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ABSTRACT

Background: In risk-benefit assessment of food and nutrients, several studies so far have
focused on comparison of two scenarios to weigh the health effect against each other.
One obvious next step is finding the optimum scenario that provides maximum net health
gains.
Aim: This paper aims to show a method for finding the optimum scenario that provides
maximum net health gains.
Methods: A multiple scenario simulation. The method is presented using vitamin D intake
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in Denmark as an example. In addition to the reference scenario, several alternative
scenarios are simulated to detect the scenario that provides maximum net health gains.
As a common health metric, Disability Adjusted Life Years (DALY) has been used to
project the net health effect by using the QALIBRA (Quality of Life for Benefit Risk
Assessment) software.
Results: The method used in the vitamin D example shows that it is feasible to find an
optimum scenario that provides maximum net health gain in health risk-benefit
assessment of dietary exposure as expressed by serum vitamin D level. With regard to
the vitamin D assessment, a considerable health gain is observed due to the reduction of
risk of other cause mortality, fall and hip fractures when changing from the reference to
the optimum scenario.
Conclusion: The method allowed us to find the optimum serum level in the vitamin D
example. Additional case studies are needed to further validate the applicability of the
approach to other nutrients or foods, especially with regards to the uncertainty that is
usually attending the data.

Keywords: Optimum scenario; vitamin D; risk-benefit assessment; DALY; QALIBRA.

1. INTRODUCTION

Risk-benefit assessments of food and nutrients focus on interventions and policies in
connection with food consumption and health outcomes [1]. Until recently, the risk and
benefit assessments of food have been separate processes with different methods. Due to
the increasing interest of estimation of the net health impact of food consumption,
development of methods that integrate both the health benefits and risks of food (ingredient)
in one go have gained interest.

Currently, there are some methods and approaches on how to perform risk-benefit
assessment of food [2,3,4,5,6,7]. These methods focus on comparison of two or more
scenarios and determine which one of the scenarios prevails over the other from the
perspective of public health. When applying these methods, the assessment may stop at an
early stage, i.e. before the health effects are integrated in a common health metric. Several
case studies have been performed; low calorie sweeteners [8], farmed salmon, soy protein
[9], benzo[a]pyrene and heat treatment of milk [10] to validate the applicability of the BRAFO
tiered approach [5].

Whereas those studies typically compared two scenarios, one obvious next step is to
investigate more than two scenarios and find the optimum scenario to improve public health.
This approach was suggested by [11,12]. This paper aims to show how this can be done by
comparing the net health gains of different scenarios, expressed in a common health metric
(DALY, disability adjusted life years). The method is presented in a case study on vitamin D
intake in Denmark. So far, the health risk and benefit associated with vitamin D have not
been integrated using common health metric. Our objective is to illustrate how an optimum
scenario can be found. Therefore, several simplifying assumptions are made and the result
is a crude estimate of the optimal vitamin D serum level needed to be achieved for the
maximum net health gain in Danish population.

The method focusses on estimating each health effect expressed in DALYs in the reference
scenario, followed by the estimation of the health effect of alternative scenarios with
changing serum 25(OH)D concentration. The DALY difference between the alternative
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scenarios and reference scenario expresses the net health gain. It is computed with the
QALIBRA (Quality of Life for Benefit Risk Assessment) tool [4]. Subsequently, the scenario
that results in the maximum net health gain is considered the optimum scenario.

2. VITAMIN D

Vitamin D plays an important role in reducing the risk of several diseases [13]. However, the
current dietary intake in the population is lower than the recommended intake [14,15]. Due to
the high latitudes, indoor activities and low vitamin D intake, the serum 25(OH)D level is
relatively low in most populations in Northern Europe [16]. Hence, it has been suggested to
increase the recommended intake [15,17,18]. Recently, the Nordic Nutrition
Recommendations (NNR) increased the recommended dietary intake from 7.5 to 10 ug/day
[15].

Studies suggest that higher 25(OH)D serum levels are associated with beneficial effects, i.e.
for reducing the risk of several diseases [13,19,20,21,22,23]. On the other hand, some
studies report that vitamin D may lead to an adverse effects at both higher and lower levels
[24] and when taken excessively [25]. This implies that there will be an intermediate optimal
serum 25(OH)D level and finding this level would be imperative to attain the maximum health
benefits.

