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Abstract 

 

Vitamin D is a micronutrient that is needed for optimal health throughout the whole life. Vitamin 5 
D3 (cholecalciferol) can be either synthesized in the human skin upon exposure to the UV light 
of the sun, or it is obtained from the diet. If the photoconversion in the skin due to reduced sun 
exposure (e.g. in wintertime) is insufficient, intake of adequate vitamin D from the diet is 
essential to health. Severe vitamin D deficiency can lead to multitude of avoidable illnesses; 
among them are well known bone diseases like osteoporosis, a number of autoimmune diseases, 10 
many different cancers and some cardiovascular diseases like hypertension are being discussed. 
Vitamin D is found naturally in only very few foods. Foods containing vitamin D include some 
fatty fish, fish liver oils, and eggs from hens that have been fed vitamin D and some fortified 
foods in countries with respective regulations. Base on geographic location or food availability 
adequate vitamin D intake might not be sufficient on a global scale. The International 15 
Osteoporosis Foundation (IOF) has collected the 25-hydroxy-vitamin D plasma levels in 
populations of different countries using published data and developed a global vitamin D map. 
This map illustrates the parts of the world, where vitamin D did not reach adequate 25-hydroxy-
vitamin D plasma levels: 6.7 % of the papers report 25-hydroxy-vitamin D plasma levels below 
25 nmol/L, which indicates vitamin D deficiency, 37.3 % are below 50 nmol/l and only 11.9% 20 
found 25-hydroxy-vitamin D plasma levels above 75 nmol/L target as suggested by vitamin D 
experts. The vitamin D map is adding further evidence to the vitamin D insufficiency pandemic 
debate, which is also an issue in the developed world. Besides malnutrition, a condition where 
the diet does not match to provide the adequate levels of nutrients including micronutrients for 
growth and maintenance, we obviously have a situation where enough nutrients were consumed, 25 
but lacked to reach sufficient vitamin D micronutrient levels. The latter situation is known as 
hidden hunger. The inadequate vitamin D status impacts on health care costs, which in turn could 
result by significant savings, if corrected. Since little is known about the effects on the molecular 
level that accompany the pandemic like epigenetic imprinting, the insufficiency-triggered gene 
regulations or the genetic background influence on the body to maintain metabolic resilience, 30 
future research will be needed. The nutrition community is highly interested in the molecular 
mechanism that underlies the vitamin D insufficiency caused effect. In recent years, novel large 
scale technologies have become available that allow the simultaneous acquisition of 
transcriptome, epigenome, proteome or metabolome data in cells of organs. These important 
methods are now used for nutritional approaches summarized in emerging scientific fields of 35 
nutrigenomics, nutrigenetics or nutriepigenetics. It is believed that with the help of these novel 
concepts further understanding can be generated to develop future sustainable nutrition solutions 
to safeguard nutrition security.  
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3.1.1. Introduction  
 40 
Vitamin D is needed to maintain calcium concentrations within a narrow physiological range. 
This function is vital as the calcium ion is essential for a large variety of cellular and metabolic 
processes in the body (1). To secure the calcium supplies besides intestinal absorption, calcium 
is stored in the skeleton and acts as a large calcium reservoir that is mainly controlled by PTH 
and vitamin D (2). Humans produce vitamin D by exposure to sunlight that includes ultraviolet B 45 
radiation (wavelength 290 to 315 nm); if ultraviolet B radiation is not available in sufficient 
amounts, vitamin D needs to be obtained from the diet or dietary supplements (3). The start of 
the vitamin D endocrine system is believed to have been initiated before the start of vertebrates 
and evolved over millions of years (4). Therefore, the vitamin D micronutrient either synthesized 
through the sun by the skin or through dietary uptake is well adapted to the human body. The 50 
endogenously conjugated vitamin D metabolites have taken over many important roles in the 
maintenance of human health, of which many still await to be discovered. 
 
In this paper, we summarize the knowledge on vitamin D as an essential micronutrient important 
for human health and discuss the new nutritional research on its way to gain further knowledge 55 
on the function of vitamin D for nutrition. 
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3.1.2. Vitamin D part of nutrition and content in foods 
 
The history of vitamin D is linked to first scientific description of the classic bone disease rickets 60 
by Whistler in 1645 (5). Two centuries later it was Schütte who observed the usefulness of cod 
liver oil in the treatment of rickets and osteomalacia in 1824. The hunt for the anti-rachitic factor 
ended in early 20th century, when Mellanby could demonstrate in a series of hallmark studies 
(1919 to 1924) that a nutritional component in the diet was the anti-rachitic factor to prevent 
rickets (6-8). Shortly after, vitamin D was inaugurated without the characterization of the 65 
chemical structure. In 1919, Hudschinsky showed in parallel that UV light was able to 
ameliorate rickets by increasing calcification in rachitic children (9, 10). Both findings of the cod 
liver oil and the UV light preventing rickets remained independent observations until Hess and 
Weinstock elegantly could demonstrate that the anti-rachitic vitamin D was produce by UV 
irradiation in skin (11, 12). In 1936, Windaus and colleagues determined the chemical structure 70 
of the fat-soluble seco-steroid vitamin D (13). 
 
