Human Molecular Genetics, 2014, Vol. 23, Review Issue 1
doi:10.1093/hmg/ddu328
Advance Access published on July 4, 2014

R89-R98

Mendelian randomization: genetic anchors for causal
inference in epidemiological studies

George Davey Smith* and Gibran Hemani

MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, School of Social and Community Medicine,
Bristol, UK

Received May 14, 2014; Revised June 19, 2014; Accepted June 20, 2014

Observational epidemiological studies are prone to confounding, reverse causation and various biases and
have generated findings that have proved to be unreliable indicators of the causal effects of modifiable expo-
sures on disease outcomes. Mendelian randomization (MR) is a method that utilizes genetic variants that are
robustly associated with such modifiable exposures to generate more reliable evidence regarding which inter-
ventions should produce health benefits. The approach is being widely applied, and various ways to strengthen
inference given the known potential limitations of MR are now available. Developments of MR, including two-
sample MR, bidirectional MR, network MR, two-step MR, factorial MR and multiphenotype MR, are outlined in
this review. The integration of genetic information into population-based epidemiological studies presents

translational opportunities, which capitalize on the investment in genomic discovery research.

INTRODUCTION

Many examples exist of apparently robust observational asso-
ciations between behavioural, pharmacological or physiologic-
al measures and disease risk which, when subjected to
randomized controlled trials (RCTs), do not deliver the antici-
pated health benefits (1). These include many nutritional
factors (e.g. several vitamins), pharmacological agents (e.g.
hormone replacement therapy) and circulating biomarkers
(e.g. HDL cholesterol) (1—4). Confounding, reverse causation
and various biases can generate the associations, and even with
careful study design and statistical adjustment, incorrect causal
inference is possible (1,5). The recognition of these problem-
atic aspects of epidemiological investigation has led to the ap-
plication of a series of methods aimed at improving causal
inference (6,7). A successful approach is to use genetic var-
iants as exposure indicators that are not subject to the influ-
ences that vitiate conventional study designs, an approach
known as Mendelian randomization (MR) (8,9). We will not
repeat the many detailed reviews that now exist of MR
(8,10—15) nor summarize the hundreds of empirical studies
applying the technique to a wide range of exposures and
disease outcomes, rather, after a brief summary of the founda-
tional principles, we will outline recent developments and po-
tential future directions of the field.

BASIC PRINCIPLES OF MENDELIAN
RANDOMIZATION

Inferring the causal direction between correlated variables is a
pervasive issue in biology that simple regression analysis
cannot answer. The association between two variables could
reflect a causal relationship, but the direction of causality (e.g.
A causing B or B causing A) is not clear. Furthermore, there
may be unobserved factors that influence both variables and
lead to their association (confounding) (Fig. 1). In the latter scen-
ario, the effect of the independent variable on the outcome may
be zero. Even if the hypothesized causal direction were correctly
specified, if the independent variable is correlated with some
unobserved or imprecisely measured confounders then the esti-
mate of its causal effect could be biased. Mendelian randomiza-
tion is a technique aimed at unbiased detection of causal effects
and, where possible, estimation of their magnitude.

Suppose that trait A and trait B are correlated, it follows that if
this correlation arises because A is causing B, then any variable
that influences trait A should also influence trait B. The key to in-
ferring a causal relationship between A and B is to identify an ‘in-
strument’ that is reliably associated with A in a known direction.
Biologists are in a privileged position in this regard because vir-
tually all traits of interest are at least partially influenced by
genetic effects, and genetic effects can serve as excellent
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Figure 1. Schematic representation of MR. (A) Mendelian randomization can be used to test the hypothesis that trait A causes trait B, provided that conditions (1), (2)
and (3) are met adequately, governing that Z, is a valid instrument, in that (1) it is associated with the intermediate phenotype of interest; (2) has no association with the
outcome except through the intermediate phenotype, and (3) is not related to measured or unmeasured confounding factors. (B). In bi-directional MR, the causal dir-
ection between traits (A and B) (if any) can be elucidated, if valid instruments are present for each trait.

instruments for a number of reasons. First, in a genetic associ-
ation, the direction of causation is from the genetic polymorph-
ism to the trait of interest, and not vice versa. Second,
conventionally measured environmental exposures are often
associated with a wide range of behavioural, social and physio-
logical factors that confound associations with outcomes (16).
Genetic variants, on the other hand, can serve as unconfounded
indicators of particular trait values (16). Third, genetic variants
and their effects are subject to relatively little measurement
error or bias. Fourth, the actual causal variant for the trait is
not required, a marker in linkage disequilibrium (LD) with the
causal variant will satisfy the conditions for MR. Finally, in
the era of genome-wide association studies (GWAS) and high-
throughput genomic technologies, genetic data are routinely
available on large well-phenotyped studies.