Several studies suggest various optimum serum 25(OH)D levels, needed to reduce the risk
of some diseases. Based on the existing data, the suggested optimal serum level needed to
reduce the risk of osteoporosis, cardiovascular diseases and colorectal cancer is 75-110
nmol/l [20]. For fracture 75 nmol/l [26] and to lower the risk of mortality 50-60 nmol/l [24]
have been suggested.

In this paper, we aimed to establish the optimum serum 25(OH)Dlevel for the Danish
population and therefore several alternative scenarios are simulated from which an optimum
serum level can be identified using DALY.

2.1 Health Effect Identification

To identify the endpoints that are associated with vitamin D, we reviewed national and
international authoritative reports such as WHO/IARC [27], EFSA [17] and IOM [18] which
are up-to-date scientific opinions based on a collection of nutritional and observational
studies.

According to WCRF/AIRC and WHO/FAO [28,29] criteria for the strength of evidences, the
most convincing evidence is substantiated by multiple randomized controlled intervention
trials of sufficient size, duration and quality in a population representative for the target
population showing consistent effects. So far, there is strong scientific evidence for the effect
of vitamin D on bone related diseases [18,19,21,22,30], while the evidence for other
endpoints such as cardiovascular diseases and diabetes is conflicting [17,18,27].

In this paper, we have considered endpoints that have convincing evidence. These are: hip
fracture, other nonvertebral fracture and fall. In addition, we have included an endpoint
where the evidence is relatively weak, but the reported quantitative data on the dose-
response relationship are particularly suitable for the purpose of our study (total mortality).
As the endpoint “total mortality” includes mortality from the other endpoints considered in this
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assessment, we use the term “other cause mortality” to distinguish this effect from “total
mortality”.

2.2 Description of Dose-response and Selection of Population

Various studies on the association between vitamin D and health effects describe the vitamin
D dose differently in the dose-response relation. Usually, the dose is represented as
25(OH)Dlevel in nmol/l serum [24] or ng/ml serum [31] and sometimes the dose is
represented as intake in IU or μgper day [22]. The serum level of vitamin D gives information
about the recent exposure to vitamin D [32] and since we wanted to establish the optimal
serum 25(OH)D level, we related the dose to serum level in nmol/l throughout this study. The
relation between intake and serum level (nmol/l) is presented in section 2.5.

For fall and fractures, the selected populations are elderly of both sexes because the
Randomized Control Trial (RCT) studies included in the dose-response considers elderly of
general population [19,21,22]. The sub-populations associated to the selected endpoints and
the types of study are given in Table 1.

Table 1. The selected endpoints and population of interest related to vitamin D intake

Endpoints Type of study and population
characteristics

References

Fractures (hip and other
nonvertebral)

Meta-analysis of RCT*, ≥65 years old,
both sexes.

[22]

Fall Meta-analysis of RCT*, ≥65 years old,
both sexes

[19]

Other cause mortality Cohort study, survey, ≥30 years old,
both sexes

[24,33,34,35]

*RCT: Randomized controlled trial

For other cause mortality, various studies conducted the relation between vitamin D and
mortality in different subpopulation [24,33,34,35,36]. In our study, the target population is
both sexes of age ≥30 years old for this endpoint.

2.3 Intake of Vitamin D and Serum 25(OH)D Level

In Denmark, fish is the primary dietary source of vitamin D [14], followed by eggs, milk and
meat products. The relative contribution of the various foods for the daily dietary intake of
vitamin D in Denmark is shown in Table 2 [14].

Table 2. Food type contributing to the daily vitamin D intake of the Danish population

Food type % of contribution
Fish 43
Meat 29.5
Milk and cheese 13
Eggs 9.5
Butter and margarine 5
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The average dietary vitamin D intake is obtained from [14]: 3.8 μg/d for men and 3.1 μg/d for
women. These values are transformed to serum levels in nmol/l as explained in section 2.5.
As alternative scenarios, we have simulated a series of serum 25(OH)D level: 35, 50, 65, 72,
80, 90, 100, 120 and 166 nmol/l for both sexes and ages. These values were chosen in a
process of trial and error, using interpolation to find the optimum.

