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Abstract

Background: Schizophrenia is one of the most disabling psychiatric disorders, with serious consequences on families 
and society. Although a genetic component in its aetiology is indisputable, environmental factors also play an important 
role. Vitamin D (VD) has been implicated in central nervous system development and some evidence points to its role 
on schizophrenia aetiology. We aim to summarize brain alterations occurring in schizophrenia and how VD is relevant to 
them.

Methods: Literature review up to 30th September 2014, using MeSH terms schizophrenia, vitamin D, brain, and central 
nervous system.

Results: We summarize alterations occurring at anatomical and histological levels. Moreover, we describe biological 
pathways in which VD is involved that are proven to be disrupted in schizophrenia: neurotrophic factors, neurotransmis-
sion, synaptic and cytoskeleton anomalies, calcium homeostasis, energy metabolism and redox balance. Finally, we give 
some emphasis to cognitive disturbances.

Conclusions: The heterogeneity of some studies does not allow to definitely affirm that VD deficit plays a role on schizo-
phrenia aetiology. Studies on different populations and animal models should be conducted in order to achieve repro-
ducible results. Therefore, this paper should be regarded as a guide to the pathways and anatomical structures disrupted 
by VD deficit in schizophrenia, and warrant further investigation. Although we cannot definitely affirm that VD deficiency 
is essential for schizophrenia aetiology, literature currently points to this hypothesis.
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Introduction

Schizophrenia affects 0.5-1.0% of the global population. Its 
clinical presentation, in adolescence or young adulthood, is 
characterized by positive symptoms such as auditive hallu-
cinations and paranoid delusions, and negative symptoms 
such as avolition, amotivation, or blunted affect. Cognitive 
disturbances, especially in working memory and attention, 
are also common [1]. 

Evidence suggests schizophrenia to arise from genetic 
and environmental interactions. The genetic component 
is due to common small effect variants and rarer moderate 
effect variants [2]. Actually, each small-effect single-nucle-
otide polymorphism (SNP) confers a very small risk am-
plification, but altogether, SNPs account for around 50% 
of total heritability on a polygenic, additive basis [3, 4]. 
On the other hand, copy-number variants (CNVs) con-
sist of microdeletions or microduplications representing 
moderate effect variants, and are present in less than 1% 
of patients [4]. 22q11.2 deletion, associated with velo-car-
dio-facial syndrome, is one of the most well-known CNVs 
[4]. In recent years, rare but strong-effect variants in the 
exome have also been implicated [3, 4]. Although some 
have already been identified, the large majority remains 
unknown [3]. History of schizophrenia in first-degree rel-
atives is the most important risk factor [5], but history of 
bipolar disease also seems to increase the risk. Common 
genetic risk factors, as CACNA1C (alpha 1C subunit of 
L-type voltage-gated calcium channel) variants, point to 
this hypothesis [6].

In monozygotic twin studies, concordance rate for 
schizophrenia is around 50% [7]. It has hence become clear 
that genetics could not account solely for schizophrenia 
etiology. Numerous environmental risk factors seem to 
increase susceptibility to the disease, through gene-envi-
ronment interactions [4]. Some epidemiologic examples 
are season of birth, birthplace, prenatal infection, nutri-
tion, obstetric complications, paternal age, cannabis abuse, 
and socioeconomic status [5]. These events can induce 
functional genomic modifications—epigenetics [5]. Thus, 
environmental risk factors are thought to represent a sec-
ond-hit in previously susceptible individuals (genetics seen 
as the first-hit).

In 1999, McGrath first proposed that vitamin D (VD) 
underlies many other previously suggested environmental 
risk factors [8]. Beyond its classical role in calcium phos-
phorus homeostasis, VD is associated with numerous bi-
ological pathways, particularly in brain development [9]. 
Additionally, current evidence suggests schizophrenia 
arises from a neurodevelopmental defect [10], disrupting 
early brain formation during specific, yet unknown, criti-
cal windows of susceptibility [11]. 

McGrath published an update to the original article in 
2010 [12]. Since then, new evidence has been published. 
Therefore, this article aims to summarize the existing 
knowledge regarding schizophrenia and VD. 

Methods

We have led an exhaustive review of articles indexed to 
Pubmed, ISI - Web of Knowledge, Scopus and EBSCO, 
using MeSH terms schizophrenia, vitamin D, brain, and 
central nervous system. Only English articles published up 
to 30th September 2014 were selected. After excluding du-
plicate papers, 179 remained. All articles discussing VD’s 
role in normal brain development or VD’s deficiency con-
tribution for schizophrenia were selected. Due to scarcity 
of epidemiologic studies, experimental studies in animal 
models were also included. References from review articles 
were analysed, resulting in the additional inclusion of 32 
papers. Overall, 143 papers were considered relevant for 
this review.

Results

Vitamin D
VD is a steroid hormone. Actually, it is not strictly a vi-
tamin since it is synthesized in the skin upon exposure to 
ultraviolet B radiation; some dietary sources also provide 
it [9]. Classic pathway is shown in Figure 1 [13-15]. 7-de-
hydrocholesterol, an intermediate in cholesterol synthesis, 
accumulates in the skin, undergoing a nonenzymic reac-
tion upon exposure to ultraviolet light, yielding previta-
min. This undergoes a further reaction to form the vitamin 
itself, cholecalciferol, which is absorbed into the blood-
stream. In the liver, cholecalciferol, either synthesized in 
the skin or derived from food, is hydroxylated to form the 
25-hydroxy derivative, calcidiol. 25-hydroxy-vitamin D3 
(25-OHD3) is the circulating form, allowing the assess-
ment of body VD levels. VD conversion to the active form 
1,25-hydroxy-vitamin D3 [1,25-(OH)2D3] occurs through 
1α-hydroxylase, for long thought to be present solely in 
the kidney. Recent evidence has shown that 1α-hydrox-
ylase is also expressed in other tissues with consequent 
1,25-(OH)2D3 local synthesis and its autocrine and para-
crine effects [14, 15]. 