The vitamin D definition comprises a group of molecules called the calciferols. The main forms 
present in foods are cholecalciferol (vitamin D3) and ergocalciferol (vitamin D2), whereas the 
metabolite 25-hydroxycholecalciferol (25-hydroxyvitamin D3) is a natural part of the food chain 75 
by its occurrence in animal products. Vitamin D3 is unique by the fact that the same nutrient can 
be synthesized in the skin through the action of sunlight or being taken up by diet. This dual 
source of intake secures the body to maintain sufficient vitamin D levels in the body. The 
production in skin is the major vitamin D3 source for the body. Exposure of the precursor 7-
dehydrocholesterol in the basal and suprabasal layers of the epidermis to ultraviolet B (UVB) 80 
light with a wavelength of 290-315 nm is needed for the formation of the previtamin D3. The 
subsequent conversion is a non-enzymatic process that includes a thermal isomerization of the 
previtamin D3 to produce vitamin D3 (14, 15). This vitamin D3 is rapidly converted to 25-
hydroxyvitamin D3 in the liver. The vitamin D status is evaluated by measuring the circulating 
levels of serum 25-hydroxyvitamin D, which is the sum of cutaneous synthesis (vitamin D3) or 85 
dietary contribution (vitamin D3 and vitamin D2). The 25-hydroxyvitamin D3 needs to be 
further hydroxylated in the kidney (or locally in other organs) to form 1,25-dihydroxyvitamin 
D3, the active endogenous hormone, which is responsible for most of the physiological actions 
of vitamin D through the binding to the vitamin D receptor (VDR). The plant-derived vitamin 
D2 is processed in the same way. For both vitamers, vitamin D2 and vitamin D3, the consecutive 90 
molecular action is believed to be identical, whereas only 1,25-dihydroxy vitamin D3 is the 
endogenous hormone, the activated vitamer 1,25-dihydroxyvitamin D2 is hormone mimetic. 
Therefore, it was not surprising that vitamin D3 has been reported to be superior to vitamin D2 
in terms of bioavailability and maintaining the vitamin D status by the majority of studies (16-
21). Only one study reported that the two vitamers were essentially equipotent (22). 95 
 
The level of cutaneous vitamin D3 synthesis is mainly affected by the amount of solar UVB 
radiation reaching the human skin, which is a function that needs to take into account the 
wavelength, thickness of the ozone layer in the atmosphere and solar zenith angle. Furthermore, 
the geographic latitude, season of the year and time of day influence and restrict the skin-borne 100 
synthesis of vitamin D3 (23, 24). It was described that vitamin D3 synthesis in the skin declines 
with age, which is due in part to a fall of 7-dehydrocholesterol and the morphological changes 
due to biological aging (25, 26). In 1991, Matsuoka et al (27) have shown that in Caucasians and 
Asian subjects having a lighter skin pigmentation UVB radiation produce significantly higher 
vitamin D3 serum levels than in African American and East Indian groups. It is not of a surprise 105 
that skin pigmentation reduces vitamin D3 formation. This skin tone dependent down regulation 
is easily overcome by increased sun exposures (28). Apart to darker pigmented skin, cutaneous 
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vitamin D3 production can be reduced for many other reasons like severe air pollution in large 
cities, less outdoor activity as a consequence of an unhealthy lifestyle change, immobility of 
institutionalized elderly populations, topical application of sunscreens with a high sun protection 110 
factors or cultural dress codes (e.g. veiling). Therefore, dietary intake of vitamin D through foods 
or supplements plays a vital part to maintain healthy vitamin D levels. 
 
Through nutrition, vitamin D intake is limited. There are few naturally-occurring food sources 
containing relevant levels of vitamin D. Table 1 summarizes the vitamin D content in selected 115 
foods. Vegetarian diets are limited to the plant vitamin D2 (ergocalciferol) that is only present in 
some mushrooms. Commercially dark cultivated white button mushrooms contain low amounts 
of vitamin D2, only wild mushrooms or sun-dried mushrooms contain elevated amounts of 
ergocalciferol (29-32). Some commercial producers include an UVB radiation step to increase 
the vitamin D2 content in their products (33, 34). Vitamin D2 is formed out from ergosterol in 120 
the mushrooms. Some plants that are used as foods however can contain ergosterol, but this 
provitamin form is not converted to vitamin D2. Vitamin D3 is not found in food-borne plants. 
In plants, the occurrence of vitamin D3-related compounds is scarce. Interestingly, the botanical 
Solanaceae family, Solanum malacoxylon (S. glaucophiyllum and S. glaucum) contains a 
glycoside of the active 1,25-dihydroxyvitamin D3 hormone (35-37). This deciduous shrub (1.5- 125 
3.0 m stem length) is widely distributed in the provinces of Buenos Aires in Argentina and in 
Brazil and is responsible for the calcinotic disease in cattle and other grazing animal. 
 