2.4 Health Impact Estimation

To estimate the net health effect, the QALIBRA (Quality of Life for Benefit Risk Assessment)
software is used [4]. This software run the simulation based on the following DALY equation
for each disease [5]. For the net effect, DALYs are summed over every disease.

DALYa,s= Peff(a,s) *[Prec* YLDrec* w + Pdie* (YLDdie* w + LEa,s - CA - YLDdie) + (1 - Pdie- Prec) *
(LEa,s- CA) * w] (1)

Where:

DALYa,s disability adjusted life years at age group a and sex s
Peff(a,s) probability of onset of the disease at age and sex, per year
Prec probability of recovery from the disease
Pdie probability that the disease causes death
YLDrec mean duration of disease for those who recover
YLDdie mean duration of disease for those who die
CA current age of individual in year of disease onset (years)
LEa,s normal life expectancy (i.e. expected age at death) at age a and for sex s

wdisability weight for disease.

Since we are interested in the health effect of the difference of the scenarios, estimating the
change in DALY between scenarios is imperative [5].

The ΔDALY between scenarios is calculated using:

ΔDALY = ΣDALYalt– ΣDALYref (2)

Where, ΔDALY is change in DALY; ΣDALYalt, summation of DALYs caused by every
endpoint of all individuals in the population at the alternative scenario and ΣDALYref,
summation DALYs caused by every endpoint of all individuals in the population at the
reference scenario.

The DALY is summed for the ages and sexes considered for each endpoint, with Na,sthe
populations size for age and sex in Denmark.

ΣDALY = Σendpoints,Σa,sNa,s * DALYa,s (3)

DALYs represent health loss; therefore, if the estimation of ΔDALY results in a positive value
then the change in consumption has an adverse health effect (health loss). If the ΔDALY is
negative, then the change in consumption has a beneficial effect [4,5].
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2.5 Conversion of Vitamin D Intake in 25(OH)D Serum Level and Dose-
Response

Vitamin D intake has to be related to 25(OH)D serum concentration because our aim is to
find an optimum serum level. It also allows a comparison of all endpoints, because some
studies report an association between serum level and disease instead of intake and
disease. For the conversion of intake to serum concentration, we used two studies by
Cashman et al. [37,38], that relate the dietary vitamin D intake (μg/d) with serum level
(nmol/l) in two age groups. We have chosen the 50 percentile data points from both studies
as point estimates of the vitamin D intake level that is needed to achieve the serum level in
the study subjects. So, for fall, hip and other nonvertebral fracture the 50 percentile data
points for both sexes as reported by Cashman et al. [37] are used, because the target
populations for these endpoints are elderly of both sexes. Since the target population for
other cause mortality is ≥30 years old of both sexes, the intake in μg/d is related to serum
level in nmol/l using the 50 percentile data points of both studies of Cashman et al. [37,38].
For all conversion from dietary intake in μg/d to serum (S) level in nmol/l serum, the following
linear model (eqn. 4) is used.

(S, nmol/l) = a * (vitamin D intake, μg/d) + b (4)

The fitted values for a and b are a=2.08 and b=35.2 when both sexes data points are used,
i.e. for hip fracture, other nonvertebral fracture and fall [37]; a=1.95 and b=35 when both
sexes data points from [37,38] studies are used, i.e. for other cause mortality.

For different endpoints, this approach may assign different reference scenario intakes in
terms of serum levels to men and women. These reference scenario serum levels are
derived from different average intakes for men and women (see section 2.3) and eqn. 4.
They are 43 nmol/l (fractures and fall) and 42 nmol/l (other cause mortality) for men and 42
nmol/l (fractures and fall); 41 nmol/l (other cause mortality) for women. As a side effect of our
approach, this may result in small differences in the assumed reference level as a function of
the same intake for different endpoints.