The presence of both VDR and 1α-hydroxylase in brain 
tissue strongly points to 1,25 (OH)2D3 synthesis in cen-
tral nervous system (CNS). Therefore, it can be considered 
as a neuroactive steroid [16] with possible autocrine and 
paracrine actions [17]. VDR and 1α-hydroxylase are pres-
ent in both neuronal and glial cells, in nuclei [18] and cy-
toplasm[19], respectively. Immunoreactivity to VDR and 
1α-hydroxylase is found in prefrontal cortex (PFC), cin-
gulate gyrus, caudate, putamen and substantia nigra [19], 
suggesting a great diversity of functions in mammalian 
brain [20]. 

Why is VD a plausible risk factor for schizophrenia?
While hypovitaminoses have been almost completely 
banned in Western population, VD deficiency still prevails 
(Table 1) [21]. High prevalence in healthy women is espe-
cially worrisome [22, 23]. 
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25-OHD3 levels appear to be inversely related to psy-
chosis risk [25]. 25-OHD3 deficient teenagers have thrice 
the risk of developing psychosis, adjusted for race, body 
mass index (BMI), urban or rural residence and season 
when blood samples were collected [26]. In schizophren-
ic patients, 25-OHD3 is also significantly lower than 
in healthy controls [27-31], even at first-episode [32]. 
Moreover, negative and cognitive symptoms are worse 
when VD deficiency is present [33]. An important retro-
spective study conducted on a Finnish birth cohort found 
that vitamin D3 supplementation during the first year 
of life reduced schizophrenia risk by 77% in males [34]. 
Another study showed that low neonatal 25-OHD3 was 
significantly associated with schizophrenia in a Danish 
population. Surprisingly, very high levels are also pos-
itively associated with the disease, possibly suggesting 
the existence of individuals resistant to VD actions [35]. 
These findings were not reproduced in a different cohort 
in Southwest England [36].

As mentioned, numerous environmental risk factors 
have been associated with schizophrenia [5]. Table 2 sum-
marizes the epidemiological risk factors that have been re-
lated with VD deficiency and the underlying rationale.

VD deficiency can apparently explain other schizophre-
nia risk factors, as obstetric complications, namely pre-
eclampsia, which has been associated with maternal low 

Figure 1. Classic vitamin D synthesis pathway. 7-dehydrocholesterol in skin is converted to vitamin D3 (cholecalciferol) by ultraviolet B 
radiation. Non-active vitamin D3 is firstly hydroxylated in liver to 25-hydroxy-vitamin D3 (calcidiol). Then, in the kidney, it suffers a second hydroxyl-
ation to its active form 1,25-hydroxy-vitamin D3 (calcitriol). 25-OHase: 25-hydroxylase; 25-OHD3: 25-hydroxy-vitamin D3; 1α-OHase: 1α-hydroxilase; 
1,25-(OH)2D3: 1,25-hydroxy-vtamin D3.

serum 1,25-(OH)2D3 [45]. Reduced fertility, a schizophre-
nia feature, also seems to be related to low 1,25-(OH)2D3 
levels: VD is important to spermatogenesis and embryonic 
implantation in the placenta [46]. 

Finally, VD is not only an environmental risk factor but 
also a genetic/epigenetic one, considering VDR regulates 
numerous genes expression [13, 47, 48]. Unfortunately, 
any VDR SNP has been linked to schizophrenia yet [49]. 

Schizophrenia brain and VD
We have come across different neurobiological measures 
in our results, suggesting VD plays numerous roles in  
the brain. 

We will start with “visible” changes—anatomical and 
histological. Then, we will continue with biological path-
ways in which VD intervenes and are proven to be dis-
rupted in schizophrenia: neurotrophic factors, neurotrans-
mission, synaptic and cytoskeleton anomalies, calcium 
homeostasis, energy metabolism and redox balance. Final-
ly, we will analyze cognitive disturbances.

Brain gross anatomy
The most dramatic changes in cortices of rats born from 
VD depleted dams were larger (30%) and longer hemi-
spheres, suggesting a distortion in early brain development 
[50]. Concomitantly, lateral ventricle volume was doubled 
compared to controls, at birth [50] and weaning [51]. Fur-
thermore, neocortex was thinner [50]. Some of these mor-
phological changes, specifically ventriculomegaly, persist 
despite VD supplementation after birth [51]. However, 
different groups have found ventricular volume reduction 
[52, 53]. A bigger striatum is a plausible explanation for 
this apparent volume reduction [53]. 

Some of these findings overlap alterations found in im-
aging studies in schizophrenia. Larger lateral ventricles are 

7-‐dehydrocholesterol Vitamin	  D3 Diet 

25-‐OHD3 

1,25-‐(OH)2D3 

Kidney 

Liver 

Skin 

7-‐dehydrocholesterol Vitamin	  D3 Diet 

25-‐OHD3 

1,25-‐(OH)2D3 

Kidney 

Liver 

Skin 

25-‐OHase 

1α-‐OHase 

Table 1. Cut off points of vitamin D levels [24].