Animal food products are the main dietary source for naturally occurring vitamin D3 (38). Since 
the discovery of vitamin D, vitamin D was associated with oily fish products. It was driven by 130 
the early observation that the amount of vitamin D in a teaspoon of cod liver oil was sufficient to 
prevent rickets in infants. It is still the fish liver oil that contains the highest amounts of vitamin 
D3. The highest reported concentration was found in skipjack liver oil 144’400 µg / 100 g (39). 
The fish liver oils besides other nutritional ingredients might contain high levels of vitamin A. 
The vitamin A to vitamin D ratio in the fish liver oils is species and fishing area dependent. The 135 
ratio range starts with a factor of 0.5 for skipjack liver oil and can even reach an extreme ratio of 
119 (pollack liver oil) (39). This wide vitamin A to vitamin D ratio range is the reason why fish 
liver oils often need further processing. In fresh fish products we observe a huge variation in the 
vitamin D3 content per 100 g wet weight (39-47) (table 1). Large variations in vitamin D3 
content were found within the same species, but also between the different fish species. Fish 140 
obtain their vitamin D3 requirements through their diet (48). Therefore, the vitamin D3 levels in 
the zooplankton, the primary food source of fish, or seasonal changes in the zooplankton 
reservoirs in the different habitats, might be the reasons for the observed fluctuation in the fish 
product. Interestingly, the weight, the sex, or the age of the fish could not be correlated to the 
vitamin D3 content. Furthermore, no significant correlation between the tissue fat content and 145 
vitamin D levels was detected (43, 44). Significant differences in vitamin D3 content were found 
between muscle and skin tissues and even more pronounced between muscle and liver tissues 
(46). The 25-hydroxyvitamin D3 compound was also detected, though at low concentrations (44, 
46, 49, 50).  
 150 
Wild and sun-dried mushrooms can be a good dietary source of vitamin D2 (29-32, 47, 51). 
However, the commercially produced mushrooms, e.g. the white button mushroom, do not 
contain or contain only very low amounts of vitamin D2 (29, 32, 51). The vitamin D2 content in 
commercially produced mushrooms can be increased by UVB exposure during the culturing or 
the postharvest process (33, 34). The concentration of vitamin D in eggs can vary from 0.4 µg to 155 
12.1 µg (49, 52-55), it is in a similar range like offal (56-58). Other animal products like pork, 
beef and chicken muscle meat are low in vitamin D content (49, 56-59). By adding vitamin D3 
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into the feed, the vitamin D3 content can be increased in muscle and liver of cattle, to 4.6 µg per 
100 g of tissue and 99.6 µg per 100 g of tissue, respectively (60). Milk, unless fortified, has been 
shown to contain no or very little amounts of vitamin D, whereas in dairy products like butter 160 
and cheese the vitamin D content is higher, but in serving size amounts still very low (47, 56, 61, 
62). In general, household cooking seems to have some effect on vitamin D stability depending 
on the actual foodstuffs and the heating process used (30, 63) 
 
To meet the vitamin D needs in the countries some states fortify foods. Dairy products are ideal 165 
for vitamin D fortification. In Canada vitamin D fortification is mandatory for milk (1 µg / 100 
ml) and margarine (13.3 µg / 100 g) (64). In other countries, like the United States, vitamin D 
fortification is optional for products like milk, breakfast cereals and fruit juices (65). In the 
National Nutrient Database for Standard Reference (release 26) of the U.S. Department of 
Agriculture (USDA)’s Nutrient Databank System (66), 5’036 foods have been determined for 170 
their vitamin D content, of which only 259 food items had detectable vitamin D levels. The data 
showed that per serving only seven fish products had >15 µg vitamin D. All 29 foods that 
contained between 15 µg – 2.5 µg vitamin D per serving were either fortified foods (21) or fish 
produce (8). Two-thirds of all vitamin D containing foods were far below the 1.0 µg level, 
whereas 20 percent had even negligible vitamin D content per serving (below 0.1 µg). 175 
 
Despite the fact that moderate sun exposure of arms and legs in summer for 5 to 30 minutes 
between the hours of 10 a.m. and 3 p.m. twice a week is enough to produce sufficient vitamin D3 
in the body(3), it is astonishing that many populations fail to achieve this goal (67-70). During 
winter time, when vitamin D3 production by the sun ceased, adequate vitamin D levels can only 180 
be achieved by UVB exposure from indoor tanning units, or by a daily diet of fortified foods or a 
few selected food items. This limitation is one of the reasons, why the use of dietary vitamin D 
supplements has become so popular. It is currently the most applied and secure option to reach 
adequate vitamin D intake levels (3). 
  185 
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3.1.3. Vitamin D map, malnutrition, hidden hunger and nutrition security  
 
An accepted biomarker for the vitamin D status in the general population is to measure the serum 
concentration of 25-hydroxyvitamin D levels, which is the major circulating form of vitamin D 
and reflects both dietary vitamin D intake and the endogenous vitamin D production (71, 72). 190 
The serum concentration of 25-hydroxyvitamin D is linked to the serum level of the active 
hormone 1,25-dihydroxyvitamin D and also to the clinical relevant parathyroid hormone level. 
Lips has classified the 25-hydroxyvitamin D levels into four stages (72, 73): severe deficiency 
(<12.5 nmol/L), deficiency (12.5 – 25 nmol/L), insufficiency (25 – 50 nmol/L), repletion (> 50 
nmol/L). The thresholds for severe deficiency and deficiency are undisputed; however, a 195 
controversy has arisen for defining the border between insufficiency and repletion. In 2011, the 
Institute of Medicine (IOM) suggested a serum level of 50 nmol/L as the value at which 97.5% 
of the vitamin D needs of the population would be covered (74, 75), whereas, the Endocrine 
Society (ES) defined it to be higher: 75 nmol/L (76). All deficiency levels including 
insufficiency, as so-called mild deficiency, must be prevented through focused supplementation. 200 
 