ANALOGY BETWEEN MENDELIAN
RANDOMIZATION AND RANDOMIZED
CONTROLLED TRIALS

An intuitive way to understand how MR can be used to infer
causality is by analogy with RCTs. In RCTs, the study partici-
pants are randomly allocated to one or another treatment, avoid-
ing potential confounding between treatment and outcome, and
causal inference is unambiguous. MR creates a similar scenario
for us. Suppose a particular allele is robustly related to trait A,
and trait A causes trait B. Alleles are largely passed from
parents to offspring independent of environment, and people
who inherit the allele are, in effect, being assigned a higher
on-average dosage of trait A, whereas those who do not inherit
the allele are assigned a lower on-average dosage. As in RCTs,
groups defined by genotype will experience an on-average dif-
ference in exposure to trait A, whilst not differing with respect
to confounding factors. Thus, a by-genotype analysis is equiva-
lent to an intention-to-treat analysis in a RCT, in which

individuals are analysed according to the group they were rando-
mized into, independent of whether they complied to the treat-
ment regimen or not. This form of analysis ensures that
confounding is not reintroduced though allowing reclassifica-
tion of exposure status after randomization.

Empirical evidence that there is a general lack of confound-
ing of genetic variants with factors that confound exposures in
conventional observational epidemiological studies is exten-
sive (16,17), although it is important to take appropriate mea-
sures to avoid introducing confounding through population
stratification.

To date, MR has been successfully applied to a wide range of
observational associations, covering applications to the causal
effects of biomarkers on disease, understanding the correlation
between physiological measures, estimating the causal effects
of various behaviours and specifying maternal intrauterine influ-
ences (Table 1). In certain circumstances, it is possible to
perform an instrumental variable analysis to obtain an estimate
of the magnitude of the causal effect of the exposure of interest
on the outcome under investigation, and we outline this in
Box 1. There are a number of limitations to MR that should
be considered when using this approach (Table 2), which
have been discussed at length elsewhere (8,10—15). Pleiotropy
(Box 2) is particularly problematic in this regard. The remainder
of this review will outline recent developments in MR, some of
which explicitly seek to address these limitations.

RECENT EXTENSIONS TO BASIC MENDELIAN
RANDOMIZATION

Use of multiple variants to increase power and test
assumptions

Ideally, MR is performed using a single variant whose biological
effect on the trait for which it is an instrument is understood.
However, even this situation is subject to a few potential
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Type Exposure/trait Disease/outcome Conclusion
Biomarkers CRP Coronary heart Observational association between CRP and coronary heart disease is a
disease result of confounding and/or reverse causation (18)
Serum iron Parkinson’s disease ~ Higher serum iron levels lower the risk of Parkinson’s disease (19)
Uric acid Coronary heart Observational association between uric acid and coronary heart disease is,
disease in part, due to confounding by BMI (20)
Macrophage migration Type 2 diabetes Elevated MIF, amongst other factors, increases the risk of type 2 diabetes
inhibitory factor (MIF) 21)
Interleukin 6 (IL6) Coronary heart IL6 increases the risk of coronary heart disease (22,23)
disease
Behaviours Smoking Anxiety/depression  Anxiety and depression amongst smokers does not appear to be a

Physiological measures

Maternal influences (corrected for
genetic correlation between

mother and child)

Alcohol consumption
BMI

Alcohol consumption

Maternal BMI

Blood pressure

Symptomatic
gallstone disease

Childhood school
performance

Fat mass of offspring

consequence of smoking (24,25)
Alcohol use increases blood pressure (26)
Higher BMI increases the risk of symptomatic gall stone disease (27).