Classification Serum 25-OH-VD3 levels 
(ng/dL)

Normal >30
Insufficiency 20–29
Deficiency 10–19
Severe deficiency <10
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one of the most constant morphological changes [54] and 
are present at disease onset [55]. Of note, among monozy-
gotic twins discordant for schizophrenia, the affected twin 
has larger ventricles [56]. Thinner cortex is more evident in 
supragenual anterior and posterior cingulate and medial oc-
cipital regions [57]. Anterior cingulate cortex is important 
in affection, motivation, attention, and response selectivity, 
some of the cognitive functions affected in schizophrenia. 
Hippocampus and amygdala size is also reduced [54].

Histological changes
To study the origin of the anatomical changes previ-

ously mentioned in prenatal VD-deficient rats, authors 
investigated cell proliferation in dentate gyrus, hypothal-
amus, basal ganglia, amigdala, and cingulate gyrus. In all 
but the latter, twice the expected number of mitoses was 
found [50], as well as a significant apoptosis decrease due 
to downregulation of pro-apoptotic genes [58]. However, 
postnatally, authors noticed an upregulation of pro-apop-
totic and downregulation of pro-mitotic genes, suggesting 
some sort of compensatory mechanism [58]. In adults, de-
creased cell proliferation was noticed in dentate gyrus, a 
phenomenon curiously reversed by haloperidol [59, 60]. 

Consistently, VD induces differentiation in hippo-
campal neurons, reducing mitosis, increasing nerve 
growth factor (NGF) and allowing axons and dendrites 
formation [16, 61, 62]. 

Periventricular and subependymal gliosis is present in 
schizophrenia brains, suggesting inflammation during de-
velopment, but this finding is somewhat inconsistent [56]. 
Curiously, there are studies reporting high levels of cere-
bral inflammatory proteins in VD deficient animals [16].

Disrupted biological pathways

Neurotrophic factors 
VD promotes NGF, glial cell line-derived neurotrophic 
factor (GDNF) and neurotrophin 3 (NT3) synthesis, while 
it decreases the levels of neurotrophin 4 (NT4) [63, 64]. 

Accordingly, when VD is absent prenatally, NGF levels 
decrease by 17% and GDNF by 25% at birth [50]. Unlike 
GDNF, NGF low levels persist despite VD supplementa-
tion after birth [51]. NGF is known to have trophic ac-
tions on cholinergic neurons of basal forebrain, which 
project to hippocampus, whereas GDNF acts on dopami-
nergic neurons of basal ganglia. Moreover, GDNF also 
controls dopaminergic neurons’ apoptosis in substantia 
nigra, postnatally [65]. 

Low-affinity neurotrophin receptor (p75NTR) is 
significantly reduced (30%) in VD depleted brains [50]. 
This receptor is linked to apoptosis during development.
[66]. Interestingly, cerebral distribution of both VDR and 
p75NTR almost overlaps [50]. Moreover, VDR progres-
sive expression coincides with mitosis decrease and apopto-
sis onset occurring prior to differentiation [67-69]. Taken 
together, this evidence suggests that VD has an important 
role in both neuronal and non-neuronal development.

In schizophrenia, decreased protein kinase B (PKB) 
levels and function have been documented, deregulating 
phosphatidylinositide-3-kinase-PKB pathway, which is 
important in neuronal growth, differentiation and migra-
tion and is stimulated by VD [70]. We hypothesize low 
VD levels may impair neurogenesis through this pathway, 
leading to decreased PKB levels in schizophrenia.

Neurotransmission
Glutamatergic transmission: The glutamatergic hypoth-
esis of schizophrenia has arisen by the observation that 
N-methyl-D-aspartate (NMDA) receptor antagonists 
phencyclidine and ketamine can mimic schizophrenia 
symptoms in healthy people [71]. Reduced glutamatergic 
signalling is more evident on dorsolateral PFC [72].

Neuregulin 1 (NRG1) and dysbindin, genes already as-
sociated with schizophrenia, regulate glutamate receptor 
subunits expression and function [73]. Figure 2 summa-
rizes hypomorphic NRG1 role in NMDA hypofunction 
and its consequences [74-77]. Hypomorphic NRG1 leads 
to behavioural resemblance with schizophrenia, reversed 

Table 2. Schizophrenia risk factors and rationale for association with vitamin D.

Risk factor Rationale for association References

Urban environment
Less outdoor activity
Reduced UVB radiation exposure
Increased transmission of infectious agents

8, 37, 38

Winter birth
Reduced UVB radiation exposure
Reduced photoperiod
Increased exposure to infectious agents

5, 8

Latitude Reduced photoperiod
Reinforces the “winter effect” 12

Migrant status
(mainly in dark-skinned)

Increased skin melanin requires more time of sun exposure for VD synthesis
Higher latitudes
More clothing
Indoor staying 

5, 39-41

Prenatal infection VD is important in immune response against microorganisms 42-44

Abbreviations: UVB (ultraviolet B), VD (vitamin D)
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by clozapine [74]. On the other hand, enhanced NRG1 and 
erbB4 (one of its receptors) interactions have been report-
ed in schizophrenia, leading to NMDA hypofunction [75]. 
Hypofunction of NMDA receptors located in corticolimbic 
GABAergic interneurons lead to disinhibition of glutama-
tergic pyramidal neurons [71] and may elicit neurotoxicity 
[76, 77]. Hypoactive glutamatergic system may also contrib-
ute to synaptic anomalies described in schizophrenia [77].