In 2010, the Institute of Medicine (IOM) introduced new dietary reference intake (DRI) values 
for vitamin D after comprehensive reviewing of more than 1’000 high quality research articles to 
renew thereby their first settings from 1997 (74). The DRIs address an adequate nutritional 
intake of all sources. The IOM has set the dietary allowance (RDA) to 600 IU per day for the 205 
general population and at 800 IU per day for persons 70 years and older, whereas 1 IU is the 
biological equivalent of 0.025 µg vitamin D3. The tolerable upper intake level or UL (Upper 
Level of Intake), which represents the safe upper limit, was set to 4’000 IU per day for vitamin D 
intake (75). The new RDAs reflect the scientific outcome from large dietary studies that revealed 
vitamin D insufficiency (77, 78). In 2012, Troesch et al. analyzed the vitamin intake from 210 
different dietary surveys that included the German Nutritional Intake Study (Nationale 
Verzehrstudie II) 2008, the US National Health and Nutrition Examination Survey (NHANES) 
from 2003 to 2008, the UK (the British National Diet and Nutrition Survey 2003) and the 
Netherlands (Dutch National Food Consumption Survey 2007–10), and could confirm that 
vitamin D is one of the critical vitamins, which intake is below the recommendation (79).  215 
 
A gap exists between the intake and the recommendation of vitamin D. The chronic insufficient 
intake of micronutrients like vitamin D without seeing immediate clinical signs is called Hidden 
Hunger. Hidden Hunger, in particular for vitamin D, is more prevalent in the populations of the 
developed countries as anticipated (80). Hidden Hunger is a threat for the nutrition security for a 220 
given country. Nutrition security mandates sufficient micronutrients in an adequate food supply 
and is required to safeguard an optimal nutritional status of a population. 
 
Many groups have identified vitamin D deficiency or insufficiency to become a public health 
problem worldwide (3, 67, 68, 70, 81, 82). Mithal et al., 2009 described in their global report that 225 
most populations do not achieve a desirable vitamin D status and particular people at risk and 
elderly people suffer from vitamin D deficiency. In two reports, the International Osteoporosis 
Foundation (IOF) and its partners published the global vitamin D status map (67, 70). The 
vitamin D map was based on a systematic review of the worldwide vitamin D levels, using all 
available publications published between 1990 and February 2011 (67). Eligible studies include 230 
168’389 participants from the general populations throughout the world where the mean or 
median serum 25-hydroxyvitamin D levels were measured. Studies included had a cross-
sectional design or were based on a population based cohorts. The analysis identified nearly 200 
studies from 44 countries, whereas only half of the studies were included in the global vitamin D 
status map as 50.2% of the studies were not representative for the target populations. Figure 1 235 
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shows the global vitamin D status map listed by countries and by continents. The largest 
numbers of studies were performed in Europe, followed by North America and Asia-Pacific. 
Available data from Latin America and even more from Africa are limited. Results of this review 
showed that 6.7% of the population were vitamin D deficient (mean 25-hydroxyvitamin D values 
<25nmol/l), 37.3% were vitamin D insufficient according to IOM (mean values below 50nmol/l) 240 
and 88.1% of the population showed an insufficient vitamin D status according to the Endocrine 
Society (mean values below 75nmol/l). No significant differences were found for gender or age, 
when looking at the worldwide data, but some regional differences could be identified (67). The 
25-hydroxyvitamin D serum levels were higher in Europe and the US, when compared to Middle 
East and Africa. This might be due to the vitamin D food fortification programs in North 245 
America (83). Furthermore, the systematic analysis revealed that institutionalized elderly were 
more at risk to have low 25-hydroxyvitamin D levels in Europe and Asia/Pacific. The compared 
non-institutionalized elderly group showed higher levels, possibly due to spending more of time 
outdoors. The group of institutionalized elderly is therefore at high risk to become vitamin D 
deficient. Further research is needed to inform public health policy makers to reduce the risk for 250 
potential health consequences of low vitamin D status. 
 
In the past few years the national recommendations for dietary vitamin D were adjusted in 
several countries; they are not harmonized across the European Union yet and vary from 200 IU 
to 800 IU. The higher recommendations for dietary vitamin D intake are increasingly being 255 
suggested in government documents, position statements and clinical practice guidelines for 
bone health. In 2008, the U.S. Food and Drug Administration updated the health claim for the 
prevention of osteoporosis by including vitamin D to the consumption of calcium (84). In 2008, 
the American Academy of Pediatrics also reacted and issued an update of their guidelines for 
vitamin D intake and rickets prevention (85). They doubled the recommended dose of vitamin D 260 
for children to 400 IU per day, beginning in the first few days of life and continuing throughout 
adolescence. In 2010, the Institute of Medicine (IOM) released the revised Dietary Reference 
Intakes (DRI’s) for calcium and vitamin D and tripled the recommendations for vitamin D 
intakes to 600 IU per day for children and all adults up to age 69 years (74). The IOM stated that 
there was insufficient evidence to make recommendations for non-skeletal benefits.  265 
 
In 2012, the German, Austrian and Swiss Nutrition Societies raised the recommended vitamin D 
intake to 800 IU per day, in case of absent UVB exposure, for all age groups starting from 1 year 
of age (86). Furthermore, key opinion leaders are increasingly recommending higher daily 
intakes for vitamin D, between 800 IU and 1000 IU or even higher for people at risk or older 270 
adults. The recent statement by the International Osteoporosis Foundation (IOF) and the 
guidelines by the US Endocrine Society suggest that higher vitamin D doses would be needed to 
achieve the desirable 25-hydroxyvitamin D serum level of 75 nmol/L for people at risk or older 
individuals. 
 275 
Increasing the vitamin D levels in the population would also ameliorate health economics. Grant 
et al., 2009 calculated the benefit of increasing vitamin D levels to reduce the economic burden 
of diseases (87). A rise in the vitamin D serum level of all European to 40 nmol/L would reduce 
the economic burden of different diseases and could save health care costs of up to 16.7%. 
Besides reducing the economic costs vitamin D intake could in addition also reduce mortality 280 
rates and maintain a longer healthy life style.  
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3.1.4. Nutritional research to address and understand vitamin D insufficiency 
 