Using this method, intakes are converted to serum concentrations expressed as nmol/l.
Subsequently, to determine the relative risk (RR) based on our intake scenarios, the serum
level-RR relations are derived from studies that describe vitamin D intake in IU/d for most of
the selected endpoints (Table 3). When the doses are given in a range, we have used the
mean value. The intake values in the dose-response for fall were reported in ranges and
qualitatively as less or greater than 60nmol/l [19]. When given in range, the mean value was
used and when given qualitatively, we assumed 55 nmol/l and 87 nmol/l. To relate IU/d to
μg/d, we used the standard conversion formula [39]: 1 IU = 0.025 μg.

The values printed in italics in the table are calculated using equation 4.

In the studies used for fall, hip and other nonvertebral fracture [19,21,22] the relative risks
were determined compared to placebo, so presumably RR= 1 at an intake of 0 IU/d (serum
level ≈ 35 nmol/l). This is not included in our analysis because it is not explicitly stated in the
papers, and it is indicated that in general vitamin D doses ≤400 IU/d are not sufficient for the
prevention of fractures [21,22]. Also, the fit of the dose response model to the data would not
benefit from including values corresponding to this RR=1 in the analysis.
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Table 3. Data (Intake, serum level and mean Relative Risks) of the endpoints hip
fracture, other nonvertebral fracture and fall, used to derive the dose

response relations

Endpoints IU/d μg/d nmol/l Mean RR 95% CI References
Hip fracture 400* - - 1.15 0.88,1.5 [21,22]

500 12.5 61 0.91 0.78, 1.05
600 15 66 0.82 0.69, 0.97
750 18.75 74 0.74 0.61, 0.88

Other
nonvertebral
fracture

400* - - 1.03 0.86,1.24
500 12.5 61 0.86 0.77, 0.96
600 15 66 0.8 0.72, 0.89
750 18.75 74 0.77 0.68, 0.87

Fall 55 1.35 0.98, 1.84 [19]
850 21.25 80 0.81 0.71, 0.92

87 0.77 0.65, 0.9
*Vitamin D dose of ≤400 IU/d is not sufficient for the prevention of fractures [21,22]. Therefore, data

points of ≤400 IU/d were not used for fractures

The dose response relations expressing RR as a function of serum level are modeled using
a log-linear function for each endpoint separately, except for other cause mortality.

ln(RR) = (S, nmol/l) *c + d (5)

The fitted values (c and d) are given in Table 4.

The parameters c, d and the estimated RR for the reference scenario using eqn. 5, are
shown in Table 3. Equation 5 is applied to calculate the RR for the alternative scenarios.

Table 4. The fitted values and estimated RR’s for the reference scenario serum levels
per endpoint and sex

Endpoint Fitted values RR-men RR-women
c d

Hip fracture -0.016 0.85 1.19 1.22
Other nonvertebral fracture -0.009 0.44 1.04 1.06
Fall -0.018 1.3 1.67 1.73
*Total mortality 0.85 0.85

*The model for total mortality is given in eqn. 10

Fig. 1 illustrates the serum level (nmol/l)-RR data points that are used to estimate the fitted
values shown in Table 4, and the fitted dose-response models, including the model for other
cause mortality (see below). The fitted models have RR=1 at different serum levels values
above the zero intake and reference intake scenarios, which means that RRs cannot be
compared between endpoints.

The serum level-RR relations for hip fracture, other nonvertebral fracture and fall show the
same trend (decreasing risk with increasing serum level). For other cause mortality, the
serum level-RR relation shows increasing risk at low and high serum level.
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Fig. 1. The serum level-RR data points (Table 3) and the fitted lines describing the
relation between serum level and relative risk (eqn. 5)

The estimated RR has to be converted to absolute risk for the reference scenario Peff(Sref).
To this end we have assumed that the current incidence Inc is related to the current intake.
Thus, ∫ P ( )p(S)dS = Inc/N (6)

However, by assuming that everyone’s serum level is the average of the population, we
simplified the above equation to:

Peff(a,s)(Sref) = Inca,s/ Na,s (7)

Where Inca,sis the incidence of the diseases in the relevant sex and age group, which is
obtained from epidemiological studies as described in section 2.6. The variation in incidence
per age group and (when relevant) sex is considered for hip fracture and fall. Due to lack of
data, only sex variation is considered for other nonvertebral fracture.