GABAergic transmission: Glutamic acid decarboxylase 
(GAD) 67, GABA-synthesizing enzyme, has been found 
to be decreased in PFC of affected subjects [78-80], es-
pecially correlating with a reduction in parvalbumin-pos-
itive neurons [81]. GAD67 reduction was also reported 
in adult rats on a VD-restricted diet [82]. Moreover, as 
reviewed by Daviss [83], decreased number of GABA- 
ergic neurons in PFC has been reported, leading to an 
up-regulation of GABA receptors. Consistently, increased 
numbers of GABA receptors have been found in PFC 
and anterior cingulate cortex in schizophrenia [83]. Af-
ter maternal VD deprivation, persistently decreased levels 
of GABA-B receptor 1 and GABA-A receptor subunit al-
pha-4 are noticed [51, 84]. 

Dopaminergic transmission: Dopamine hypothesis of 
schizophrenia is based on two facts: a) blocking dopa-
mine 2 (D2) receptors diminishes positive symptoms; b) 
dopamine enhancing drugs induce them. Classical regions 
implicated in this hypothesis are striatum and nucleus ac-
cumbens. However, cognitive and negative symptoms re-
main unaltered by dopamine antagonists, suggesting that 
other regions and neurotransmitters are involved. The 

current accepted dopamine hypothesis states dopaminer-
gic neurotransmission is normal/reduced in ventral stria-
tum, increased in associative striatum and reduced in dor-
solateral PFC.

Catechol-O-methyl-transferase (COMT) is strongly 
associated with schizophrenia, especially in cannabis con-
sumers [85]. Low VD causes COMT down-regulation in 
forebrain, consequently reducing concentrations of ho-
movallinic acid (HVA), a marker of dopamine activity. VD 
supplementation reverses this [86]. Importantly, reduced 
levels of HVA in PFC have been associated with poor 
working memory in schizophrenia [87].

Differentiating factors for mesencephalic dopaminer-
gic neurons Nurr1 and p57Kip2 have reduced expression 
during early brain development in VD depleted rats [86, 
88, 89]. These maturation factors are only expressed after 
cellular division stops, consequently neuronal differentia-
tion can begin. VD deficiency induces both cellular pro-
liferative excess and a delay in dopaminergic ontogeny in 
mesencephalon during critical windows of brain develop-
ment thus disrupting this pathway [88]. 

VDR expression in mesencephalon increases progres-
sively from early cerebral development until weaning, in 
rats [18]. This concurrent VDR expression within devel-
oping dopaminergic neurons has raised considerable inter-
est and favours a VD role in dopaminergic ontogeny [85]. 

Curiously, in a rat model of diabetes, overexpression of 
cerebellum dopaminergic receptors was normalized after 
VD supplementation [90]. In this perspective, it would be 
interesting to explore VD supplementation in schizophre-
nia models and its putative effects on CNS, namely, neuro-
transmission.

Hypomorphic	  NRG1 

↑	  erbB4	  phosphorylaJon 

↑	  NRG1-‐erbB4	  interacJons 

NMDA	  hypofuncJon 
Apoptosis 

Neuronal	  injury 
CorJcolimbic	  GABAergic	  

interneurons 

SynapJc	  anomalies 

Low	  PPI 

HyperlocomoJon 
Clozapine 

Figure 2. Hypomorphic NRG 1 leads to behavioural resemblance with schizophrenia. Unlike low PPI, hyperlocomotion is reversed 
by clozapine administration. By increasing erbB4 phosphorilation (one of NRG1 receptors), hypomorphic NRG1 enhances NRG1-erbB4 interac-
tions, leading to NMDA hypofunction. Hypofunction of NMDA receptors located on corticolimbic GABAergic interneurons may elicit apoptosis and 
neuronal injury, as well as synaptic anomalies. NRG1: neuroregulin 1; NMDA: N-methyl D-aspartate; PPI: prepulse inhibition. 
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Dopamine and glutamate interactions: Reduced NMDA 
transmission in PFC seems to decrease mesocorticolimbic 
dopamine transmission thus worsening cognitive func-
tion. If sustained, it may elicit positive symptoms. There-
fore, classical dopaminergic dysfunction in schizophrenia 
has been hypothesized to be caused by upstream abnormal 
glutamatergic transmission. Reduced NMDA transmission 
may cause both cortical dopamine deficit and associative 
striatum dopamine excess. Conversely, these dopamine 
abnormalities worsen glutamatergic function and synaptic 
connectivity. Glutamate and dopamine afferents from the 
cortex concur in striatum on GABAergic spiny neurons. 
Importantly, D1 receptor activation facilitates glutamater-
gic transmission while D2 reduces it. Thus, D1 modulation 
may arise as a new pharmacological target [91].

Although we have not found any reported association 
between glutamate and VD, we could not overlook gluta-
mate role in schizophrenia. As reported, VD is apparently 
involved in dopaminergic transmission. Thus, as dopa-
mine and glutamate are deeply interconnected, we hypoth-
esize that some role for VD in glutamatergic transmission 
is yet to be found.