The observational finding that moderate maternal alcohol intake is
associated with more favourable school performance is due to
confounding, and the casual association is in the opposite direction (28)

Fat mass in children aged 9—11 is not strongly influenced by BMI of
mothers during pregnancy (29)

Box 1. Application of instrumental variable approaches to MR studies

Conventional instrumental variable (IV) analysis requires that the instruments are valid, and in order to be valid, they must meet
three conditions. An instrument for trait A must be:
1. reliably associated with trait A;
2. associated with the outcome (trait B) only through trait A and
3. independent of unobserved confounders that influence traits A and B after conditioning on observed confounders.
In MR, condition (1) is straightforward to test, but (2) and (3) cannot be established unequivocally. For example, if the variant is

pleiotropic (see Box 2), orifit is in LD with a genetic variant that influences the outcome through a different mechanism, this can
lead to erroneous causal estimation. Ifthe above-mentioned conditions are met, then the unbiased estimate of the effect of trait A
on the outcome, B, can be made using two-stage least-squares (2SLS) regression.

Instage 1, apredictor for A is constructed from its instrument, and in stage 2, the effect of the predictor for A on the outcome B is
estimated. The intuition here is that A is potentially associated with B owing to many confounding effects, and we wish to estimate
the effect of A on B that occurs only via the component of A associated with the instrument. Thus, if the predictor for A is asso-
ciated with B in the estimate from stage 2, then this is only occurring through a path which has no confounding.

Several software implementations exist for performing various type of MR analysis. The ‘ivregress’ package in STATA, and
the ‘systemfit’ package in R each have functions for performing 2SLS. The general case of IV estimation, including when the
number of instruments is greater than the number of explanatory variables, can be performed using the generalized method of
moments using the ‘gmm’ package in R (30). Few software examples exist for the specific types of MR that have been described
in this review, but STATA routines for performing subsample and two-sample IV estimation are provided by Pierce and Burgess

31).

limitations, which can be partially mitigated by increasing the
number variants used as instruments.

First, the genetic effect may not be particularly large, resulting
in a weak instrument and the requirement for very large sample
sizes. By increasing the number of variants, the proportion of
variance explained by the instrument increases, thus improving
precision in two-stage least-squares regression (Box 1) (50).
Combining these into a weighted allele score is generally the
optimal approach in this context (51).

Second, the variant could be pleiotropic orin LD with a variant
that affects the outcome, violating the conditions for being a
valid instrument. This potential caveat can be interrogated by
using multiple instruments. For example, it would be increasingly
improbable that two, three or more independent instruments all

resultin the same conclusion, owing to perfectly balancing pleio-
tropic effects on both traits. For a convincing example demon-
strating the causal influence of low-density lipoprotein
cholesterol (LDL-C) on coronary heart disease (CHD), see
Figure 2, where nine polymorphisms from six genes independ-
ently lead to very similar predicted causal effects of LDL-C,
using instrumental variables analyses (52).

Third, multiple variants can also provide some evidence
regarding the problematic issue of the complexity of associations
in MR studies (see Box 3). If multiple variants that relate to a par-
ticular intermediate phenotype through different mechanisms all
relate to the disease outcome in the manner predicted by their
association with the intermediate phenotype—as in the case
of multiple variants related to LDL-C and CHD, discussed
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Limitation

Role in MR studies

Approaches to evaluating or avoiding the limitation

Low statistical power

Reverse causation

Population stratification

Reintroduced confounding
though pleiotropy

LD induced confounding

Canalization/developmental
compensation

MR studies are often of low power and effect estimates are
imprecise because of this

A genetic variant may be causing the disease outcome which in
turn causes the biomarker, or the causal direction could be in
the opposite direction. 2SLS will not distinguish between these
cases

Spurious associations used as instruments can lead to faulty causal
inference

A genetic variant may directly influence more than one
post-transcriptional process. Known to be the case for some
genetic variants

LD is crucial in genetic association studies as it allows marker
SNPs to proxy for un-genotyped causal SNPs. However, this
can reintroduce confounding if LD leads to the association of
SNPs related to more than one post-transcriptional process.
This case will be similar to the pleiotropy situation

During development, compensatory processes may be generated
that counter the phenotypic perturbation consequent on the
genetic variant utilized as an instrument

Increase sample size and or combine genetic variants so they
explain more of the variance of the intermediate phenotype

Bi-directional MR can be used to distinguish between the two
causal models

Restrict analyses to ethnically homogeneous groups, and
apply correction methods using ancestrally informative
markers or principal components from genome-wide data.
Perform analysis within a family study context, e.g.
between siblings.