To estimate the absolute risk at an alternative scenario Peff(Salt), we use the fact that by
definition the ratio of absolute risk to relative risk at the reference scenario is similar to the
ratio of absolute risk to relative risk at an alternative scenario [40].

Peff(Sref) / RR(Sref) = Peff(Salt) / RR(Salt) (8)

Then, by rewriting eqn. 8, Peff(Salt) becomes:

Peff(Salt)= RR(Salt) * Peff(Sref) / RR(Sref) (9)
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To calculate the RR of other cause mortality,results from [35] are used. Zitterman et al., [35]
describe the RR of changes from reference category serum level ΔS (nmol/l) as:

ln(RR) = -0.0132 * ΔS + 0.00011 * (ΔS)2 (10)

This model (eqn. 10) is applied here, using reference category serum level 27.5 nmol/l with
RR=1, as given by [35], so the serum level (nmol/l) is given by S = ΔS + 27.5.

To estimate the probability of effect for mortality at the reference scenario (Peff,M(Sref)), the
mortality rate is used. This mortality rate is calculated for the different age groups and sexes
separately, data is obtained from [41].

Peff,M(a,s)(Sref) = Mortalitya,s/ Na,s (11)

To estimate Peff,M(Salt)  we use the same definition as eqn. 8. Thus,

Peff,M(Salt) = RR(Salt) * Peff,M(Sref)RR / RR(Sref) (12)

The above equation gives us total mortality. However, total mortality also includes the
mortality from the other endpoints included in our study (fall, hip fracture and other
nonvertebral fracture). Hence, taking into account the other endpoints from total mortality,
the probability effect for other cause mortality (Peff(other cause mortality))  becomes:P ( ) , (S) = P , ( , )(S) − ∑ P ( ) , (S) ∗ P ( ) , (S) (13)

Where Pdie(i) and Peff(i) are the probability of death due to disease j and the probability of
onset of disease j.

2.6 Parameters for DALY Calculation

To estimate the input parameters in QALIBRA, a similar approach as in [38] is used. Mainly
Danish national epidemiological data are used and to some extent, international and
analogous country epidemiological data were used in case of scarcity of Danish data.
Furthermore, in case of data unavailability, assumptions have been made, as explained
below. The model population is 1000 individuals with age and sex representative of the
Danish population [41].

Peff(a,s) is estimated for all endpoints as explained in section 2.5. The incidences, Inc are
obtained from different studies; for hip fracture [42], nonvertebral fracture [43] and fall [44].
Peff for other cause mortality is described in eqn. 13, mortality rate is obtained from Denmark
Statistics [41].

When an individual develops a disease, either the individual recovers from the disease (Prec),
dies due to the disease (Pdie) or survives with the disease (Psur) until the normal life
expectancy [4,5]. Pdie,is estimated for hip fracture [45], nonvertebral fracture [46] and fall [47].
Pdie, for other cause mortality by definition is 1.
Psur, is estimated for hip fracture from [48], nonvertebral fracture [44], fall [49] and for other
cause mortality is set to 0.

Prec, is calculated for all endpoints using
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Prec = 1 - (Psur + Pdie) (14)

YLDdie,for hip fracture is assumed to be 2 years, the highest mortality period since onset of
hip fracture [45] and YLDrec is assumed as the follow up period, 5 years [50]. For the other
bone related diseases, it is assumed that YLDrec and YLDdie are equal to the values used for
hip fracture. For other cause mortality, by definition both parameters are set to 0.

Severity weight w, is obtained from the WHO burden of disease estimation [51]. The
summary input parameters are presented in Table 5.

Table 5. The summary of input parameters for DALY calculation

Endpoints Estimated parameters
*Psur Prec YLDrec Pdie YLDdie w

Hip fracture 0.57 0.135 5 0.295 2 0.372
Nonvertebral fracture 0.65 0.23 5 0.122 2 0.18
Fall 0.11 0.78 5 0.11 2 0.2
Other cause mortality 0 0 0 1 0 1
* The Psur is not a typical input parameter required to estimate DALYs in QALIBRA, but it is used to

estimate Prec

3. RESULTS

Table 6 contains the DALYs simulated with the QALIBRA tool for each endpoint. Our aim
was to determine the optimum scenario that provides maximum net health gains in
comparison with the reference scenario. The results presented in Table 6 are the differences
in DALYs between the alternative scenarios and the reference scenario, for each endpoint.
That can be interpreted as the health, expressed in DALYs, one can gain if the serum
concentration changes from the reference to the alternative.