Vitamin D deficiency is undoubtedly linked to severe consequences in the growing child by 285 
causing incomplete mineralization of the bone and in the adult accounting to wasteful 
osteomalacia. In the vitamin D insufficiency stage, this severity gets gradually less, but the 
outcome remains unchanged. Besides the established and accepted functional skeletal health 
relationship, more and more evidence is accumulating for falls (88-94) and physical performance 
(95-100), which has been recognized by a health claim of the European Food and Safety 290 
Authority in 2011: ‘Vitamin D may reduce the risk of falling. Falling is a risk factor for bone 
fractures.’ This health claim is targeting men and women 60 years of age and older and the dose 
required is a daily consumption of 800 IU vitamin D which can come from all sources. Further 
emerging vitamin D health relationships include physiological parameters like improved immune 
response (101-104), improved respiratory health(105-108) possibly also relate to reduced 295 
tuberculosis incidence (109-114); and reduced risk to develop autoimmune diseases like multiple 
sclerosis (115-117) or type 1 diabetes (48, 101, 118-122). In chronic, non-communicable 
diseases, vitamin D deficiency is being discussed to possibly ameliorate the incidence of some 
neoplastic diseases like colorectal, lung, prostate and breast cancers (123-126); cardiovascular 
diseases (CVDs) including hypertension, myocardial infarction, stroke (127-134); life-style 300 
diseases like obesity and type 2 diabetes (2, 122, 135-140); diseases related to the decline in 
sight function including age-related macular degeneration(141-143); and neurological disorders 
including Alzheimer and Parkinson disease (144-147). One may wonder about the width of 
possible implications being looked at, but considering the more than 1’000 genes which vitamin 
D is regulating through the vitamin D receptor (148), this may actually not be a surprise. To 305 
determine the potential role of vitamin D supplementation in the prevention or treatment of 
chronic non-skeletal diseases notwithstanding, large-scale clinical trials are demanded. In this 
respect for the nutrition field, four new large-scale ongoing long-term supplementation studies 
are expected to deliver results in near future (Table 2). The two very large studies, VITAL trial 
(n=20’000) and FIND study (n=18’000), are meant to deliver clinical evidence what effect 310 
vitamin D3 has on cancer CVDs and diabetes outcomes. The two smaller trials, CAPS and DO-
HEALTH, including more than 2’000 participants each are including cancer, infections, 
fractures, hypertension, cognitive function and physical performance outcomes. In all four 
studies the placebo group will produce vitamin D3 in the skin and will consume part of it in the 
food, and therefore this will narrow the gap between the placebo and treatment groups. It 315 
remains to be seen whether the applied supplementation doses (2’000IU and 1’600 IU, 3’200 IU) 
will be sufficient to see a clear difference between the treatment and the control groups. An open 
likelihood will remain for the placebo group potentially obtaining sufficient vitamin D3 (600 IU 
– 800 IU), levels that are considered to be sufficient for skeletal effects. In such a case only an 
incremental increase of an additional ~1’000 IU can be considered as the effective dose, for 320 
which no power calculation was available at the time before study begin. In light of such a 
situation, it will be of interest whether the micronutrient triage theory of Bruce Ames can be 
validated with vitamin D3 (149, 150). The triage theory postulates, as a result of recurrent 
shortages of micronutrients during evolution, that the body has selected and developed a 
metabolic rebalancing response to shortage. These rebalancing favored micronutrient-needs for 325 
short term survival, while those only required for long-term health were starved. In the case of 
the micronutrient vitamin D3, calcium and bone metabolism can be considered to be secured 
with highest priority, therefore, it might be speculated that the 600 IU- 800 IU intake would 
satisfy this vitamin D3 serum level threshold. For the chronic non-skeletal diseases however, 
which have only secondary priority in an evolutionary perspective, higher serum vitamin D3 330 
levels would be required. The ongoing four vitamin D3 studies that have chronic diseases as 
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their main outcomes and use nutritionally relevant ~2’000 IU are therefore well suited to address 
whether the triage theory holds also true for the micronutrient vitamin D3. 
 
Vitamin D3 once in the blood immediately binds to the vitamin D-binding protein (DBP) and 335 
gets  transported into the liver (3). The first hydroxylation at position 25 generates the major 
circulating metabolites 25-hydroxyvitamin D3. This metabolite circulates throughout all organs 
and undergoes hydroxylation at position 1, which occurs mainly in the kidney, but also in other 
organs, to form 1,25-dihydroxyvitamin D3, the active hormone. Besides the major circulating 
metabolite 25-hydroxyvitamin D3 and the hormonally active metabolite 1,25-dihydroxyvitamin 340 
D3, more than 35 additional vitamin D3 metabolites are formed by the body (151, 152). It is 
speculated that they might be intermediates in the catabolism of 1,25-dihydroxyvitamin D3. The 
human body has evolved many CYP enzymes and invests energy to form these additional 35 
vitamin D3 metabolites, whether this is for the purpose to catabolize 1,25-dihydroxyvitamin D3, 
remains still to be answered. More appealing is the theory that these metabolites are formed to 345 
fulfill yet unknown functions of vitamin D3. This perspective could potentially also account to 
the pleiotropic non-skeletal health benefits reported from the many vitamin D intake studies. For 
some of the vitamin D3 metabolites like the 24R,25-dihydroxyvitamin D3 potential function was 
explored in vitro (153).  
 350 
The 24R,25-dihydroxyvitamin D3 has been shown to be an essential hormone in the process of 
bone fracture healing. The 24R,25-dihydroxyvitamin D3 likely initiates its biological responses 
via binding to the ligand binding domain of a second cell membrane receptor, the 
VDR(mem24,25) (153). From the nutritional point of view it will be of interest to investigate the 
function of the all vitamin D3 metabolites and relate the function to the level of vitamin D3 355 
intake to secure the health benefit according the triage theory. 
 
