
increase in PTH levels and a decrease in 25(OH)D levels 
are associated with inflammation (73) which may lead 
to atherosclerosis. It is conceivable that the magnitude 
of  vitamin D’s role in cardiovascular disease through 
regulating PTH levels is quite vague at the moment.

Novel perspectives
I.  Genetic variants in vitamin D homeostasis and cardiovas-
cular disease.  Recent advances in genetic testing have 
permitted, via genome-wide association studies (GWAS), 
the identification of  various single nucleotide polymor-
phisms (SNPs) in genes encoding proteins involved in 
vitamin D synthesis, transport and metabolism, that are 
associated with circulating levels of  25(OH)D (75, 76). 
Genes included in the results of  the GWAS were 7-dehy-
drocholesterol reductase (DHCR7), CYP2R1, 1,25-dihy-
droxyvitamin D-24-hydroxylase (CYP24A1), and vita-
min D binding protein (GC). Surprisingly, polymorphism 
of  the VDR gene has not been identified, by GWAS, as 
having an effect on circulating vitamin D levels.

It is quite possible that since SNPs in the aforemen-
tioned genes significantly affect 25(OH)D status, they 
could also act as novel genetic markers for chronic 
diseases such as cancers and cardiovascular disease, 
which have been associated with vitamin D deficiency. 
Such notion has been investigated by a study published 
in 2012, with myocardial infarction as one of  its main 
outcomes. Although Jorde et al. (77) found no associa-
tion between their investigated SNPs and myocardial 

infarction (among other outcomes), Levin et al. (78) 
found that variations in the VDR gene may alter the 
association of  25(OH)D with major clinical outcomes, 
including myocardial infarction. While results of  both 
studies were heavily supported by a large cohort size, 
their applicability to other populations is questionable 
on the basis that one study was confined to elderly white 
adults (78), whereas the other took place in Norway 
(77), the population of  which does not possess a signifi-
cantly lower 25(OH)D level compared to the rest of  west 
Europe despite its latitude, and thus does not represent a 
vitamin D-depleted population. Nevertheless, it is abun-
dantly clear that large-scale studies investigating differ-
ent populations are warranted since SNPs in CYP2R1, 
CYP27B1 and DHCR7 have been associated with type 1 
diabetes (79), warranting further investigations on dis-
eases not covered by the previously conducted studies.

Our laboratory is currently undertaking several case-
control studies investigating the association of  selected 
SNPs in genes involved in the vitamin D pathway, with 
coronary artery disease. Expected results aim to eluci-
date novel vitamin D-related genetic markers for cardio-
vascular disease and thus contribute to the unmasking 
of  the obscure relationship between vitamin D defi-
ciency and cardiovascular disease.
II.  Vitamin D and mammalian target of  rapamycin 
(mTOR) signaling: discovery of  the elixir of  life.  Calorie 
restriction (CR), also referred to as caloric restriction 
and dietary restriction, has been subject to immense 
research in recent years. The mere fact that CR 
enhances longevity and prevents age-related diseases 
including cardiovascular disease has been baffling scien-
tists ever since its emergence in the early twentieth cen-
tury (80). While the mechanisms by which CR leads to 
life-extension remain slightly understood, it seems that 
a key player implicated in the mechanism of  CR is the 
nutrient-sensing mTOR (80), a kinase whose dysregu-
lation has been implicated in diseases, notably cancer 
(80); however, its role in cardiovascular diseases in now 
being extensively studied (81). The agreed upon premise 
so far is that nutrients activate mTOR leading to ageing 
whereas CR activates sirtuins and AMP-activated pro-
tein kinase, which in turn inhibit the mTOR pathway, 
leading to longevity (80).

Concurrently, Sung and Dyck (82) recently reviewed 
the potentially beneficial effects of  CR on the cardiovas-
cular system, where they highlighted that these effects 
span from preventing age-related changes in gene 
expression to augmenting the cardio-protective signal-
ing pathways, thereby decelerating cardiovascular dis-
ease risk factors.

On the other hand, the association of  vitamin D 
with the seemingly complex process of  mTOR signal-
ing has been described by Lisse and Hewison (83), who 
illustrated that 1,25(OH)2D causes the upregulation of  
DNA-damage-inducible transcript 4 mRNA and protein 
which in turn causes suppression of  mTOR.

In view of  this, one is intrigued by the notion that 
vitamin D may serve as the “elixir of  life” by preventing 
debilitating, age-related diseases. Further exploration of  
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this finding would clarify how this fascinating hormone 
could act as a novel anti-ageing intervention strat-
egy and how its use may inevitably lead to a healthier, 
disease-free life. Upon further clarification, this finding 
may also lead to a better understanding of  how vitamin 
D exerts its cardio-protective properties.

Conclusion
The controversy surrounding the impact of  vitamin D 

on cardiovascular health has reached a new high. Epi-
demiological data seems disparate, where observational 
studies from various parts of  the globe point toward a 
strong affiliation between vitamin D deficiency and vari-
ous cardiovascular diseases and risk factors associated 
whereas interventional studies seem conflicting. To our 
knowledge, two large-scale, randomized-controlled tri-
als are currently underway with the purpose of  testing 
the clinical efficacy of  vitamin D against cardiovascular 
disease (21).

This review discusses the intricate association from 
a mechanistic perspective as well, which tends to more 
strongly support the alleged cardio-protective properties 
of  the vitamin, in spite of  inconsistent clinical results. 
Assessing the data in hand, it is very difficult to question 
the fact that VDRs are present in the cardiovascular sys-
tem, affirming the advocated role.

Additional epidemiological and in-vitro studies are 
needed to shed light on the proposed relationship. Fur-
thermore, with rising interest in the field of  ageing biol-
ogy, it is of  paramount importance to explore the poten-
tial role of  vitamin D as an mTOR inhibitor and thus as 
an anti-aging molecule.
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