It appears that for hip fracture, nonvertebral fracture and fall, the healthy life years increase
with increasing serum 25(OH)D level. Among these endpoints, a considerable gain of
DALYs is observed primarily from fall prevention when the serum level increases. For other
nonvertebral fracture only a slight benefit is observed with increasing serum level.

Apparently, a substantial gain in healthy life years is achieved with increasing serum
25(OH)D level up to 90 nmol/l from the reduction of the risk of other cause mortality,
reaching a maximum benefit of -92 DALY/1000 individuals. However, the benefit gradually
decreases when the achieved serum 25(OH)D level reaches 100 nmol/l and up. Combined
with the other endpoints, the health benefits gained by the reduction of the risk of other
cause mortality is dominant up to the serum level of 90 nmol/l.

Even though the net healthy life year’s is gradually reducing after 90 nmol/l, there seems to
be a benefit compared with the reference serum level up to 120 nmol/l. At a serum level of
166 nmol/l, the net benefit shifted to net risk, 156 DALY/1000. Since the DALY was not
calculated for the serum level between 120-166nmol/l, the precise turning point from net
benefit to net risk cannot be defined in our assessment. However, it is in the range of the
serum level of 120-166 nmol/l.
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Table 6. The estimated median DALYs/1000 individuals for each endpoint

Scenarios
(nmol/l)

Hip
fracture

Other nonvertebral
fracture

Fall Other cause
mortality

Net

Ref. Vs. 35 12 0.85 9.7 34 56
Ref. Vs. 50 -2.6 -1.0 -9.5 -1.4 -15
Ref. Vs. 65 -7 -2.8 -23 -19 -52
Ref. Vs. 72 -8.6 -3.4 -28 -23 -63
Ref. Vs. 80 -9.6 -4.2 -32 -26 -72
Ref. Vs. 90 -12.4 -5.2 -37 -37 -92
Ref. Vs. 100 -13.7 -6.0 -41 -14 -75
Ref. Vs. 120 -16.4 -7.3 -46.4 18 -52
Ref. Vs. 166 -20 -10 -53 239 156

The DALY of the optimum scenario is printed in Bold and italics in Table 6

Fig. 2 shows the results presented in Table 6 in a graph. The maximum net health gains is
achieved when serum 25(OH)D level reaches the optimum serum level of 90 nmol/l
(rectangular green mark on the red line). Note however, that many uncertainties have not
been incorporated and that the curves showing the DALYs versus serum level is rather flat.

It is noted that the shape of the curve for the total DALY (red line) in Fig. 2 is highly
influenced by the DALY of “other cause mortality” (blue line). As it turns out the optimum for
just other cause mortality is also the optimum for the combined effect. That is no real
surprise, mortality is the most severe health effect (w=1) and affects a wide range of
subpopulation groups compared to the other endpoints. Compared with mortality, fall and
fractures are relatively small health effects with less severity weigh and affect small
subpopulation groups.

Table 7 shows the incidences at the reference and the optimum serum levels computed with
the QALIBRA tool.  The percent of reduction of incidences of fall and hip fracture is relatively
higher; accounting for 66% and 54% respectively, when changing from the reference to the
optimum scenario.

Table 7. The incidence/1000 person per year at reference optimum scenario and %
change of incidences between the scenarios

Scenarios (nmol/l) Hip fracture Other nonvertebral
fracture

Fall Other cause
mortality

*Reference 8.7 5.4 36 55
Optimum 4 3.4 12.4 44
% of Change 54 37 66 20

*The serum level for the reference scenario varies between 41- 43 nmol/l (see section 2.3)

Fig. 3 shows a scatter plot of the variation in DALYs gained/lost when changing from the
reference scenario to the optimum scenario, produced by the QALIBRA tool. Each dot in the
graph shows the DALY change for an individual characterized by age (left side plot) and by
sex (right side plot).
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The left plot shows the variability of DALYs gain/lost with age. Ages from 0 to 30 years are
not included as this age group is not affected by any of the endpoints considered in this
study. The increase in healthy life years gain is observed with increasing age, because
elderly people benefit primarily from the prevention of fractures, falls and other cause
mortality when the serum 25(OH)D level changes from the reference to the optimum
scenario. Adults of age 30-64 gain less DALYs compared to the elderly since this age group
benefits only from the reduction of other cause mortality as for this age class the other
endpoints are not included in the analysis. Also in the young age groups the probability of
(other cause) mortality is very low and therefore a reduction in mortality risk has a small
effect.