‘When possible utilize cis-variants with respect to the
intermediate phenotype under study, as these may be less
likely to have pleiotropic effects. Apply multiple
instrument approaches with more than one independent
genetic variantitis unlikely that pleiotropy will generate the
same associations for different instruments

Studies can be carried out in populations with different LD
structures. Approaches to avoiding distortion by pleiotropy
will also counter problems owing to LD

No general approach developed, although context-specific
biological knowledge can be applied. The period of the life
course when influence of genetic variation on intermediate

phenotypes emerge can indicate whether canalization
could, in principle, be an issue
Lack of genetic variants to Continued genome-wide and sequencing-based studies
proxy for modifiable
exposure of interest

Complexity of associations

No reliable genetic variant associations for many intermediate
phenotypes of interest, although an increasing number of these
now identified

Without adequate biological knowledge, misleading inferences
regarding intermediate phenotypes and disease may be drawn

Increased biological understanding of genotype—phenotype
links

Box 2. Consequences of pleiotropy for the interpretation of MR

Pleiotropy is the phenomenon by which a single locus influences multiple phenotypes (32). Depending on the form it takes, plei-
otropy may be a potential limitation to interpretation of MR, so distinguishing between its different types is important. In the
context of MR, there are two mechanisms by which pleiotropy occurs: a single process leading to a cascade of events (e.g. a
locus influences one particular protein product, and this causes perturbations in many other phenotypes); or a single locus directly
influencing multiple phenotypes (33,34). Amongst its many names, the former has been termed ‘spurious pleiotropy’ (35,36),
‘mediated pleiotropy’ (37) or ‘type II pleiotropy’ (36); the latter ‘biological pleiotropy’ (37) or ‘type I pleiotropy’ (36). Type
II pleiotropy is not only unproblematic for MR, it is the very essence of the approach, in which the downstream effects of a per-
turbed phenotype are estimated through the use of genetic variants that relate to this phenotype. Thus, the instrument of common
variation in £70, known to influence BMI (38), probably through influencing caloric intake (39,40), is associated with a wide
range of downstream phenotypes; blood pressure and hypertension (41), coronary heart disease (42), fasting insulin, glucose,
HDL cholesterol and trigylcerides (43), bone mineral density (44), chronic renal disease (45) and diabetes (38). These associa-
tions are expected, as higher BMI influences these traits, and it would be an error to consider these to be ‘pleiotropic’ effects of
FTO variation that vitiate MR investigations.

Type I pleiotropy, however, is problematic for the interpretation of MR. Estimates of the degree of pleiotropy suggest that type 11
pleiotropy is the more pervasive form (36,46), with type I pleiotropy being more pronounced at the level of the gene than at the level
of' single SNPs (36,47). Greater pleiotropic effects are seen for mutations with larger effects on the primary trait (48,49), as would be
anticipated for type II pleiotropic influences that are downstream effects of considerable perturbation of the primary trait.

Potentially erroneous causal inference owing to type I pleiotropy can be minimized by restricting instruments to genetic effects
which plausibly act directly on the trait (e.g. genetic instruments for CRP levels located within the promoter region of the CRP
gene). When less well-characterized variants, or combinations of variants, are utilized, then the ways of exploring the potential
contribution of pleiotropy detailed in this review and elsewhere (15) need to be implemented.

earlier—the particular way through which one variant relates to
the intermediate phenotype is unlikely to influence the cumula-
tive evidence.