Synaptic anomalies
Low VD levels apparently alter the transcription of syn-
apse proteins aquaporin-4, apolipoprotein-B, and myris-
toylated alanin-rich C kinase substrate [63, 84]. In one 
study, genes involved in presynaptic regulation had de-
creased expression in all the analysed schizophrenia PFC. 
Synapsin-2 (SYN2) and N-ethylmaleimide sensitive factor 
(NSF) are the most consistently down-regulated proteins 
(up to 74-79%) [79]. Importantly, SYN2 [84, 92] and NSF 
[84] were shown to be deregulated in VD deficient rats. 
Synaptotagmin-1, complexin-2, and synapse-associated 
protein 97 (SAP 97) are reduced both in schizophrenia and 
VD depletion [84. In striatum, synapses show significant 
alterations in their organization and antipsychotic drugs 
seem to normalize them [93].

As previously mentioned, VD apparently controls the 
expression of NGF, neurotrophin and p75NTR, also im-
portant factors in synapse regulation [63].

Synaptic malfunctioning may have important conse-
quences regarding cerebral circuits’ organization and re-
finement. Furthermore, presynaptic genes knockout rats 
have long-term potentiation (LTP) deficits [94], suggest-
ing memory formation impairment.

Cytoskeleton structure
VD deficiency reduces transcription of cytoskeletal pro-
teins as RhoA, microtubule associated protein-2 (MAP2), 
GFAP [84, 92], growth associated protein-43 (GAP 43) 
[63],  and neurofilament-light chain (NF-L) [51, 63]. MAP2 
decreased transcription is persistent even after VD supple-
mentation [51]. In nucleus accumbens, MAP-associated 
proteins dynamin-1 and dynamin-1-related proteins are 
also down regulated in VD deficiency. The same happens 

for mitogen-activated protein kinase (MAPK) 1, a protein 
already implicated in schizophrenia [95]. These proteins 
are important mediators of endocytosis and crucial for D2 
receptor insertion in dopaminergic neuron nonsynaptic 
membrane. Low GFAP levels have been found in PFC of in-
dividuals with schizophrenia [78]. MAP2 and kinesin light 
chain 1 (Klc1), a motor protein that moves along micro-
tubules, have also been implicated in both conditions [84].

Cerebral calcium homeostasis
Evidence suggests schizophrenia associated VD deficiency 
is not severe enough to cause low serum calcium [30, 96].

VD apparently prevents neuronal free calcium uptake 
and consequently cellular hyperpolarization and its toxic 
actions [97], namely in fetal hippocampal neurons. This 
probably relates to the fact that VD decreases the number 
of L-type voltage-gated calcium channels (Cav1.2) [98], 
reducing calcium influx. In recent years, SNPs in the alpha 
1C subunit of Cav1.2 (CACNA1C) gene have been con-
sistently associated with increased schizophrenia risk by 
genome wide association studies [99]. CACNA1C is espe-
cially present in hippocampus and thalamus [6]. Hence, its 
polymorphisms may interfere with learning and memory 
processes [100]. Actually, calcium influx through Cav1.2 
triggers a cascade of events that underlies hippocampus 
dependent memory [99]. Besides, CACNA1C plays a sig-
nificant role in synaptic plasticity, neuronal survival, and 
dendritic development, functions already implicated in 
schizophrenia pathogeny. Its role in neurotransmission 
cannot be neglected: Cav1.2 contributes to dopamine-in-
duced potentiation of calcium responses evoked by NMDA 
via D1 receptors in cortical and striatal neurons [101].

On the other hand, neurotoxic intracellular calci-
um is buffered by calcium-binding proteins (CBP) [97]. 
VD enhances the expression of two CBP, calbindin and 
parvalbumin [14]. Conversely, prenatal VD depletion 
significantly alters their expression [95]. Decreased par-
valbumin-positive neurons has been highly reproduced 
in schizophrenia and might be explained by down-regula-
tion of Lhx6, a transcription factor essential for migration 
and maturation of these neurons [102]. Reduced GABA- 
ergic neurotransmission among parvalbumin-positive in-
terneurons and pyramidal cells is thought to contribute 
to working memory impairment as seen in schizophrenia 
[72]. Moreover, CACNA1C is known to be important to 
the development of parvalbumin-positive interneurons in 
ventral hippocampus [6].

Table 3 summarizes alterations involving parvabu-
min-, calbindin-, and calretinin-positive neurons in 
schizophrenia.

Postnatal administration of NMDA-antagonists, mim-
icking schizophrenia, also reduces cortical palvalbumin 
expression [112-114]. Interestingly, prenatal sensitivity to 
NMDA antagonists decreases in a gradual manner. Simul-
taneously, there is an increased expression of CBP [115], 
mainly parvalbumin, which is expressed later in brain de-
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ATP synthesis are down regulated, seriously disrupting en-
ergy production pathways [118], mainly in prefrontal and 
left temporal cortices [84]. Pyruvate dehydrogenase is re-
duced, leading to increased anaerobic respiration, and con-
sequent increased lactate concentrations and cell acidosis. 
Accordingly, pH is significantly reduced in schizophrenic 
brains compared to controls [118]. Phosphofructokinase, 
hexokinase 1 and 3 and pyruvate kinase mutations have 
been linked to increased susceptibility to schizophrenia 
[119]. Overall, enzymes involved in glucose metabolism 
are disrupted in both schizophrenia and VD deficiency.