The second scatter plot (right plot) shows the variation of DALY in sex, it is noted that age
contributes more to the total variation in DALY than sex, this is primarily because the
variation of mortality rate (for other cause mortality) and incidence rate are larger per age
class than per sex.

4. DISCUSSION AND CONCLUSION

The case study of vitamin D illustrates a method for finding the optimum scenario that
provides maximum net health gains. To show how to find the optimum scenario, the net
health impact of the different endpoints for several scenarios were calculated with the
QALIBRA software (www.qalibra.eu). The QALIBRA software explicitly uses two scenarios
(reference and alternative scenario) and shows the DALY difference of those scenarios.
Since our aim was to determine the scenario that provides maximum health gains in
comparison with the reference scenario, several alternative scenarios have been simulated
in QALIBRA. Then, the difference of the DALY between the alternative and reference
scenario that gives the maximum net health gain is considered the optimum scenario. In the
vitamin D example, nine alternative scenarios were compared to the reference scenario to
determine the scenario that provides maximum net health gains.

The study is the first to show a comprehensive quantitative assessment of vitamin D on
aggregate health effects by expressing them in common health metrics (DALY). In addition
to the well-known effect of vitamin D on bone, other effects are reported to be associated
with vitamin D. However, so far only strong scientific evidence for a preventive effect of
vitamin D on fall and fractures exists [19,21,22]. The higher dose required for the prevention
of fractures may be overestimated [21,22], recent study indicates that vitamin D
supplementation alone does not significantly reduce the risk of fractures [52]. In this
assessment, we have considered these endpoints that have strong scientific evidences and
another endpoint (total mortality) with less convincing scientific evidences, in order to
analyze their contribution to the net health effects. The preferred way to combine convincing
and less convincing effects is to incorporate uncertainty. Although the QALIBRA tool allows
for the introduction of uncertainty by making a probabilistic assessment, this was not done
here. The focus of this paper was to show a method to find the optimum scenario (serum
level). For this reason other simplifications have been introduced as well.

The most important finding of this study is showing that it is possible to determine the
scenario that provides the optimum public health effect from the cumulative effect of all the
endpoints considered. Because the function that describes the relation between serum
concentration and net health gain is rather smooth a simple series of increasing serum
concentrations readily shows the optimum. If the net health effect appears to change quickly
with increasing serum levels, then the bisection method or even more sophisticated
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mathematical methods can be used. Consequently, according to our assessment the
simulated scenario that provides the maximum benefit is when serum 25(OH)D level
reaches 90 nmol/l. Note that the assessment considers the reference category serum
level(27.5 nmol/l) in the calculation as given by [35]. Using another value for this reference
would change the optimum in the same direction. Because the net health effect for the
serum level values of 81-89 nmol/l and 91-99 nmol/l are not estimated in this assessment,
the precise optimum would be somewhere between 81 and 99 nmol/l. The result is in
accordance with other studies conducted for various endpoints [53,54]. Ideally, men and
women would have different optimal serum levels, because of the minor difference in
response to intake of vitamin D and/or serum level. However, in this assessment the intake
and the dose-response difference in men and women are not substantially different (see
section 2.3 and 2.5).