Typically, genetic variants are only used as instruments if they
arereliably detected and replicated in GWAS. However, predict-
ive power may be improved when SNPs that do not reach



Human Molecular Genetics, 2014, Vol. 23, Review Issue 1

30% —

20% —

APOE
rs4420638

SORT1
rsB46776
LDLR *
SORT1
rs2228671 15590839

PCSKS
rs11206510

10% —

Proportional Risk Reduction (SE)

HMGCR
rs12016

ABCGS5/8
rs4209376

RI93

PCSK9 46L
1511591147

LDLR
rs6511720

I I I I I I I

0 10 20 30 40 650 60 70 80

I [ \ I I I I I I I
9.0 100 110 120 130 140 150 160 170 180

Lower LDL-C (mg/dl)

Figure 2. Effect of lower LDL-C on risk of CHD [taken from Ference et al. (2012) (52)]. Boxes represent the proportional risk reduction (1-OR) of CHD for each
exposure allele plotted against the absolute magnitude of lower LDL-C associated with that allele (measured in mg/dl). SNPs are plotted in order of increasing absolute
magnitude of associations with lower LDL-C. The line (forced to pass through the origin) represents the increase in proportional risk reduction of CHD per unit lower

long-term exposure to LDL-C.

Box 3. Complexity of associations

In MR studies, genetic variants are taken to be proxy indicators of modifiable factors that potentially influence disease risk. The
manner in which the variants relate to such factors can lead to misleading interpretations, however. For example, antioxidants are
potentially protective against risk of CHD risk;, so increasing circulating levels of the natural antioxidant extracellular superoxide
dismutase (EC-SOD, a scavenger of superoxide anions), might be hypothesized to decrease CHD risk. However, a genetic variant
associated with higher circulating EC-SOD is associated with substantially increased CHD risk (53). An explanation for this
apparent paradox is that the genetic variant may influence circulating levels of EC-SOD by reducing the levels of EC-SOD in
arterial walls; thus, the in situ anti-oxidative activity is lower, whereas the circulating levels are higher. A naive interpretation
of the genetic studies—that higher levels of antioxidant increase risk of CHD—would be misleading. Similarly, it has been sug-
gested that the interpretation of MR studies purporting to show that elevated uric acid levels do not increase risk of hypertension
(20,54) is rendered problematic by the fact that the main genetic variant utilized in such studies, whilst increasing circulating uric
acid levels, does not increase the intracellular level of uric acid, and the latter may be the important factor with respect

to hypertension (55).

significance thresholds are also included, the rationale being that
these will include false-negatives owing to small effect size (56).
This approach can improve the power of MR, but considerable
caution should be applied, owing to the increased chance of
introducing pleiotropic effects (Box 2) (57).

Two-sample Mendelian randomization

It is often the case that an observational association between two
variables exists, but high measurement costs or lack of appropriate
biospecimens leads to relatively small datasets with intermediate
phenotypes and genetic instruments. Methods have been devel-
oped to perform IV analysis when the intermediate phenotype

and the outcome variable are measured in two independent data-
sets (58), and these can be applied in the MR context (31). This ap-
proach can be particularly valuable when applied to the very large
datasets that exist relating GWAS data to disease outcomes, but
which lack intermediate phenotype data.

Another scenario in which two-sample MR can be used is if
the dataset in which MR is being performed is the same as is
being used to identify instruments. GWAS is known to lead to
overestimation of genetic effect sizes owing to the phenomenon
of the winner’s curse, and this can lead to bias in MR. Dividing
the dataset into two (or more) samples for estimation and testing
can mitigate this problem. This method has been applied in a
study of physical activity and childhood adiposity (59).
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Box 4. Two-step and two-sample, two-step MR

Genetic variants can be used as instrumental variables in a two-step framework to establish whether particular DNA methylation
profiles are on the causal pathway between exposure and disease. In step 1, a SNP is used to proxy for the environmentally modi-
fiable exposure of interest (e.g. smoking) to examine how this exposure influences DNA methylation. In step 2, a different SNP
(which is not related to the exposure), preferably a cis variant, is used to proxy for this specific DNA methylation difference and to
relate this to the disease outcome under investigation.

A Step 1 B Step2

W
Exposure |———>| DNA Methylation l—)l Outcome | | Exposure I—)l DNA Methylation |——)| OQutcome

Two-sample, two-step MR can be utilized to interrogate tissue-specific DNA methylation as a potential causal intermediate
phenotype. In the smaller first sample, the association of the exposure to tissue-specific DNA methylation is established using an
MR approach (with the exposure-related SNP1; A) and a cis variant associated with the same methylation difference but not
related to the exposure is identified (SNP2; B). In the larger second sample, the exposure is shown to influence the outcome
through the use of SNP1, either through relating SNP1 to both the exposure (if data are available on this) and the outcome, or
if exposure data are not available, then simply relating SNP1 to the outcome (C). Finally, exposure-related methylation is
shown to influence the outcome through the use of SNP2, which is related directly to the outcome (D).