According to the current knowledge, the vitamin D endocrine system is funneled through the 
biologically most active metabolite 1,25-dihydroxyvitamin D3 that is mainly produced in the 
kidney, but also in other organs (154). Mechanistically 1,25-dihydroxyvitamin D3 binds the 360 
vitamin D receptor (VDR) directly on a DNA sequence, the 1,25-dihydroxyvitamin D3 response 
element (VDRE), in the regulatory region of primary 1,25-dihydroxyvitamin D3 target genes 
(148). The VDR forms together with the retinoid X receptor or putative other transcription 
factors a heterodimer on the VDRE, recruiting tissue-specific transcriptional co-activators and 
regulates through a conformational change upon 1,25-dihydroxyvitamin D3 binding the 365 
downstream gene. The VDR is widespread in more than 30 tissues (152) and may trigger 
expression of more than 1’000 genes through 1,25-dihydroxyvitamin (155, 156). The regulation 
of tissue-specific gene expression by 1,25-dihydroxyvitamin D3 is of high interest, as it guides 
us towards the better understanding of the mechanistic action of vitamin D3 in the different 
tissues. The gained knowledge from the mechanistic studies can help to design smaller and more 370 
focused nutritional intervention RCTs to answer whether vitamin D contributes to a specific 
health benefit of interest. In this respect the GeneChip-based transcriptomics methodology using 
high-density microarrays demonstrated the expression of genes in a variety of important 
functions of more than 100 different pathways that could be linked to vitamin D deficiency (156-
158). The development of chromatin immunoprecipitation (ChiP) methodology linked to site-375 
specific PCR amplification of the VDR bound genomic DNA fragment, and later the methods 
using tiled microarrays (ChiP-chip) applying the first unbiased genome-wide approach, which 
then was followed by the massive parallel NGS sequencing approach of the immunoprecipitated 
DNA segments, opened up new avenues to investigate 1,25-dihydroxyvitamin D3 target genes in 
selected tissues (155, 159-162). In an elegant study, Carlberg et al. identified in samples of 71 380 
pre-diabetic individuals of the VitDmet study changes in serum 25-hydroxyvitamin D3 
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concentrations that were associated to primary vitamin D target genes (155). Based on their 
finding the authors proposed the genes CD14 and THBD as transcriptomics biomarkers, from 
which the effects of a successful vitamin D3 supplementation can be evaluated. These 
biomarkers are potentially suitable for displaying the transcriptomics response of human tissues 385 
to vitamin D3 supplementation.  
 
Epigenetic alterations of the genome refer to heritable and modifiable changes in gene 
expression that are not affecting the DNA sequence. They may be inherited as Mendelian, non-
Mendelian or environmentally caused traits. One of the 1,25-dihydroxyvitamin D3 induced 390 
epigenetic modification was shown for the hypo-methylating effect on the osteocalcin promoter 
(163). 1,25-dihydroxyvitamin D3-was associated with the demethylation of the osteocalcin 
promoter and induced the osteocalcin gene expression. The activity of VDR can be modulated by 
epigenetic histone acetylation. The VDR alone or in concert with other transcription factors can 
recruit histone-modifying enzymes like histone acetyl transferases (HATs) or histone 395 
deacetylases (HDACs) and epigenically direct transcriptional expression of downstream genes 
(156, 164-166). The trans-generational epigenetic inheritance of vitamin D3 triggered epigenome 
modification is not fully explored, however maternal vitamin D deficiency has been discussed 
with adverse pregnancy outcomes or potential susceptibility for diseases (156, 165, 166). For 
future nutritional research it would be of great value to identify and validate epigenetic 400 
biomarkers that could serve as risk assessment tool for vitamin D insufficiency related 
susceptibility to develop a disease later in life. 
 
Variations in vitamin D status have been shown to be related to inheritance. The disparity of 
vitamin D levels according to ethnicity given skin pigmentation is well established (167, 168). 405 
Dark skinned population individuals have compared to Caucasian descendants almost one-half 
the serum concentrations of 25-hydroxyvitamin D (169). From twin studies it has been estimated 
that the heritability of genetic regulation of vitamin D levels to be between 23% to 80% (170). In 
addition, large-scale genetic association studies using linkage disequilibrium analysis have 
identified genetic loci correlating with serum vitamin D level within five candidate genes (170). 410 
The identified SNPs are within the 1alpha-hydroxylase of 25-hydroxyvitamin D (CYP27B1) 
gene, the 25-hydroxylase of vitamin D (CYP2R1) gene, the vitamin D carrier protein (GC) gene, 
the vitamin D receptor (VDR) gene, and the cytochrome P-450 (CYP24A1) gene coding for an 
enzyme that inactivates 1,25-dihydroxyvitamin D. It is important to note that replication studies 
in separate populations have to follow to verify the validity of the identified SNPs. The SNP 415 
information will provide the additional guidance towards a personalized nutritional advice to 
reach a sufficient vitamin D status. 
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3.1.5. Conclusion and future perspectives 
 420 
In the recent years the knowledge about vitamin D and its implications have extended far beyond 
its classical role in bone health in either fields of basic research as well as in human trials. In 
particular, the evidence for the role of vitamin D in reducing the risk of fractures as well as 
decreasing the risk for falling is convincing and authorities have responded to it. Besides a health 
claim issued by the EFSA on the risk reduction for falling the dietary intake recommendations 425 
have been significantly increased in several countries such as the US and in Europe (Austria, 
Germany, Switzerland). A number of other countries around the globe are in the process of 
establishing new dietary intake recommendations as well. It turns out that on average a daily 
intake of 600 – 800 IU vitamin D appears to be required to meet fundamental needs of the 
human body, for specific applications higher daily intakes may be necessary, which will become 430 
clearer as the results of a number of ongoing clinical studies will become available.  
 