In short, cerebral energy appears to be compromised in 
schizophrenia with a shift towards anaerobic respiration, a 
less efficient process of ATP generation [118].

Redox balance
VD down-regulates the synthesis of inducible nitric ox-
ide synthase (iNOS) [9]. When hypoxia is present, iNOS 
is activated thus liberating large quantities of nitric oxide 
(NO), which leads to peroxynitrite synthesis, a neurotoxic 
metabolite. By preventing NO synthesis, VD is a neuro-
protector. In schizophrenia models, iNOS becomes signifi-
cantly increased in prefrontal, perirhinal, and entorhinal 
cortices [120], suggesting neurotoxicity may play a role in 
the disease. Besides, NO is an important ion channel sig-
nalling regulator. It hinders NMDA function, directly af-
fecting dopaminergic release [97]. 

In NMDA-receptor hypofunction model of schizo-
phrenia, superoxide, a reactive oxygen species (ROS), 
overproduction reduces parvalbumin and GAD67 expres-
sion [121]. Superoxide dismutase (SOD) family is respon-
sible for converting superoxide in oxygen and hydrogen 
peroxide, thus upregulated SOD is a surrogate for oxida-
tive stress. SOD3, the extracellular isoform, is upregulated 
in schizophrenia PFC. As expected, ROS are significantly 
increased in this region [118]. Curiously, atypical antipsy-

Table 3. Calcium-binding proteins-immunoreactive neurons expression in schizophrenia.

Calcium-binding protein Alteration Cerebral region References

Parvalbumin Reduced Prefrontal cortex
Hippocampus
Entorhinal cortex
Anterior cingulate córtex

80, 81, 103, 104
103, 105
103, 106
107

Calbindin Increased Prefrontal cortex 83

Reduced Prefrontal cortex
CA2
Planum temporale

104
108
109

Disarrayed Prefrontal laminas III/IV 108

Not altered Entorhinal cortex
Posterior cingulate cortex
Visual córtex

106
110
110

Calretinin Reduced Caudate nucleus 111

Not altered Prefrontal cortex
Entorhinal cortex
Hippocampus
Anterior cingulate córtex

80, 81, 104
103
105
107

velopment [116]. Furthermore, while calretinin expres-
sion is relatively stable during development, parvalbumin 
is only expressed by 3-6 months old. Calbindin distribution 
is also incomplete by birth [117]. These temporal dispar-
ities might explain the selective deficits of some CBP sub-
types in schizophrenia—parvalbumin is expressed during a 
putative window of susceptibility [103].

Calcineurin, important in immune system and 
NMDA-mediated plasticity [73], is dependent on calcium 
for its activation. Its expression is disrupted in prenatal VD 
deficiency as well as in schizophrenia [84].

Cerebral energy metabolism
Energy production in aerobic cells implies three pathways: 
glycolysis in cytoplasm, Krebs cycle, and oxidative phos-
phorylation in mitochondrion, the essential organelle in 
energy production. In short, glycolysis allows glucose con-
version to pyruvate. Then, pyruvate enters the Krebs cycle 
and origins NADH and FADH2. These are finally broken 
down in the electron transport chain, yielding ATP, and 
H+ is pumped out of mitochondrion. 

Hexokinase 1, the first enzyme of glycolysis pathway, 
and mitochondrial isocitrate dehydrogenase, a compo-
nent of Krebs cycle, are down-regulated in developmen-
tal VD deficiency. Pyruvate dehydrogenase, the enzyme 
linking glycolysis and Krebs cycle is also decreased [95]. 
Electron transport chain components, NADH dehydroge-
nase, cytochrome B5 and somatic cytochrome C, essential 
to oxidative phosphorylation, are altered by prenatal VD 
depletion, too [84]. All in all, VD depletion causes mito-
chondrial malfunctioning [95].

In schizophrenia, mitochondria are scarce in many 
cerebral regions, a finding apparently reverted by anti-
psychotic drugs [84]. Moreover, regulatory genes of mi-
tochondrial function are undoubtedly the most affected in 
schizophrenia PFC [118]. Numerous proteins involved in 
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chotics show antioxidant activity [122]. Moreover, VD 
prevents ROS cellular uptake through a not entirely un-
derstood mechanism. Conversely, hydrogen peroxide, NO 
and peroxynitrite preclude nuclear VD signalling by inter-
fering with VDR. 

On the other hand, physiological serum levels of VD 
increase glutathione expression in astrocytes [97, 123]. In 
schizophrenia, total glutathione levels are reduced in cere-
brospinal fluid and PFC [124]. This powerful antioxidant 
agent can apparently regulate different neurotransmitter 
systems: NMDA receptor, GABA-A receptors, Cav1.2, and 
calcineurin. Actually, glutathione deficit leads to NMDA 
hypofunction [101], already discussed. It can also affect 
dopaminergic signalling. D1 stimulation increases Cav1.2 
function, whereas D2 stimulation inhibits it. Glutathione 
deficit skews dopaminergic stimulation to D2 receptors 
[101]. In genetically-induced glutathione deficit, reduced 
parvalbumin expression is noticed in post-puberty, after 
ROS selective accumulation in ventral hippocampus [125]. 

Cognitive and behavioural processes
VD has been proposed to influence personality traits— 
increased serum levels are linked to extraversion and open-
ness [126]. Unfortunately, this study did not consider vari-
ables influencing serum VD levels. On the other hand, schizo-
phrenia is associated with low levels of extraversion [127].