Stage 1: Small exploratory data set

A Samplel-Step1 B Sample 1-Step2

| SNP2 |

A 4

Tissue Tissue
methylation methylation

Stage 2: Large independent data set

C D

Sample 2 - Step 1 Sample 2 - Step 2

SNP2

——————— =

Bidirectional and network Mendelian randomization

A major limitation of MR is that it can be difficult to distinguish
between an exposure causing an outcome and an outcome
causing a trait, because genetic variants could have their
primary influence on either variable. For example, atheroma

and body mass index (BMI) influence C-reactive protein (CRP)
levels and apparent misleading causal effects can be generated
if a genetic variant that primarily influences atheroma or BMI is
mistaken as being a variant with a primary influence on CRP (60).

With a focus on instruments for which there exists some
degree of biological understanding, bi-directional MR can be
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applied in these circumstances. Here, instruments are required
for both variables, and MR is performed in both directions
(Fig. 1). If trait A causes trait B, then the instrument, Z,, will
be associated with both A and B. However, a second instrument
specific to trait B, Zg, will be associated with trait B, and not with
trait A. This method is only valid on the condition that the two
instruments are not marginally associated with each other (e.g.
there is no LD between instruments for A and B). This method
has been used to demonstrate that BMI influences CRP levels
(61,62), vitamin D (63), uric acid (20,64) and fetuin-A (65),
and not vice versa. Extracting data from different studies can
also be utilized in this context; for example, MR studies
suggest that IL-6 influences CRP levels, but not vice versa
(18,22,23).

When utilizing variants with little understanding of their bio-
logical effects, bidirectional MR can be potentially misleading,
as it is obvious that if trait A influences trait B then GWAS
studies with adequate statistical power will identify a variant
with a primary influence on trait A as being associated with trait
B. This reflects ‘spurious’ or ‘type I’ pleiotropy (Box 2), and
many examples of this exist. For example, F'7O variation was ini-
tially identified in relation to type 2 diabetes, with subsequent rec-
ognition that this was because the genetic variant related to BMI,
which in turn increased the risk of type 2 diabetes (38). Similarly,
genetic variants with a primary influence on BMI appear amongst
the top hits in GWAS of CRP (66) but obviously cannot be
utilized as instruments for CRP levels. Use of allele scores in bi-
directional MR studies will increase the likelihood of incorrect-
ly including a variant primarily influencing trait A as one that
primarily influences trait B, with consequent misinterpretation,
and findings from such studies need to be treated with caution
(59). Utilizing multiple single and composite instruments can
help interrogate such situations, because if trait A influences
trait B, and not vice versa, then all variants related to trait A
will relate to trait B, but the reverse will not be the case.

Bidirectional MR is applied in two-variable settings, but
clearly this can be scaled up to explore the causal directions
within a network of a larger number of correlated variables
(67). Such ‘network MR’ is an area of current active develop-
ment, with parallel logic to the application of genetic anchors
in the causal dissection of networks of gene interactions (68,69).

Mediation and two-step Mendelian randomization

Networks will often contain cases of mediation, in which the as-
sociation between an exposure and an outcome may act through
an intermediary factor. For example, higher BMI may increase
the risk of CHD in part through its effect on blood pressure. Con-
ventional mediation analysis in the epidemiological field, solely
utilizing phenotypic measurements, is problematic, because it is
highly dependent on the measurement characteristics of the vari-
ables and on reliable identification of causal effects (70—72). In
such situations, it may be possible to obtain causal estimates
from MR studies for all steps in the chain. In the above-
mentioned example, MR studies have shown that greater adipos-
ity leads to higher blood pressure (41), and in turn higher blood
pressure increases the risk of coronary heart disease (73). More
reliable specification of the quantitative contribution of the
mediator (blood pressure) to the casual link between the expos-
ure (BMI) and the outcome (CHD) could be made with such data.
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MR approaches can be applied to mediation in situations of
high-dimensional potential mediator data, as, for example, in
the delineation of mediation by specific epigenetic processes
between environmental exposures and disease. This has been re-
ferred to as two-step MR (74). Intermediate phenotypes, such as
DNA methylation, can show tissue specificity, in that both
genetic and phenotypic associations can differ between tissues,
and assays of easily accessible samples (such as methylation
of DNA extracted from blood) may not be representative of
DNA methylation in the tissue that is responsible for disease de-
velopment (75,76). Obtaining tissue-specific data on large
numbers of individuals is challenging, but using a combined
two-sample and two-step MR approach could be applied. First,
the causal associations of both exposure on methylation and of
a cis SNP on methylation in the tissue of interest could be estab-
lished, and then in a larger population-based sample, the SNP
associations with exposure and disease outcome delineated.
Box 4 illustrates the logic of these more complex approaches.