The obvious question to answer is: do people obtain the recommended amounts of vitamin D? 
The diet is typically only a minor vitamin D source as only few food items contain relevant 
amounts of vitamin D, such as fatty sea fish. The primary vitamin D source for humans is the 435 
vitamin D synthesis in the skin from vitamin D precursors by the sunlight – provided the skin is 
sufficiently exposed to strong enough sun radiation. Several groups have reviewed the published 
results on 25-hydroxyvitamin D serum levels the established marker of the vitamin D status 
showing that low 25-hydroxyvitamin D levels are found in many cohorts around the world. A 
recent systematic review of the global vitamin D status (67) showed that 6.7% of the overall 440 
populations reported deficient 25-hydroxyvitamin D levels below 25 nmol/L, 37% had 25-
hydroxyvitamin D levels below 50 nmol/L and only 11% were above 75 nmol/L, which is 
considered an adequate status by the IOF and the Endocrine Society. So a very important task 
ahead of us is to find efficient ways to improve the vitamin D status on the population level, be it 
by dietary means, food fortification or dietary supplements. 445 
 
In addition, it will be very important to gather sound and convincing evidence for the many 
additional implicated health benefits of vitamin D besides the ones that already reached a health 
claim status and to see which of them will actually hold up. This will require appropriate human 
studies on the one hand, and also involve the appropriate use of the novel experimental 450 
approaches like nutrigenomics , nutrigenetics and nutriepigenetics on the other hand. In 
conclusion, the evidence we have for vitamin D in human health is exciting, however we have to 
make sure that appropriate measures are taken to improve the vitamin D status to the levels 
required to be beneficial for human health. In future, we will also need to further apply, exploit 
and invest in novel, innovative and break-through technologies in the vitamin D research to 455 
understand the underlying mechanisms by which vitamin D is exerting so many effects in the 
human body, which is knowledge needed to the purpose to obtain and secure optimal public 
health through nutrition. 
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Table 1 

Vitamin D content in raw products, processed foods and fortified foods. 
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Category Foodstuff Range    References 
    [µg vitamin D  

per 100 g] 
[IU vitamin D  
per 100 g]   

Raw products         

       
Fish Herring 2.2 - 38.0 88 - 1'520 Mattila, 1995 (44); Mattila, 1997 (43); Ostermeyer, 2006 (45); 

Byrdwell, 2013 (40); Kobayashi, 1995 (47) 

  Salmon 4.2 - 34.5 168 - 1'380 Lu, 2007 (42); Ostermeyer, 2006 (45); Byrdwell, 2013 (40); 
Kobayashi, 1995 (47) 

  Halibut 4.7 - 27.4  188 - 1'094 Ostermeyer, 2006 (45); Byrdwell, 2013 (40) 

  Perch  0.3 - 25.2 12 - 1'012 Mattila, 1995 (44); Mattila, 1997 (43); Ostermeyer, 2006 (45); 
Byrdwell, 2013 (40) 

  Trout 3.8 - 19.0 152 - 760 Mattila, 1995 (44); Ostermeyer, 2006 (45); Byrdwell, 2013 (40) 

  Tuna 1.7 - 18.7 68 - 748 Byrdwell, 2013 (40); Takeuchi, 1984 (39); Takeuchi, 1986 (46); 
Kobayashi, 1995 (47) 

  Mackerel 0.5 - 15.5 20 - 620 Egaas, 1979 (41); Ostermeyer, 2006 (45); Lu, 2007 (42); 
Aminullah, 1993 (171); Kobayashi, 1995 (47) 

  Cod 0.5 - 6.9 20 - 276 Mattila, 1995 (44); Ostermeyer, 2006 (45); Byrdwell, 2013 (40); 
Kobayashi, 1995 (47) 

       

Mushrooms Morel 4.2 - 6.3 168 - 252 Phillips, 2011 (51) 

  Dark cultivated 
white bottom 
mushrooms 

0 - 0.2 0 - 8 Teichmann, 2007 (32); Mattila, 2001 (29); Phillips, 2011 (51) 

  Wild grown 
mushrooms 

0.3 - 29.8 10 - 1'192 Teichmann, 2007 (32); Mattila, 2001 (29); Mattila, 1999 (30); 
Mattila, 1994 (31); Kobayashi, 1995 (47) 

       

Animal 
products 

Pork meat 0.1 - 0.7 4 -28 Bilodeau, 2011 (49); Strobel, 2013 (59); Kobayashi, 1995 (47) 

  Beef meat 0 - 0.95 0 - 38 Bilodeau, 2011 (49); Strobel, 2013 (59); Montgomery, 2000 (58); 
Montgomery, 2002 (57); Kobayashi, 1995 (47) 