Recently, adequate 25-OHD3 levels during second-tri-
mester pregnancy have been linked to offspring’s better 
mental and psychomotor development [128]. However, 
in adulthood, VD supplementation or restriction does not 
seem to lead to any cognitive alterations, in both rats [82] 
and humans [129]. Noteworthy, cognitive impairment is the 
strongest predictor of functional outcome in schizophrenia 
[72]. Cav1.2 has been shown to play a role in behaviours 
mediated by the mesolimbic pathway and amygdala [6].

Latent inhibition (LI)
LI is a learning mechanism that reflects the longer time 
taken for a familiar stimulus to be considered relevant 
comparing to a new stimulus. Schizophrenic individuals, 
mostly in acute episodes, show inability to ignore irrelevant 
stimulus—low LI. In rats, this can be replicated by maternal 
VD deprivation, suggesting this hormone may be linked to 
impairment of memory processes [130]. Apparently, this 
habituation deficit can be reverted by neuroleptics [131]. 

Prepulse inhibition (PPI)
PPI is a neurological phenomenon referring to an attenuat-
ed response to a strong stimulus if it was shortly preceded 
by a weaker one, usually acoustic. Its deficit in schizophre-
nia is thought to be linked to dopaminergic transmission 
overactivity in forebrain [132]. PPI impairment, a marker 
of reduced habituation, was not reproduced by low pre-
natal VD concentrations solely [133]. However, pre- and 
postnatal chronic VD deficiency [134], as well as VDR 
knockout [135] recreate this aspect. 

Hyperlocomotion
Hyperlocomotion in response to novelty is a well-estab-
lished feature in schizophrenia models and it has been 
replicated in VD depleted rats [65, 133, 136, 137]. VD 
deficiency also leads to hyperlocomotion in response to 
NMDA-antagonists [65, 96, 138, 139] and is reverted by 
haloperidol [65]. 

On the other hand, decreased exploration of surround-
ing environment in rats is considered homologue to nega-
tive symptoms in patients. In utero VD-deprived rats show 
less interest in environment exploration, mimicking apa-
thy and difficulty in activity initiation [130]. Nevertheless, 
this decreased exploration was not recreated by all the oth-
er cited groups [135].

Attention and working memory
Other prominent features observed in patients, impaired 
attention [140] and working memory [130], are not di-
rectly affected by low prenatal VD. However, reduced 
dopaminergic, GABAergic and glutamatergic neurotrans-
mission in dorsolateral PFC are linked to working memory 
impairment [72]. These pathways are possibly influenced 
by VD deficiency, as discussed throughout the text.

Discussion

Although we have divided our results in sections, it is ob-
vious that all biological pathways interact and we believe 
the net effect of VD deficiency may take part in the de-
velopment of schizophrenia through multiple seemingly 
small metabolic imbalances, as mentioned throughout this 
paper, and others yet to be discovered.

Some VD deficiency phenotypes have not found cor-
respondence in schizophrenia ones, but there is much in 
common between them. Synapse anomalies resulting from 
cytoskeleton structure anomalies and neurotransmission 
impairment, namely glutamatergic, GABAergic, and do-
paminergic are evident. Of these, NMDA hypofunction 
seems to be central, disrupting dopamine and GABA 
transmission, ultimately resulting in apoptosis and neu-
ronal injury. Anomalies in calcium transmission, many 
linked to CACNA1C, are also evident and may result in 
NMDA hypofunction and neurotoxicity. Neuronal injury 
and less efficient energy production arise from anomalies 
in redox balance and aerobic respiration. Finally, we have 
noticed that anomalies in GABA, calcium, and dopamine 
transmission, as well as upstream glutamate abnormalities, 
result in working memory impairment, one of the most 
consistently described functional anomalies in schizophre-
nia. Figure 3 aims to provide a global view of the major 
pathways mentioned in this paper, in a simplified manner. 
The global picture favours the neurodevelopmental origin 
of schizophrenia arising from multiple pathways’ disrup-
tion, many of them also disrupted in VD deficiency models. 

Current knowledge connecting schizophrenia and VD 
is vast but more research is needed if one aims to definitely 
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Figure 3. A global view of the major pathways mentioned in this paper, in a simplified manner. Green boxes refer to schizophrenia while orange boxes 
refer to VD deficiency. Orange/green boxes refer to pathways altered in both conditions. Blue boxes refer to neurobiological measures mentioned along the text. All bio-
logical pathways interact and we believe the net effect of VD deficiency may take part in the development of schizophrenia through multiple seemingly small metabolic 
imbalances as mentioned throughout this paper and others yet to be discovered. 
There is much in common between both phenotypes. Synapse anomalies resulting from cytoskeleton structure anomalies and neurotransmission impairment, namely 
glutamatergic, GABAergic and dopaminergic, are evident. Of these, NMDA hypofunction seems to be central, disrupting dopamine and GABA transmission, ultimately 
resulting in apoptosis and neuronal injury. Anomalies in calcium transmission, many linked to CACNA1C, are also evident and may result in NMDA hypofunction and neu-
rotoxicity. Neuronal injury and less efficient energy production arise from anomalies in redox balance and aerobic respiration. Finally, we have noticed that anomalies in 
GABA, calcium and dopamine transmission, as well as upstream glutamate abnormalities, result in working memory impairment, one of the most consistently described 
functional anomalies in schizophrenia. All of these may ultimately result in visible changes, disrupting brain morphology. 
AST: associative striatum; CACNA1C: gene of alpha 1C subunit of L-type voltage-gated calcium channels; CBP: calcium-binding proteins; COMT: catechol-O-methyl-trans-
ferase; DA: dopamine; GABA: gamma-aminobutyric acid; GAD67: glutamic acid descarboxylase 67; HVA: homovallinic acid; iNOS: inducible nitric oxide synthase; L-type VG 
Ca-channels: L-type voltage-gated calcium channels; NMDA: N-methyl-D-aspartate; NO: nitric oxide; PFC: prefrontal cortex; ROS: reactive oxygen species; SOD: superoxide 
dismutase; VD: vitamin D .