Factorial Mendelian randomization

The manner by which causes of disease act together to increase
disease risk can have important public health implications, as
above-additive effects lead to the clustering of risk factors, gener-
ating a greater burden of disease in the population. For example,
evidence exists that the combined influence of obesity and
heavy alcohol consumption on the risk of liver disease is greater
than multiplicative (77). It is difficult to estimate such effects,
however, as confounding can be magnified when examining
two already confounded risk factors. Factorial RCTs overcome
this issue by randomizing each treatment independently, allowing
characterization of interactions between them (78). Likewise,
combinations of genetic variants can be used to perform factorial
MR studies to obtain unconfounded estimates of the effect of co-
occurrence of the two risk factors for disease.

Multiphenotype Mendelian randomization

In some situations, genetic variants tend to be associated with
multiple intermediate phenotypes, and estimating the causal
effect of one particular intermediate phenotype is problematic.
Forexample, HDL cholesterol and triglycerides are observation-
ally associated with coronary heart disease, but they are also
highly (inversely) correlated, and observational studies cannot
reliably separate their effects (79). Many of the genetic variants
related to HDL-C and triglycerides, of which there are a large
number, associate with both measures (80), in what appear to
be examples of type I pleiotropy (Box 2). Whereas factorial
MR can be applied to multiphenotype relationships when differ-
ent SNPs can be taken to be instrumental variables for each
phenotype, in this case, this is not possible because constructing
an instrument that purely relates to one phenotype is currently
not possible. An initial way of interrogating this problem is to
use regression methods to attempt to separate the effects, and
two independent studies utilizing this approach have recently
suggested that the causal influence of triglycerides was robust,
whereas the apparent protective effect of HDL-C was not
(81,82). The appropriateness of different statistical approaches
and whether reliable answers can be obtained in the multipheno-
type context remain areas of active investigation.
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Hypothesis-free Mendelian randomization

The majority of MR studies have been focused on testing hypoth-
eses that arose from associations between traits seen in observa-
tional studies. But is this only the tip of the iceberg? An
illustrative example of there being vastly more potential associa-
tions than those already known was presented by Blair et al.
who, after mining the medical records of 110 million patients,
uncovered 2909 associations between Mendelian diseases and
complex traits, the majority of which were previously unreported
(83). Ashigh-throughput ‘omics technologies continue to reduce
in time- and financial-cost, datasets with comprehensive geno-
typing and phenotyping are destined to grow, and in principle,
itshould be possible to construct instruments for many exposures
and through data mining obtain evidence regarding outcomes
caused by these exposures (57). More speculatively, generating
instruments from within the data and performing split-sample or
jackknife IV analysis, including bi-directional analysis, could
allow resolution of causal direction within networks of pheno-
types, without advance specification of which exposure or
outcome is being examined (67).

Conclusion

Resolving observational correlations into causal relationships is
an elusive problem at the heart of biological understanding,
pharmaceutical development, prevention of disease and medical
practice. MR is a potentially robust method that can support this
endeavour, and its scope for application will widen as the cost
of data generation continues to reduce. Findings from MR
studies need to be interpreted in the context of other evidence
related to the particular issue under investigation, and as such, it
will contribute to the application of ‘inference to the best explan-
ation’ (84) approaches to strengthening causal inference. Identify-
ing the most promising targets for intervention—for example,
through pharmacotherapy—can be enhanced through the applica-
tion of MR and thus lead to a more rational approach to prioritizing
treatments for evaluation in RCTs.
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