  Chicken meat  0 - 0.3 0 - 12 Bilodeau, 2011 (49); Strobel, 2013 (59); Mattila, 1995 (56); 
Kobayashi, 1995 (47) 

  Beef liver 0 - 14.1 0 - 560 Mattila, 1995 (56);Montgomery, 2000 (58); Montgomery, 2002 
(57); Kobayashi, 1995 (47) 

  Eggs 0.4 - 12.1 28 - 480 Bilodeau, 2011 (49); Exler, 2013 (52); Mattila, 1992 (54); Mattila, 
1999 (53); Kobayashi, 1995 (47) 

          
Processed foods     

  
       
Fish Tuna (skipjack) 

liver oil 
144'400 5'776'000 Takeuchi, 1984 (39) 

  Halibut liver oil 13'400 536'000 Egaas, 1979 (41) 

  Cod liver oil 137.5 - 575.0 5'500 - 23'000 Takeuchi, 1984 (39); Egaas, 1979 (41) 

  Canned pink 
salmon  

12.7 - 43.5 508 - 1'740 Bilodeau, 2011 (49) 

  Canned 
sardines 

3.2 - 10 128 - 400 Mattila, 1995 (44) 

  Smoked 
salmon 

4.9 - 27.2 196 - 1'088 Ostermeyer, 2006 (45) 

  
  

Mushrooms Irradiated 
mushrooms 

6.6 - 77.4 264 - 3'094 Mau, 1998 (33); Roberts, 2008 (34) 

  
  

Dairy Butter 0.2 - 2.0 8 - 80 Mattila, 1995 (56); Jakobsen, 2009 (61); Kobayashi, 1995 (47) 

  Cheese 0 - 0.1 0 - 4 Mattila, 1995 (56); Wagner, 2008 (172) 

          

Fortified foods      
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Cereals Corn flakes 2 - 4.7 87 -189 Nutrient Database for Standard Reference (release 26), 2009 
(66) 

       

Beverages Orange juice 1.1 44 Wacker, 2013 (173); 

  Malted drink 
mix, powder 

3 123 Nutrient Database for Standard Reference (release 26), 2009 
(66) 

  
 

    
       
Dairy Milk 1.1 -  2.0 42 - 79 Nutrient Database for Standard Reference (release 26), 2009 

(66); Calvo, 2004 (65) 

  Cheese 2.6 - 25.0 102 - 1'000 Nutrient Database for Standard Reference (release 26), 2009 
(66); Tippetts, 2012 (174) 
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Fig. 1 

Overview of published 25-hydroxyvitamin D mean / median values by countries (modified from Hilger et al, 2014 
(67)).  

The color trend from red, yellow to green shown above the graphical diagram represents the current uncertainty 
around the definition of 25-hydroxyvitamin D3 serum thresholds starting from severe deficiency (red), deficiency, 
insufficiency to total repletion (green). The reported medians are shown as black circles, studies that reported means 
are given in grey circle. The strength of the published valued (study size) is indicated by the circle size. 
Mean/median values falling within the intensely red zone are most consistent with severe vitamin D. 
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Table 2. 

List of ongoing large nutritional vitamin D3 supplementation trials (> 2’000 subjects) using nutrition-related daily vitamin D3 doses (1’600 -3’200 IU). 

 

ACRONYM 
NAME 

CLINICALTRIAL 
IDENTIFIER 

PRINCIPAL 
INVESTIGATOR PLACE PARTICIPANTS DOSE DURATION MAIN OUTCOMES RESULTS 

EXPECTED WEB LINK 

CAPS 

Clinical Trial of 
Vitamin D3 to Reduce 

Cancer Risk in 
Postmenopausal 

Women  
NCT01052051 

Joan Lappe, 
Creighton 
University 

USA 

2'332, 
healthy 

postmenopausal 
women: 55+ 

2'000 IU D3(and 
1,500 mg 

calcium) daily 
5 years All cancers 2015 

http://clinicaltrials.gov/ct2/show/
NCT01052051?term=NCT01052

051&rank=1 

VITAL 
Vitamin D and 
Omega-3 Trial 
NCT01169259 

JoAnn E. 
Manson, 

Brigham and 
Women's 
Hospital 

USA 
20'000, 

men: 50+ 
women: 55+ 

2'000 IU D3, daily 
omega-3 fatty 

acids 
5 years 

Cancer,  
Cardiovascular 

disease 
2017 http://clinicaltrials.gov/show/NCT

01169259  

DO-
HEALTH 

Vitamin D3 - Omega3 
- Home Exercise - 

Healthy Ageing and 
Longevity Trial 
NCT01745263 

Heike Bischoff-
Ferrari, 

University Zürich 

8 
European 

Cities 

2'152,  
70+ 

2'000 IU D3 daily 
omega-3 fatty 

acids 
3 years 

Infections, 
Fractures, 

Blood pressure,  
Cognitive function, 

Lower  
extremity function 

2017 
http://clinicaltrials.gov/ct2/show/
NCT01745263?term=bischoff-

ferrari&rank=1; 
 

FIND Finnish Vitamin D Trial 
NCT01463813 

Tomi-Pekka 
Tuomainen, 
University of 

Eastern Finland 

Finland 
18'000 

men: 60+,  
women: 65+ 

1'600 IU D3 daily 
or  

3'200 IU D3 daily 
5 years 

Cancer,  
Cardiovascular 

disease 
Diabetes 

2020 http://clinicaltrials.gov/show/NCT
01463813  

 