It is essential to point out the limitations of the assessment to better interpret the quantitative
result. For the reference serum level, we have derived the serum level that results from the
mean Danish intake stratified by sex. For the conversion of intake in µg/d to nmol/l, we have
used only two studies [37,38] and ignored the variation between individuals by using the 50
percentile intake-serum relationship only. Note that serum levels do not only depend on
intake but that UV exposure contributes a large part of the serum level. However, when we
used another study [55] to relate the intake in µg/d to serum 25(OH)D level in nmol/l the
results are fairly similar. Also, we have included an endpoint (total mortality) that has
relatively weak scientific evidences but dominates the outcome. Moreover, very few data
points were available to estimate the relation between the RRs and serum concentration,
and extrapolation beyond the range of the available data (see Fig. 1) was needed to
analyze all the different scenarios. The choice of the log-linear model (eqn 5.) and the
decision not to include low intake relative risk values when fitting the model have an impact
on the quantitative result. Furthermore, YLDdie and YLDrec are assumed to have a fixed value
but these values may depend on age, sex and/or vitamin D serum level. Because of all these
assumptions and uncertainties, the quantitative result obtained in this assessment should be
interpreted with care. When more data will become available in the future, the same
methodology can be applied to obtain more precise estimates of the health impact of
different intake scenarios.

The change of serum 25(OH)D level from the reference scenario (see section 2.5) to the
optimum scenario (90 nmol/l) provides a gain of -92 DALY/1000 Danish individuals. For this -
92 DALY net health gain, other cause mortality contributes 40%. The target population for
other cause mortality includes a larger fraction of the population compared to the other
endpoints. Combined with the maximum severity of the effect (death), this explains why the
DALY gain by this endpoint alone accounts for 40% of the net gain. Similarly, fall contributes
about 40% for the net gain. The DALY gain from hip and other nonvertebral fracture seem
relatively trivial. On the other hand, when the serum level reaches to120 nmol/l and up, the
healthy life years gain (due to other cause mortality) shifts to healthy life years loss. The
dose-response studies included in this study show a reduction of risk of bone diseases
(fractures and fall) with increasing circulating serum level [19,21,22]. However, other studies
(not included in this study) on the effect of vitamin D on bone health indicate that a higher
circulating serum level (> 130 nmol/l) may adversely affect bone health [56,57]. If these
studies would be included in the assessment, the DALY of the bone diseases and the net
DALY might change, mainly for the higher scenario (166 nmol/l). But, the inclusion of these
studies will probably not have a large impact on the DALY of the optimum scenario.
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The net DALY in Fig. 2 is highly influenced by the DALY of the other cause mortality. Studies
show a U and reverse J- shape for the association of vitamin D with mortality [24,33].
Likewise, the dose-response study used for other cause mortality [35] shows a similar
pattern between the serum level and RR of mortality. This implies that there is an increasing
risk of mortality at high and low serum level, with the optimum in between. As the minimum
of the quadric function given by equation (10) lies at ΔS = 60, the dose-response study we
used in our assessment for the other cause mortality shows that 60 + 27.5 = 87.5 nmol/l
gives the lowest risk of mortality. Because of the differences in the method used to
determine the optimum serum level required to protect from disease, several studies
suggests different levels. Some studies and IOM consider a serum level of >50 nmol/l to be
adequate [58,59,60]. Others have suggested that the most advantageous serum level begin
at 75 nmol/l and that the best are between 90 and 100 nmol 25(OH)D/L [52,53], which is in
accordance with the result obtained in this study interpreted in DALY.

Concerning the variation in sex and age, the variation of the DALY in Fig. 2 is mostly due to
the variation in the incidences and mortality rate variation per age class. For most of the
selected endpoints, the difference in incidences and mortality rate (other cause mortality) is
larger between age classes than between sexes, (see Fig. 2, right plot).

In this study we have used vitamin D to show a method to find the best scenario, which
achieves the maximum net health gain. A similar approach can be used for other foods or
food components and biomarkers. As part of determining the best scenario, food processing
parameter optimization (e.g. time-temperature, storage time) may also be integrated into the
risk-benefit assessment to optimize the health [40].

The vitamin D concentration is the result of food and supplement intake but is also the result
of UV-exposure as we consider the baseline serum level in our assessment. UV exposure is
linked with skin cancer risk. That risk is not directly included in our assessment. A more
complete assessment would separate the intake and UV-exposure effects. Furthermore, the
development of methods to include aspects of a disease such as disease recurrence,
complete and partial disease remission is needed. Future research may also focus on
method development for output validation in relation to the QALIBRA tool.
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