establish VD deficiency as a major etiological factor of this 
disease. The major limitation of the VD deficiency mod-
el is that no evidence linking it directly to glutamatergic 
transmission impairment, central in the current concept of 
schizophrenia, has been found yet.

Findings concerning VD role on human neurodevel-
opment cannot be interpreted crudely. Serum VD levels 
depend on BMI, season or latitude, among other variables. 
Studies not reporting adjustment of their results for these 
variables are not as strong as ones which do so. Due to 
Finnish and Danish comprehensive databases, some stud-
ies have been conducted there. However, these are high 
latitude countries and it would be interesting to see the 
same studies being conducted in low latitude countries in 
years to come, for instance, in Mediterranean countries.

Given the high prevalence of VD deficiency in psychi-
atric populations, especially schizophrenic, we suggest se-
rum VD levels screening. 

Overall, maybe it would be wise to supplement preg-
nant women, especially in immigrants or when genetic 
risk is known. Regard the following case report by Humble 
[27]: a young Middle Eastern female, with previous epi-
sodes of mild psychosis, developed schizophrenia after im-
migrating to Sweden. Hallucinations and delusions were 
irresponsive to anti-psychotic treatment. After psychia-
trists realized she had VD insufficiency, she was supple-
mented with VD and calcium for 4 months. Her state dra-
matically improved. Although this is just one case report, it 
gives us hope regarding the putative VD role on psychosis. 
However, some toxic effects have been described for VD 
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[141], hence a recommendation for its supplementation 
should be carefully addressed.

We hypothesize future anti-psychotics will target spe-
cific pathways and molecules, once they are fully charac-
terized. Some of these will perhaps address VD-mediated 
pathways and phenotypes (Table 4) [37, 142].

Conclusion

Brain changes are present prior to disease onset, appar-
ently mute, probably due to genetic polymorphisms over 
which VD may play an important role. Evidence suggests 
disease only manifests when brain and neuronal circuitries 
are mature, that is, in late adolescence, after a second-hit 
occurs (e.g., cannabis consumption). This represents a 
massive challenge in disease prevention and treatment. 

Although we cannot definitely affirm VD deficiency is 
necessary for schizophrenia etiology, literature currently 
points to this hypothesis. In this paper, we summarized the 
existing knowledge and established connections among 
the different pieces, in hope those lacking will surface over 
the next years.
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Table 4. Main effects of developmental vitamin D deficiency.

Neurobiological measure Effect References

Brain morphology
Larger and longer hemispheres
↑ Lateral ventricle volume
↓ Cortical thickness

50
50, 51
50

Histological changes ↑ Number of mitosis
↓ Apoptotic activity

50
58

Neurotrophic factors ↓ Levels of NGF and GDNF 
↓ Levels of p75NTR

50
50

Neurotransmission

↓ GAD67
↓ GABA-A receptor, subunit alpha-4 
↓ GABA-B receptor 1
↓ Differentiation factors Nurr 1 and p57Kip2
↓ COMT expression 

82
51
84
86, 88, 89
86

Synaptic plasticity ↓ Synaptic proteins expression
SYN2 and NSF dysregulation

63, 84
84, 92

Cytoskeleton structure ↓ RhoA, MAP2, GFAP, GAP-43, NF-L and Klc-1 51, 63, 84, 92

Calcium homeostasis ↓ Calcium-binding proteins expression
↓ Calcineurin expression

95
84

Energy metabolism
Mitochondria malfunctioning
↓ Levels hexokinase 1 and isocitrate dehydrogenase 
↓ Levels cytochrome B5 and somatic cytochrome C 

95
95
84

Redox balance Superoxide dismutase 2 disruption 84

Cognition and behaviour

↓ Latent inhibition
↓ Prepulse inhibition
Hyperlocomotion in response to novelty
Hyperlocomotion in response to NMDA-antagonists
↓ Learning on hippocampal-associated tasks
↑ Impulsivity

130
134
65, 133, 136, 137
65, 96, 138, 139
52
143

Abbreviations: NGF (nerve growth factor), GDNF (glial cell line-derived neurotrophic factor), p75NTR (low-affinity neurotrophin receptor), GAD67 
(glutamate decarboxylase), GABA (gamma-aminobutyric acid), COMT (catechol-O-methyltransferase), SYN2 (synapsin), NSF (N-ethylmaleimide sensitive 
factor),  MAP2 (microtubule-associated protein), GFAP (glial fibrillary acidic protein), GAP-43 (growth associated protein), NF-L (neurofilament light-
chain), Klc-1 (kinesin light-chain), NMDA (N-methyl-D-aspartate), ↑ increased in vitamin D depleted rats compared to controls, ↓ decreased in vitamin D 
depleted rats compared to controls.
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